Search results for: minimal spanning tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1916

Search results for: minimal spanning tree

1136 The Employment of Unmanned Aircraft Systems for Identification and Classification of Helicopter Landing Zones and Airdrop Zones in Calamity Situations

Authors: Marielcio Lacerda, Angelo Paulino, Elcio Shiguemori, Alvaro Damiao, Lamartine Guimaraes, Camila Anjos

Abstract:

Accurate information about the terrain is extremely important in disaster management activities or conflict. This paper proposes the use of the Unmanned Aircraft Systems (UAS) at the identification of Airdrop Zones (AZs) and Helicopter Landing Zones (HLZs). In this paper we consider the AZs the zones where troops or supplies are dropped by parachute, and HLZs areas where victims can be rescued. The use of digital image processing enables the automatic generation of an orthorectified mosaic and an actual Digital Surface Model (DSM). This methodology allows obtaining this fundamental information to the terrain’s comprehension post-disaster in a short amount of time and with good accuracy. In order to get the identification and classification of AZs and HLZs images from DJI drone, model Phantom 4 have been used. The images were obtained with the knowledge and authorization of the responsible sectors and were duly registered in the control agencies. The flight was performed on May 24, 2017, and approximately 1,300 images were obtained during approximately 1 hour of flight. Afterward, new attributes were generated by Feature Extraction (FE) from the original images. The use of multispectral images and complementary attributes generated independently from them increases the accuracy of classification. The attributes of this work include the Declivity Map and Principal Component Analysis (PCA). For the classification four distinct classes were considered: HLZ 1 – small size (18m x 18m); HLZ 2 – medium size (23m x 23m); HLZ 3 – large size (28m x 28m); AZ (100m x 100m). The Decision Tree method Random Forest (RF) was used in this work. RF is a classification method that uses a large collection of de-correlated decision trees. Different random sets of samples are used as sampled objects. The results of classification from each tree and for each object is called a class vote. The resulting classification is decided by a majority of class votes. In this case, we used 200 trees for the execution of RF in the software WEKA 3.8. The classification result was visualized on QGIS Desktop 2.12.3. Through the methodology used, it was possible to classify in the study area: 6 areas as HLZ 1, 6 areas as HLZ 2, 4 areas as HLZ 3; and 2 areas as AZ. It should be noted that an area classified as AZ covers the classifications of the other classes, and may be used as AZ, HLZ of large size (HLZ3), medium size (HLZ2) and small size helicopters (HLZ1). Likewise, an area classified as HLZ for large rotary wing aircraft (HLZ3) covers the smaller area classifications, and so on. It was concluded that images obtained through small UAV are of great use in calamity situations since they can provide data with high accuracy, with low cost, low risk and ease and agility in obtaining aerial photographs. This allows the generation, in a short time, of information about the features of the terrain in order to serve as an important decision support tool.

Keywords: disaster management, unmanned aircraft systems, helicopter landing zones, airdrop zones, random forest

Procedia PDF Downloads 177
1135 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy

Authors: M. Regina Carreira-Lopez

Abstract:

Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.

Keywords: hypernymy, information retrieval, lightweight ontology, resonance

Procedia PDF Downloads 125
1134 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 369
1133 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 167
1132 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm

Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot

Abstract:

The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.

Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump

Procedia PDF Downloads 155
1131 Regression Model Evaluation on Depth Camera Data for Gaze Estimation

Authors: James Purnama, Riri Fitri Sari

Abstract:

We investigate the machine learning algorithm selection problem in the term of a depth image based eye gaze estimation, with respect to its essential difficulty in reducing the number of required training samples and duration time of training. Statistics based prediction accuracy are increasingly used to assess and evaluate prediction or estimation in gaze estimation. This article evaluates Root Mean Squared Error (RMSE) and R-Squared statistical analysis to assess machine learning methods on depth camera data for gaze estimation. There are 4 machines learning methods have been evaluated: Random Forest Regression, Regression Tree, Support Vector Machine (SVM), and Linear Regression. The experiment results show that the Random Forest Regression has the lowest RMSE and the highest R-Squared, which means that it is the best among other methods.

Keywords: gaze estimation, gaze tracking, eye tracking, kinect, regression model, orange python

Procedia PDF Downloads 538
1130 Rectus Sheath Block to Extend the Effectiveness of Post Operative Epidural Analgesia

Authors: Sugam Kale, Arif Uzair Bin Mohammed Roslan, Cindy Lee, Syed Beevee Mohammed Ismail

Abstract:

Preemptive analgesia is an established concept in the modern practice of anaesthesia. To be most effective, it is best instituted earlier than the surgical stimulus and should last beyond the offset of surgically induced pain till healing is complete. Whereas the start of afferent pain blockade with regional anaesthesia is common, its effect often falls short to cover the entire period of pain impulses making their way to CNS in the post-operative period. We tried to use a combination of two regional anaesthetic techniques used sequentially to overcome this handicap. Madam S., a 56 year old lady, was scheduled for elective surgery for pancreatic cancer. She underwent laparotomy and distal pancreatectomy, splenectomy, bilateral salpingo oophorectomy, and sigmoid colectomy. Surgery was expected to be extensive, and it was presumed that the standard pain relief with PCA with opiates and oral analgesics would not be adequate. After counselling the patient pre-operative about the technique of regional anaesthesia techniques, including epidural catheterization and rectus sheath catheter placement, their benefits, and potential complications, informed consent was obtained. Epidural catheter was placed awake, and general anaesthesia was then induced. Epidural infusion of local anaesthetics was started prior to surgical incision and was continued till 60 hours into the postoperative period. Before skin closure, the surgeons inserted commercially available rectus sheath catheters bilaterally along the midline incision used for laparotomy. After 46 hours post-op, local anaesthetic infusion via these was started as bridging while the epidural infusion rate was tapered off. The epidural catheter was removed at 75 hours. Elastomeric pumps were used to provide local anaesthetic infusion with the ability to vary infusion rates. Acute pain service followed up the patient’s vital signs and effectiveness of pain relief twice daily or more frequently as required. Rectus sheath catheters were removed 137 hours post-op. The patient had good post-op analgesia with the minimal additional analgesic requirement. For the most part, the visual analog score (VAS) for pain remained at 1-3 on a scale of 1 to 10. Haemodynamics remained stable, and surgical recovery was as expected. Minimal opiate requirement after an extensive laparotomy also translates to the early return of intestinal motility. Our experience was encouraging, and we are hoping to extend this combination of two regional anaesthetic techniques to patients undergoing similar surgeries. Epidural analgesia is denser and offers excellent pain relief for both visceral and somatic pain in the first few days after surgery. As the pain intensity grows weaker, rectus sheath block and oral analgesics provide almost the same degree of pain relief after the epidural catheter is removed. We discovered that the background infusion of local anaesthetic down the rectus sheath catherter largely reduced the requirement for other classes of analgesics. We aim to study this further with a larger patient cohort and hope that it may become an established clinical practice that benefits patients everywhere.

Keywords: rectus sheath, epidural infusion, post operative analgesia, elastomeric

Procedia PDF Downloads 134
1129 Affective Adaptation Design for Better Gaming Experiences

Authors: Ollie Hall, Salma ElSayed

Abstract:

Affective adaptation is a novel way for game designers to add an extra layer of engagement to their productions. When player’s emotions factor in game design, endless possibilities for creative gameplay emerge. Whilst gaining popularity, existing affective game research mostly runs controlled experiments carried in restrictive settings and relies on one or more specialist devices for measuring a player’s emotional state. These conditions, albeit effective, are not necessarily realistic. Moreover, the simplified narrative and intrusive wearables may not be suitable for the average player. This exploratory study investigates delivering an immersive affective experience in the wild with minimal requirements in an attempt for the average developer to reach the average player. A puzzle game is created with a rich narrative and creative mechanics. It employs both explicit and implicit adaptation and only requires a web camera. Participants played the game on their own machines in various settings. Whilst it was rated feasible, very engaging, and enjoyable, it remains questionable whether a fully immersive experience was delivered due to the limited sample size.

Keywords: affective games, dynamic adaptation, emotion recognition, game design

Procedia PDF Downloads 151
1128 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, log linear modeling, neural network, shifting cultivation

Procedia PDF Downloads 54
1127 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 416
1126 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process

Authors: Hong-Ming Chen

Abstract:

This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.

Keywords: optimization, interest rate model, jump process, deterministic

Procedia PDF Downloads 161
1125 The Effects of Partial Replacement with Sewage Sludge, Calcined Clay, and Waste Marble Powder on Cement Paste Properties

Authors: Abdul Rahim Al Umairi, Hamed Al Kindi

Abstract:

The cement production process significantly contributes to greenhouse gas emissions, accounting for 25% of total industrial emissions. This study systematically examined new, underutilized materials—sewage sludge ash (SSA), marble waste (MW), and calcined clay (CC)—to evaluate their effects when partially replacing white Portland cement (WPC) in cement paste formulations. Various replacement proportions (10%, 20%, and 30%) were tested, along with different treatment temperatures (600°C, 630°C, 730°C, and 850°C) for SSA and CC. To gain a deeper understanding of the resulting materials, analyses such as XRF, XRD, and SEM were conducted. The highest compressive strength recorded for the 28-day cured cement paste was 91 MPa when 20% SSA (treated at 600°C) was used, compared to just 53 MPa for the control sample. Conversely, CC exhibited minimal enhancement in compressive strength, while MW had detrimental effects. Additionally, replacing WPC with SSA and CC at 9% and 21% resulted in slight improvements in compressive strength. This research highlights the potential of utilizing underexploited materials like SSA to improve the mechanical and chemical properties of cement paste, indicating that further investigation is necessary to enhance environmental sustainability.

Keywords: sewage sludge ash, calcined clay, marble waste, cement

Procedia PDF Downloads 20
1124 The Investigation of Correlation between Body Composition and Physical Activity in University Students

Authors: Ferruh Taspinar, Gulce K. Seyyar, Gamze Kurt, Eda O. Okur, Emrah Afsar, Ismail Saracoglu, Betul Taspinar

Abstract:

Alterations of physical activity can effect body composition (especially body fat ratio); however body mass index may not sufficient to indicate these minimal differences. The aim of this study was to evaluate the relationship between body composition and physical activity in university students. In this study, 132 university students (mean age; 21.21±1.51) were included. Tanita BC-418 and International Physical Activity Questionnaire (IPAQ) were used to evaluate participants. The correlation between the parameters was analysed via Spearman correlation analysis. Significance level in statistical analyses was accepted is 0.05. The results showed that there was no correlation between body mass index and physical activity (p>0.05). There was a positive correlation between body muscle ratio and physical activity, whereas a negative correlation between body fat ratio and physical activity (p<0.05). This study showed that body fat and muscle ratio affects the level of physical activity in healthy university students. Therefore, we thought that physical activity might reduce effects of the diseases caused by disturbed body composition. Further studies are required to support this idea.

Keywords: body composition, body mass index, physical activity, university student

Procedia PDF Downloads 355
1123 Recreational Nitrous Oxide Use: Increasing Risks and Harms

Authors: Julaine Allan, Jacqui Cameron, Helen Simpson, Kenny Kor

Abstract:

The pleasurable and intoxicating effects of psychoactive substances result in widespread use. However, deaths and injuries from psychoactive substance use, particularly among young people, are a global public health problem. Understanding the benefits and problems associated with different drugs is an important part of creating contextually and physiologically relevant harm reduction strategies. Nitrous oxide use is increasing. A systematic review sought information for harm reduction strategies. The aim of this study was to systematically collate and synthesize the disparate body of research on recreational nitrous oxide use to inform harm reduction approaches tailored for young people. A mixed-methods systematic review combined quantitative data such as prevalence and incidence statistics as well as interpretive data on the experience of N₂O use. Thirty-four studies were included in the final analysis. There was minimal information available to inform policy, health care, or individuals using N₂O. The cultural, contextual, and personal reasons for N₂O use are largely unexplored.

Keywords: substance misuse, nitrous oxide, harms, harm reduction, systematic review

Procedia PDF Downloads 96
1122 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm

Authors: J. Sahari, S. M. Sapuan

Abstract:

Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.

Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical

Procedia PDF Downloads 443
1121 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox

Authors: Jessica M. Black

Abstract:

Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary work

Keywords: methodology, natural science, social science, transdisciplinary

Procedia PDF Downloads 115
1120 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 324
1119 Customer Relationship Management - “Is It a Myth or a Reality in Indian Consumer Context”

Authors: Manish Manohar Hingorani

Abstract:

The purpose of the research is to find out the level of understanding, adoption, and implementation of CRM in Indian Businesses, either product/ service and the processes which should be followed to ensure minimal to no customer churn and further enhance loyalty. The study used comprehensive qualitative interviews of 36 respondents across mid and senior-level management in product and services organizations of Indian origin. The findings of the study exhibit a gap between the understanding, adoption and implementation of CRM in the Indian context. Different Industries have attributed different levels of understanding, adoption, and limited implementation studies on CRM to the Indian context exists in different industries, but studies related to the consequences of not understanding the true meaning of CRM at the grass root level and further than on non-adoption and non-implementation will have an adverse effect on the customer loyalty, and customer satisfaction leading to customer churn. As this was a qualitative approach, the analysis was content-based and discourse based. The responses were taken from mid to very-senior management decision-makers in organizations of Indian origin.

Keywords: customer relationship management, Indian consumer, customer loyalty, customer experience, customer satisfaction

Procedia PDF Downloads 95
1118 Lowering Error Floors by Concatenation of Low-Density Parity-Check and Array Code

Authors: Cinna Soltanpur, Mohammad Ghamari, Behzad Momahed Heravi, Fatemeh Zare

Abstract:

Low-density parity-check (LDPC) codes have been shown to deliver capacity approaching performance; however, problematic graphical structures (e.g. trapping sets) in the Tanner graph of some LDPC codes can cause high error floors in bit-error-ratio (BER) performance under conventional sum-product algorithm (SPA). This paper presents a serial concatenation scheme to avoid the trapping sets and to lower the error floors of LDPC code. The outer code in the proposed concatenation is the LDPC, and the inner code is a high rate array code. This approach applies an interactive hybrid process between the BCJR decoding for the array code and the SPA for the LDPC code together with bit-pinning and bit-flipping techniques. Margulis code of size (2640, 1320) has been used for the simulation and it has been shown that the proposed concatenation and decoding scheme can considerably improve the error floor performance with minimal rate loss.

Keywords: concatenated coding, low–density parity–check codes, array code, error floors

Procedia PDF Downloads 356
1117 Study of the Best Algorithm to Estimate Sunshine Duration from Global Radiation on Horizontal Surface for Tropical Region

Authors: Tovondahiniriko Fanjirindratovo, Olga Ramiarinjanahary, Paulisimone Rasoavonjy

Abstract:

The sunshine duration, which is the sum of all the moments when the solar beam radiation is up to a minimal value, is an important parameter for climatology, tourism, agriculture and solar energy. Its measure is usually given by a pyrheliometer installed on a two-axis solar tracker. Due to the high cost of this device and the availability of global radiation on a horizontal surface, on the other hand, several studies have been done to make a correlation between global radiation and sunshine duration. Most of these studies are fitted for the northern hemisphere using a pyrheliometric database. The aim of the present work is to list and assess all the existing methods and apply them to Reunion Island, a tropical region in the southern hemisphere. Using a database of ten years, global, diffuse and beam radiation for a horizontal surface are employed in order to evaluate the uncertainty of existing algorithms for a tropical region. The methodology is based on indirect comparison because the solar beam radiation is not measured but calculated by the beam radiation on a horizontal surface and the sun elevation angle.

Keywords: Carpentras method, data fitting, global radiation, sunshine duration, Slob and Monna algorithm, step algorithm

Procedia PDF Downloads 126
1116 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 151
1115 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 293
1114 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 72
1113 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 145
1112 Cell-free Bioconversion of n-Octane to n-Octanol via a Heterogeneous and Bio-Catalytic Approach

Authors: Shanna Swart, Caryn Fenner, Athanasios Kotsiopoulos, Susan Harrison

Abstract:

Linear alkanes are produced as by-products from the increasing use of gas-to-liquid fuel technologies for synthetic fuel production and offer great potential for value addition. Their current use as low-value fuels and solvents do not maximize this potential. Therefore, attention has been drawn towards direct activation of these aliphatic alkanes to more useful products such as alcohols, aldehydes, carboxylic acids and derivatives. Cytochrome P450 monooxygenases (P450s) can be used for activation of these aliphatic alkanes using whole-cells or cell-free systems. Some limitations of whole-cell systems include reduced mass transfer, stability and possible side reactions. Since the P450 systems are little studied as cell-free systems, they form the focus of this study. Challenges of a cell-free system include co-factor regeneration, substrate availability and enzyme stability. Enzyme immobilization offers a positive outlook on this dilemma, as it may enhance stability of the enzyme. In the present study, 2 different P450s (CYP153A6 and CYP102A1) as well as the relevant accessory enzymes required for electron transfer (ferredoxin and ferredoxin reductase) and co-factor regeneration (glucose dehydrogenase) have been expressed in E. coli and purified by metal affinity chromatography. Glucose dehydrogenase (GDH), was used as a model enzyme to assess the potential of various enzyme immobilization strategies including; surface attachment on MagReSyn® microspheres with various functionalities and on electrospun nanofibers, using self-assembly based methods forming Cross Linked Enzymes (CLE), Cross Linked Enzyme Aggregates (CLEAs) and spherezymes as well as in a sol gel. The nanofibers were synthesized by electrospinning, which required the building of an electrospinning machine. The nanofiber morphology has been analyzed by SEM and binding will be further verified by FT-IR. Covalent attachment based methods showed limitations where only ferredoxin reductase and GDH retained activity after immobilization which were largely attributed to insufficient electron transfer and inactivation caused by the crosslinkers (60% and 90% relative activity loss for the free enzyme when using 0.5% glutaraldehyde and glutaraldehyde/ethylenediamine (1:1 v/v), respectively). So far, initial experiments with GDH have shown the most potential when immobilized via their His-tag onto the surface of MagReSyn® microspheres functionalized with Ni-NTA. It was found that Crude GDH could be simultaneously purified and immobilized with sufficient activity retention. Immobilized pure and crude GDH could be recycled 9 and 10 times, respectively, with approximately 10% activity remaining. The immobilized GDH was also more stable than the free enzyme after storage for 14 days at 4˚C. This immobilization strategy will also be applied to the P450s and optimized with regards to enzyme loading and immobilization time, as well as characterized and compared with the free enzymes. It is anticipated that the proposed immobilization set-up will offer enhanced enzyme stability (as well as reusability and easy recovery), minimal mass transfer limitation, with continuous co-factor regeneration and minimal enzyme leaching. All of which provide a positive outlook on this robust multi-enzyme system for efficient activation of linear alkanes as well as the potential for immobilization of various multiple enzymes, including multimeric enzymes for different bio-catalytic applications beyond alkane activation.

Keywords: alkane activation, cytochrome P450 monooxygenase, enzyme catalysis, enzyme immobilization

Procedia PDF Downloads 227
1111 Development of Innovative Islamic Web Applications

Authors: Farrukh Shahzad

Abstract:

The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).

Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh

Procedia PDF Downloads 283
1110 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications

Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan

Abstract:

Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.

Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification

Procedia PDF Downloads 510
1109 Molecular Characterization and Determination of Bioremediation Potentials of Some Bacteria Isolated from Spent Oil Contaminated Soil Mechanic Workshops in Kaduna Metropolis

Authors: David D. Adams, Ibrahim B. Bello

Abstract:

Spent oil contaminated Soil from ten selected mechanic workshops were investigated for their bacteria and bioremediation potentials. The bacterial isolates were morphologically and molecularly identified as Enterobacter hormaechei, Escherichia coli, Klebsiella pneumoniae, Shigella flexneri , Wesiella cibaria, Lactobacillus planetarium. The singles and a consortium of these bacteria incubated in the minimal salt medium incorporated with 1% engine oil exhibited various biodegradation rates, with the mixed consortium exhibiting the highest for this oil. The gene for the hydrocarbon enzyme Catechol 2, 3 dioxygenase (C2,30) was detected and amplified in Enterobacter hormaechei, Escherichia coli and Shigella flexneri using PCR and Agarose gel electrophoresis. The detection of the (C2,30) enzyme gene in, and the spent oil biodegradation activity exhibited by these bacteria suggest their possible possession of bioremediating potentials for the spent engine oil. It is therefore suggested that a pilot study on the field application of these bacteria for bioremediation and restoration of spent oil polluted environment should be done in mechanic workshops.

Keywords: spent engine oil, pollution, bacteria, enzyme, bioremediation, mechanic workshop

Procedia PDF Downloads 222
1108 Step into the Escalator’s Fractal Behavior by Using the Poincare Map

Authors: Ali Albadri

Abstract:

Step band in an escalator moves in a cyclic periodic pattern. Similarly, most if not all of the components and sub-assemblies in the escalator operate in the same way. If you mark up one step in the step band of an escalator and stand next to the escalator, on the incline, to watch the marked-up step when it passes by, you ask yourself, does the marked up step behaves exactly the same way during each revolution when it passes you by again and again? We can say that; there is some similarity in this example and the example when an astronomer watches planets in the sky, and he or she asks himself or herself, does each planet intersects the plan of observation in the same position for every pantry rotation? For a fact, we know for the answer to the second example is no, because scientist, astronomers, and mathematicians have proven that planets deviate from their paths to take new paths during their planetary moves, albeit with minimal change. But what about the answer to the question in the first example? considering that there is increase in the wear and tear of components with time in the step, in the step band, in the tracks and in many other places in the escalator. There is also the accumulation of fatigue in the components and sub-assemblies. This research is part of many studies which we are conducting to address the answer for the question in the first example. We have been using the fractal dimension as a quantities tool and the Poincare map as a qualitative tool. This study has shown that the fractal dimension value and the shape and distribution of the orbits in the Poincare map has significant correlation with the quality of the mechanical components and sub-assemblies in the escalator.

Keywords: fractal dimension, Poincare map, rugby ball orbit, worm orbit

Procedia PDF Downloads 59
1107 Image Compression on Region of Interest Based on SPIHT Algorithm

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

Image abbreviation is utilized for reducing the size of a file without demeaning the quality of the image to an objectionable level. The depletion in file size permits more images to be deposited in a given number of spaces. It also minimizes the time necessary for images to be transferred. Storage of medical images is a most researched area in the current scenario. To store a medical image, there are two parameters on which the image is divided, regions of interest and non-regions of interest. The best way to store an image is to compress it in such a way that no important information is lost. Compression can be done in two ways, namely lossy, and lossless compression. Under that, several compression algorithms are applied. In the paper, two algorithms are used which are, discrete cosine transform, applied to non-region of interest (lossy), and discrete wavelet transform, applied to regions of interest (lossless). The paper introduces SPIHT (set partitioning hierarchical tree) algorithm which is applied onto the wavelet transform to obtain good compression ratio from which an image can be stored efficiently.

Keywords: Compression ratio, DWT, SPIHT, DCT

Procedia PDF Downloads 349