Search results for: thermal simulation
3 Gamification Beyond Competition: the Case of DPG Lab Collaborative Learning Program for High-School Girls by GameLab KBTU and UNICEF in Kazakhstan
Authors: Nazym Zhumabayeva, Aleksandr Mezin, Alexandra Knysheva
Abstract:
Women's underrepresentation in STEM is critical, worsened by ineffective engagement in educational practices. UNICEF Kazakhstan and GameLab KBTU's collaborative initiatives aim to enhance female STEM participation by fostering an inclusive environment. Learning from LEVEL UP's 2023 program, which featured a hackathon, the 2024 strategy pivots towards non-competitive gamification. Although the data from last year's project showed higher than average student engagement, observations and in-depth interviews with participants showed that the format was stressful for the girls, making them focus on points rather than on other values. This study presents a gamified educational system, DPG Lab, aimed at incentivizing young women's participation in STEM through the development of digital public goods (DPGs). By prioritizing collaborative gamification elements, the project seeks to create an inclusive learning environment that increases engagement and interest in STEM among young women. The DPG Lab aims to find a solution to minimize competition and support collaboration. The project is designed to motivate female participants towards the development of digital solutions through an introduction to the concept of DPGs. It consists of a short online course, a simulation videogame, and a real-time online quest with an offline finale at the KBTU campus. The online course offers short video lectures on open-source development and DPG standards. The game facilitates the practical application of theoretical knowledge, enriching the learning experience. Learners can also participate in a quest that encourages participants to develop DPG ideas in teams by choosing missions throughout the quest path. At the offline quest finale, the participants will meet in person to exchange experiences and accomplishments without engaging in comparative assessments: the quest ensures that each team’s trajectory is distinct by design. This marks a shift from competitive hackathons to a collaborative format, recognizing the unique contributions and achievements of each participant. The pilot batch of students is scheduled to commence in April 2024, with the finale anticipated in June. It is projected that this group will comprise 50 female high-school students from various regions across Kazakhstan. Expected outcomes include increased engagement and interest in STEM fields among young female participants, positive emotional and psychological impact through an emphasis on collaborative learning environments, and improved understanding and skills in DPG development. GameLab KBTU intends to undertake a hypothesis evaluation, employing a methodology similar to that utilized in the preceding LEVEL UP project. This approach will encompass the compilation of quantitative metrics (conversion funnels, test results, and surveys) and qualitative data from in-depth interviews and observational studies. For comparative analysis, a select group of participants from the previous year's project will be recruited to engage in the DPG Lab. By developing and implementing a gamified framework that emphasizes inclusion, engagement, and collaboration, the study seeks to provide practical knowledge about effective gamification strategies for promoting gender diversity in STEM. The expected outcomes of this initiative can contribute to the broader discussion on gamification in education and gender equality in STEM by offering a replicable and scalable model for similar interventions around the world.Keywords: collaborative learning, competitive learning, digital public goods, educational gamification, emerging regions, STEM, underprivileged groups
Procedia PDF Downloads 622 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events
Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic
Abstract:
A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs
Procedia PDF Downloads 4881 A Comprehensive Study of Spread Models of Wildland Fires
Authors: Manavjit Singh Dhindsa, Ursula Das, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran
Abstract:
These days, wildland fires, also known as forest fires, are more prevalent than ever. Wildfires have major repercussions that affect ecosystems, communities, and the environment in several ways. Wildfires lead to habitat destruction and biodiversity loss, affecting ecosystems and causing soil erosion. They also contribute to poor air quality by releasing smoke and pollutants that pose health risks, especially for individuals with respiratory conditions. Wildfires can damage infrastructure, disrupt communities, and cause economic losses. The economic impact of firefighting efforts, combined with their direct effects on forestry and agriculture, causes significant financial difficulties for the areas impacted. This research explores different forest fire spread models and presents a comprehensive review of various techniques and methodologies used in the field. A forest fire spread model is a computational or mathematical representation that is used to simulate and predict the behavior of a forest fire. By applying scientific concepts and data from empirical studies, these models attempt to capture the intricate dynamics of how a fire spreads, taking into consideration a variety of factors like weather patterns, topography, fuel types, and environmental conditions. These models assist authorities in understanding and forecasting the potential trajectory and intensity of a wildfire. Emphasizing the need for a comprehensive understanding of wildfire dynamics, this research explores the approaches, assumptions, and findings derived from various models. By using a comparison approach, a critical analysis is provided by identifying patterns, strengths, and weaknesses among these models. The purpose of the survey is to further wildfire research and management techniques. Decision-makers, researchers, and practitioners can benefit from the useful insights that are provided by synthesizing established information. Fire spread models provide insights into potential fire behavior, facilitating authorities to make informed decisions about evacuation activities, allocating resources for fire-fighting efforts, and planning for preventive actions. Wildfire spread models are also useful in post-wildfire mitigation strategies as they help in assessing the fire's severity, determining high-risk regions for post-fire dangers, and forecasting soil erosion trends. The analysis highlights the importance of customized modeling approaches for various circumstances and promotes our understanding of the way forest fires spread. Some of the known models in this field are Rothermel’s wildland fuel model, FARSITE, WRF-SFIRE, FIRETEC, FlamMap, FSPro, cellular automata model, and others. The key characteristics that these models consider include weather (includes factors such as wind speed and direction), topography (includes factors like landscape elevation), and fuel availability (includes factors like types of vegetation) among other factors. The models discussed are physics-based, data-driven, or hybrid models, also utilizing ML techniques like attention-based neural networks to enhance the performance of the model. In order to lessen the destructive effects of forest fires, this initiative aims to promote the development of more precise prediction tools and effective management techniques. The survey expands its scope to address the practical needs of numerous stakeholders. Access to enhanced early warning systems enables decision-makers to take prompt action. Emergency responders benefit from improved resource allocation strategies, strengthening the efficacy of firefighting efforts.Keywords: artificial intelligence, deep learning, forest fire management, fire risk assessment, fire simulation, machine learning, remote sensing, wildfire modeling
Procedia PDF Downloads 81