Search results for: inorganic molecular crystals
2010 Ion Beam Sputtering Deposition of Inorganic-Fluoropolymer Nano-Coatings for Real-Life Applications
Authors: M. Valentini, D. Melisi, M. A. Nitti, R A. Picca, M. C. Sportelli, E. Bonerba, G. Casamassima, N. Cioffi, L. Sabbatini, G. Tantillo, A. Valentini
Abstract:
In recent years antimicrobial coatings are receiving increasing attention due to their high demand in medical applications as well as in healthcare and hygiene. Research and technology are constantly involved to develop advanced finishing which can provide bacteriostatic growth without compromising the other typical properties of a textile as durability and non-toxicity, just to cite a few. Here we report on the antimicrobial coatings obtained, at room temperature and without the use of solvents, by means of the ion beam co-sputtering technique of an Ag target and a polytetrafluoroethylene one. In particular, such method allows to conjugate the well-known antimicrobial action of silver with the anti-stain and water-repellent properties of the fluoropolymer. Moreover, different Ag nanoparticle loadings (φ) were prepared by tuning the material deposition conditions achieving a fine control on film thickness and their antimicrobial/anti-stain properties.Keywords: antimicrobial, ion beam sputtering, nanocoatings, anti-stain
Procedia PDF Downloads 3922009 Biostratigraphic Significance of Shaanxilithes ningqiangensis from the Tal Group (Cambrian), Nigalidhar Syncline, Lesser Himalaya, India and Its GC-MS Analysis
Authors: C. A. Sharma, Birendra P. Singh
Abstract:
We recovered 40 well preserved ribbon-shaped, meandering specimens of S. ningqiangensis from the Earthy Dolomite Member (Krol Group) and calcareous siltstone beds of the Earthy Siltstone Member (Tal Group) showing closely spaced annulations that lacked branching. The beginning and terminal points are indistinguishable. In certain cases, individual specimens are characterized by irregular, low-angle to high-angle sinuosity. It has been variously described as body fossil, ichnofossil and algae. Detailed study of this enigmatic fossil is needed to resolve the long standing controversy regarding its phylogenetic and stratigraphic placements, which will be an important contribution to the evolutionary history of metazoans. S. ningqiangensis has been known from the late Neoproterozoic (Ediacaran) of southern and central China (Sichuan, Shaanxi, Quinghai and Guizhou provinces and Ningxia Hui Autonomous region), Siberian platform and across Pc/C Boundary from latest Neoprterozoic to earliest Cambrian of northern India. Shaanxilithes is considered an Ediacaran organism that spans the Precambrian–Cambrian boundary, an interval marked by significant taphonomic and ecological transformations that include not only innovation but also probable extinction. All the past well constrained finds of S. ningqiangensis are restricted to Ediacaran age. However, due to the new recoveries of the fossil from Nigalidhar Syncline, the stratigraphic status of S. ningqiangensis-bearing Earthy Siltstone Member of the Shaliyan Formation of the Tal Group (Cambrian) is rendered uncertain, though the overlying Chert Member in the adjoining Korgai Syncline has yielded definite early Cambrian acritarchs. The moot question is whether the Earthy Siltstone Member represents an Ediacaran or an early Cambrian age?. It would be interesting to find if Shaanxilithes, so far known from Ediacaran sequences, could it transgress to the early Cambrian or in simple words could it withstand the Pc/C Boundary event? GC-MS data shows the S. ningqiangensis structure is formed by hydrocarbon organic compounds which are filled with inorganic elements filler like silica, Calcium, phosphorus etc. The S. ningqiangensis structure is a mixture of organic compounds of high molecular weight, containing several saturated rings with hydrocarbon chains having an occasional isolated carbon-carbon double bond and also containing, in addition, to small amounts of nitrogen, sulfur and oxygen. Data also revealed that the presence of nitrogen which would be either in the form of peptide chains means amide/amine or chemical form i.e. nitrates/nitrites etc. The formula weight and the weight ratio of C/H shows that it would be expected for algae derived organics, since algae produce fatty acids as well as other hydrocarbons such as cartenoids.Keywords: GC-MS Analysis, lesser himalaya, Pc/C Boundary, shaanxilithes
Procedia PDF Downloads 2552008 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics
Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu
Abstract:
Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 3652007 DNA Nano Wires: A Charge Transfer Approach
Authors: S. Behnia, S. Fathizadeh, A. Akhshani
Abstract:
In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.Keywords: DNA conductivity, Landauer resistance, negative dierential resistance, Chaos theory, mean Lyapunov exponent
Procedia PDF Downloads 4252006 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand
Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait
Abstract:
Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.Keywords: soil organic carbon, soil inorganic carbon, carbon sequestration, open burning, sugarcane
Procedia PDF Downloads 3062005 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 1662004 Phylogenetic Analyses of Newcastle Disease Virus Isolated from Unvaccinated Chicken Flocks in Kyrgyzstan from 2015 to 2016
Authors: Giang Tran Thi Huong, Hieu Dong Van, Tung Dao Duy, Saadanov Iskender, Isakeev Mairambek, Tsutomu Omatsu, Yukie Katayama, Tetsuya Mizutani, Yuki Ozeki, Yohei Takeda, Haruko Ogawa, Kunitoshi Imai
Abstract:
Newcastle disease virus (NDV) is a contagious viral disease of the poultry industry and other birds throughout the world. At present, very little is known about molecular epidemiological data regarding the causes of ND outbreak in commercial poultry farms in Kyrgyzstan. In the current study, the NDV isolated from the one out of three samples from the unvaccinated flock was confirmed as NDV. Phylogenetic analysis indicated that this NDV strain is clustered in the Class II subgenotype VIId, and closely related to the Chinese NDV isolate. Phylogenetic analyses revealed that the isolated NDV strain has an origin different from the 4 NDV strains previously identified in Kyrgyzstan. According to the mean death time (MDT: 61.1 h) and a multibasic amino acid (aa) sequence at the F0 proteolytic cleavage site (¹¹²R-R-Q-K-R-F¹¹⁷), the NDV isolate was determined as mesogenic strain. Several mutations in the neutralizing epitopes (notably, ³⁴⁷E→K) and the global head were observed in the hemagglutinin-neuraminidase (HN) protein of the current isolate. The present study represents the molecular characterization of the coding gene region of NDV in Kyrgyzstan. Additionally, further study will be investigated on the antigenic characterization using monoclonal antibody.Keywords: Kyrgyzstan, Newcastle disease, genotype, genome characterization
Procedia PDF Downloads 1422003 A Computational Approach to Screen Antagonist’s Molecule against Mycobacterium tuberculosis Lipoprotein LprG (Rv1411c)
Authors: Syed Asif Hassan, Tabrej Khan
Abstract:
Tuberculosis (TB) caused by bacillus Mycobacterium tuberculosis (Mtb) continues to take a disturbing toll on human life and healthcare facility worldwide. The global burden of TB remains enormous. The alarming rise of multi-drug resistant strains of Mycobacterium tuberculosis calls for an increase in research efforts towards the development of new target specific therapeutics against diverse strains of M. tuberculosis. Therefore, the discovery of new molecular scaffolds targeting new drug sites should be a priority for a workable plan for fighting resistance in Mycobacterium tuberculosis (Mtb). Mtb non-acylated lipoprotein LprG (Rv1411c) has a Toll-like receptor 2 (TLR2) agonist actions that depend on its association with triacylated glycolipids binding specifically with the hydrophobic pocket of Mtb LprG lipoprotein. The detection of a glycolipid carrier function has important implications for the role of LprG in Mycobacterial physiology and virulence. Therefore, considering the pivotal role of glycolipids in mycobacterial physiology and host-pathogen interactions, designing competitive antagonist (chemotherapeutics) ligands that competitively bind to glycolipid binding domain in LprG lipoprotein, will lead to inhibition of tuberculosis infection in humans. In this study, a unified approach involving ligand-based virtual screening protocol USRCAT (Ultra Shape Recognition) software and molecular docking studies using Auto Dock Vina 1.1.2 using the X-ray crystal structure of Mtb LprG protein was implemented. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the Ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has the higher hypothetical affinity, also has greater negative value. Based on the USRCAT, Lipinski’s values and molecular docking results, [(2R)-2,3-di(hexadecanoyl oxy)propyl][(2S,3S,5S,6R)-3,4,5-trihydroxy-2,6-bis[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6 (hydroxymethyl)tetrahydropyran-2-yl]oxy]cyclohexyl] phosphate (XPX) was confirmed as a promising drug-like lead compound (antagonist) binding specifically to the hydrophobic domain of LprG protein with affinity greater than that of PIM2 (agonist of LprG protein) with a free binding energy of -9.98e+006 Kcal/mol and binding affinity of -132 Kcal/mol, respectively. A further, in vitro assay of this compound is required to establish its potency in inhibiting molecular evasion mechanism of MTB within the infected host macrophages. These results will certainly be helpful in future anti-TB drug discovery efforts against Multidrug-Resistance Tuberculosis (MDR-TB).Keywords: antagonist, agonist, binding affinity, chemotherapeutics, drug-like, multi drug resistance tuberculosis (MDR-TB), RV1411c protein, toll-like receptor (TLR2)
Procedia PDF Downloads 2712002 On the Absence of BLAD, CVM, DUMPS and BC Autosomal Recessive Mutations in Stud Bulls of the Local Alatau Cattle Breed of the Republic of Kazakhstan
Authors: Yessengali Ussenbekov, Valery Terletskiy, Orik Zhanserkenova, Shynar Kasymbekova, Indira Beyshova, Aitkali Imanbayev, Almas Serikov
Abstract:
Currently, there are 46 hereditary diseases afflicting cattle with known molecular genetic diagnostic methods developed for them. Genetic anomalies frequently occur in the Holstein cattle breeds from American and Canadian bloodlines. The data on the incidence of BLAD, CVM, DUMPS and BC autosomal recessive lethal mutations in pedigree animals are discordant, the detrimental allele incidence rates are high for the Holstein cattle breed, whereas the incidence rates of these mutations are low in some breeds or they are completely absent. Data were obtained on the basis of frozen semen of stud bulls. DNA was extracted from the semen with the DNA-Sorb-B extraction kit. The lethal mutation in the genes CD18, SLC35A3, UMP and ASS of Alatau stud bulls (N=124) was detected by polymerase chain reaction and RFLP analysis. It was established that stud bulls of the local Alatau breed were not carriers of the BLAD, CVM, DUMPS, and BC detrimental mutations. However, with a view to preventing the dissemination of hereditary diseases it is recommended to monitor the pedigree stock using molecular genetic methods.Keywords: PCR, autosomal recessive point mutation, BLAD, CVM, DUMPS, BC, stud bulls
Procedia PDF Downloads 4432001 Bacterial Profiling and Development of Molecular Diagnostic Assays for Detection of Bacterial Pathogens Associated with Bovine mastitis
Authors: Aqeela Ashraf, Muhammad Imran, Tahir Yaqub, Muhammad Tayyab, Yung Fu Chang
Abstract:
For the identification of bovine mastitic pathogen, an economical, rapid and sensitive molecular diagnostic assay is developed by PCR multiplexing of gene and pathogenic species specific DNA sequences. The multiplex PCR assay is developed for detecting nine important bacterial pathogens causing mastitis Worldwide. The bacterial species selected for this study are Streptococcus agalactiae, Streptococcus dysagalactiae, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, Staphylococcus haemolyticus, Staphylococcus chromogenes Mycoplasma bovis and Staphylococcus epidermidis. A single reaction assay was developed and validated by 27 reference strains and further tested on 276 bacterial strains obtained from culturing mastitic milk. The multiplex PCR assay developed here is further evaluated by applying directly on genomic DNA isolated from 200 mastitic milk samples. It is compared with bacterial culturing method and proved to be more sensitive, rapid, economical and can specifically identify 9 bacterial pathogens in a single reaction. It has detected the pathogens in few culture negative mastitic samples. Recognition of disease is the foundation of disease control and prevention. This assay can be very helpful for maintaining the udder health and milk monitoring.Keywords: multiplex PCR, bacteria, mastitis, milk
Procedia PDF Downloads 3302000 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach
Authors: Sujoy Das, M. M. Ghosh
Abstract:
The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity
Procedia PDF Downloads 3711999 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression
Procedia PDF Downloads 2761998 Molecular Simulation Study on the Catalytic Role of Silicon-Doped Graphene in Carbon Dioxide Hydrogenation
Authors: Wilmer Esteban Vallejo Narváez, Serguei Fomine
Abstract:
The theoretical investigation of Si-doped graphene nanoflakes (NFs) was conducted to understand their catalytic impact on CO₂ reduction using molecular hydrogen at the Density Functional Theory (DFT) level. The introduction of silicon by substituting carbon induces defects in the NF structure, resulting in a polyradical ground state. This silicon defect significantly boosts reactivity towards substrates, making Si-doped graphene NFs more catalytically active in CO₂ reduction to formic acid compared to silicene. Notably, Si-doped graphene demonstrates a preference for formic acid over carbon monoxide, mirroring the behavior of silicene. Furthermore, investigations into formic acid-to-formaldehyde and formaldehyde-to-methanol conversions reveal instances where Si-doped graphene outperforms silicene in terms of efficacy. In the final reduction step, the methanol-to-methane reaction unfolds in four stages, with the rate-determining step involving hydrogen transfer from silicon to methyl. Notably, the activation energy for this step is lower in Si-doped graphene compared to silicene. Consequently, Si-doped graphene NFs emerge as superior catalysts with lower activation energies overall. Remarkably, throughout these catalytic processes, Si-doped graphene maintains environmental stability, further highlighting its enhanced catalytic activity without compromising graphene's inherent stability.Keywords: silicon-doped graphene, CO₂ reduction, DFT, catalysis
Procedia PDF Downloads 531997 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter
Procedia PDF Downloads 3041996 Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India
Authors: A. S. Vidyashree, C. M. Kalleshwaraswamy, R. Asokan, H. M. Mahadevaswamy
Abstract:
Termites are very vital ecological thespians in tropical ecosystem, having been designated as “ecosystem engineers”, due to their significant role in providing soil ecosystem services. Despite their importance, our understanding of a number of their basic biological processes in termites is extremely limited. Developing a better understanding of termite biology is closely dependent upon consistent species identification. At present, identification of termites is relied on soldier castes. But for many species, soldier caste is not reported, that creates confusion in identification. The use of molecular markers may be helpful in estimating phylogenetic relatedness between the termite species and estimating genetic differentiation among local populations within each species. To understand this, termites samples were collected from various places of Western Ghats covering four states namely Karnataka, Kerala, Tamil Nadu, Maharashtra during 2013-15. Termite samples were identified based on their morphological characteristics, molecular characteristics, or both. Survey on the termite fauna in Karnataka, Kerala, Maharashtra and Tamil Nadu indicated the presence of a 16 species belongs to 4 subfamilies under two families viz., Rhinotermitidae and Termitidae. Termititidae was the dominant family which was belonging to 4 genera and four subfamilies viz., Macrotermitinae, Amitermitinae, Nasutitermitinae and Termitinae. Amitermitinae had three species namely, Microcerotermes fletcheri, M. pakistanicus and Speculitermes sinhalensis. Macrotermitinae had the highest number of species belonging two genera, namely Microtermes and Odontotermes. Microtermes genus was with only one species i.e., Microtermes obesi. The genus Odontotermes was represented by the highest number of species (07), namely, O. obesus was the dominant (41 per cent) and the most widely distributed species in Karnataka, Karala, Maharashtra and Tamil nadu followed by O. feae (19 per cent), O.assmuthi (11 per cent) and others like O. bellahunisensis O. horni O. redemanni, O. yadevi. Nasutitermitinae was represented by two genera namely Nasutitermes anamalaiensis and Trinervitermes biformis. Termitinae subfamily was represented by Labiocapritermes distortus. Rhinotermitidae was represented by single subfamily Heterotermetinae. In Heterotermetinae, two species namely Heterotermes balwanthi and H. malabaricus were recorded. Genetic relationship among termites collected from various locations of Western Ghats of India was characterized based on mitochondrial DNA sequences (12S, 16S, and COII). Sequence analysis and divergence among the species was assessed. These results suggest that the use of both molecular and morphological approaches is crucial in ensuring accurate species identification. Efforts were made to understand their evolution and to address the ambiguities in morphological taxonomy. The implication of the study in revising the taxonomy of Indian termites, their characterization and molecular comparisons between the sequences are discussed.Keywords: isoptera, mitochondrial DNA sequences, rhinotermitidae, termitidae, Western ghats
Procedia PDF Downloads 2661995 Geometric, Energetic and Topological Analysis of (Ethanol)₉-Water Heterodecamers
Authors: Jennifer Cuellar, Angie L. Parada, Kevin N. S. Chacon, Sol M. Mejia
Abstract:
The purification of bio-ethanol through distillation methods is an unresolved issue at the biofuel industry because of the ethanol-water azeotrope formation, which increases the steps of the purification process and subsequently increases the production costs. Therefore, understanding the mixture nature at the molecular level could provide new insights for improving the current methods and/or designing new and more efficient purification methods. For that reason, the present study focuses on the evaluation and analysis of (ethanol)₉-water heterodecamers, as the systems with the minimum molecular proportion that represents the azeotropic concentration (96 %m/m in ethanol). The computational modelling was carried out with B3LYP-D3/6-311++G(d,p) in Gaussian 09. Initial explorations of the potential energy surface were done through two methods: annealing simulated runs and molecular dynamics trajectories besides intuitive structures obtained from smaller (ethanol)n-water heteroclusters, n = 7, 8 and 9. The energetic order of the seven stable heterodecamers determines the most stable heterodecamer (Hdec-1) as a structure forming a bicyclic geometry with the O-H---O hydrogen bonds (HBs) where the water is a double proton donor molecule. Hdec-1 combines 1 water molecule and the same quantity of every ethanol conformer; this is, 3 trans, 3 gauche 1 and 3 gauche 2; its abundance is 89%, its decamerization energy is -80.4 kcal/mol, i.e. 13 kcal/mol most stable than the less stable heterodecamer. Besides, a way to understand why methanol does not form an azeotropic mixture with water, analogous systems ((ethanol)10, (methanol)10, and (methanol)9-water)) were optimized. Topologic analysis of the electron density reveals that Hec-1 forms 33 weak interactions in total: 11 O-H---O, 8 C-H---O, 2 C-H---C hydrogen bonds and 12 H---H interactions. The strength and abundance of the most unconventional interactions (H---H, C-H---O and C-H---O) seem to explain the preference of the ethanol for forming heteroclusters instead of clusters. Besides, O-H---O HBs present a significant covalent character according to topologic parameters as the Laplacian of electron density and the relationship between potential and kinetic energy densities evaluated at the bond critical points; obtaining negatives values and values between 1 and 2, for those two topological parameters, respectively.Keywords: ADMP, DFT, ethanol-water azeotrope, Grimme dispersion correction, simulated annealing, weak interactions
Procedia PDF Downloads 1031994 New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization
Authors: Nagi Greesh
Abstract:
This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives.Keywords: polymer-wax, paraffin wax, miniemulsion, core/shell, nanocomposites
Procedia PDF Downloads 911993 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach
Authors: Arjun, A. D. Singh
Abstract:
The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength
Procedia PDF Downloads 5671992 Serological and Molecular Detection of Alfalfa Mosaic Virus in the Major Potato Growing Areas of Saudi Arabia
Authors: Khalid Alhudaib
Abstract:
Potato is considered as one of the most important and potential vegetable crops in Saudi Arabia. Alfalfa mosaic virus (AMV), genus Alfamovirus, family Bromoviridae is among the broad spread of viruses in potato. During spring and fall growing seasons of potato in 2015 and 2016, several field visits were conducted in the four major growing areas of potato cultivation (Riyadh-Qaseem-Hail-Hard). The presence of AMV was detected in samples using ELISA, dot blot hybridization and/or RT-PCR. The highest occurrence of AMV was observed as 18.6% in Qaseem followed by Riyadh with 15.2% while; the lowest infection rates were recorded in Hard and Hail, 8.3 and 10.4%, respectively. The sequences of seven isolates of AMV obtained in this study were determined and the sequences were aligned with the other sequences available in the GenBank database. Analyses confirmed the low variability among AMV isolated in this study, which means that all AMV isolates may originate from the same source. Due to high incidence of AMV, other economic susceptible crops may become affected by high incidence of this virus in potato crops. This requires accurate examination of potato seed tubers to prevent the spread of the virus in Saudi Arabia. The obtained results indicated that the hybridization and ELISA are suitable techniques in the routine detection of AMV in a large number of samples while RT-PCR is more sensitive and essential for molecular characterization of AMV.Keywords: Alfamovirus, AMV, Alfalfa mosaic virus, PCR, potato
Procedia PDF Downloads 1771991 Microsatellite-Based Genetic Variations and Relationships among Some Farmed Nile Tilapia Populations in Ghana: Implications for Nile Tilapia Culture
Authors: Acheampong Addo, Emmanuel Odartei Armah, Seth Koranteng Agyakwah, Ruby Asmah, Emmanuel Tetteh-Doku Mensah, Rhoda Lims Diyie, Sena Amewu, Catherine Ragasa, Edward Kofi Abban, Mike Yaw Osei-Atweneboana
Abstract:
The study investigated genetic variation and relationships among populations of Nile tilapia cultured in small-scale fish farms in selected regions of Ghana. A total of 700 samples were collected. All samples were screened with five microsatellite markers and results were analyzed using (Genetic Analysis in Excel), (Molecular and Evolutionary Genetic Analysis software, and Genpop on the web for Heterozygosity and Shannon diversity, (Analysis of Molecular Variance), and (Principal Coordinate Analysis). Fish from the 16 populations (made up of 14 farms and 2 selectively bred populations) clustered into three groups: 7 populations clustered with the GIFT-derived strain, 4 populations clustered with the Akosombo strain, and three populations were in a separate cluster. The clustering pattern indicated groups of different strains of Nile tilapia cultured. Mantel correlation test also showed low genetic variations among the 16 populations hence the need to boost seed quality in order to accelerate aquaculture production in Ghana.Keywords: microsatellites, small- scale, Nile tilapia, akosombo strain, GIFT strain
Procedia PDF Downloads 1671990 Fuel Oxidation Reactions: Pathways and Reactive Intermediates Characterization via Synchrotron Photoionization Mass Spectrometry
Authors: Giovanni Meloni
Abstract:
Recent results are presented from experiments carried out at the Advanced Light Source (ALS) at the Chemical Dynamics Beamline of Lawrence Berkeley National Laboratory using multiplexed synchrotron photoionization mass spectrometry. The reaction mixture and a buffer gas (He) are introduced through individually calibrated mass flow controllers into a quartz slow flow reactor held at constant pressure and temperature. The gaseous mixture effuses through a 650 μm pinhole into a 1.5 mm skimmer, forming a molecular beam that enters a differentially pumped ionizing chamber. The molecular beam is orthogonally intersected by a tunable synchrotron radiation produced by the ALS in the 8-11 eV energy range. Resultant ions are accelerated, collimated, and focused into an orthogonal time-of-flight mass spectrometer. Reaction species are identified by their mass-to-charge ratios and photoionization (PI) spectra. Comparison of experimental PI spectra with literature and/or simulated curves is routinely done to assure the identity of a given species. With the aid of electronic structure calculations, potential energy surface scans are performed, and Franck-Condon spectral simulations are obtained. Examples of these experiments are discussed, ranging from new intermediates characterization to reaction mechanisms elucidation and biofuels oxidation pathways identification.Keywords: mass spectrometry, reaction intermediates, synchrotron photoionization, oxidation reactions
Procedia PDF Downloads 731989 Development of Positron Emission Tomography (PET) Tracers for the in-Vivo Imaging of α-Synuclein Aggregates in α-Synucleinopathies
Authors: Bright Chukwunwike Uzuegbunam, Wojciech Paslawski, Hans Agren, Christer Halldin, Wolfgang Weber, Markus Luster, Thomas Arzberger, Behrooz Hooshyar Yousefi
Abstract:
There is a need to develop a PET tracer that will enable to diagnosis and track the progression of Alpha-synucleinopathies (Parkinson’s disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA]) in living subjects over time. Alpha-synuclein aggregates (a-syn), which are present in all the stages of disease progression, for instance, in PD, are a suitable target for in vivo PET imaging. For this reason, we have developed some promising a-syn tracers based on a disarylbisthiazole (DABTA) scaffold. The precursors are synthesized via a modified Hantzsch thiazole synthesis. The precursors were then radiolabeled via one- or two-step radiofluorination methods. The ligands were initially screened using a combination of molecular dynamics and quantum/molecular mechanics approaches in order to calculate the binding affinity to a-syn (in silico binding experiments). Experimental in vitro binding assays were also performed. The ligands were further screened in other experiments such as log D, in vitro plasma protein binding & plasma stability, biodistribution & brain metabolite analyses in healthy mice. Radiochemical yields were up to 30% - 72% in some cases. Molecular docking revealed possible binding sites in a-syn and also the free energy of binding to those sites (-28.9 - -66.9 kcal/mol), which correlated to the high binding affinity of the DABTAs to a-syn (Ki as low as 0.5 nM) and selectivity (> 100-fold) over Aβ and tau, which usually co-exist with a-synin some pathologies. The log D values range from 2.88 - 2.34, which correlated with free-protein fraction of 0.28% - 0.5%. Biodistribution experiments revealed that the tracers are taken up (5.6 %ID/g - 7.3 %ID/g) in the brain at 5 min (post-injection) p.i., and cleared out (values as low as 0.39 %ID/g were obtained at 120 min p.i. Analyses of the mice brain 20 min p.i. Revealed almost no radiometabolites in the brain in most cases. It can be concluded that in silico study presents a new venue for the rational development of radioligands with suitable features. The results obtained so far are promising and encourage us to further validate the DABTAs in autoradiography, immunohistochemistry, and in vivo imaging in non-human primates and humans.Keywords: alpha-synuclein aggregates, alpha-synucleinopathies, PET imaging, tracer development
Procedia PDF Downloads 2351988 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes
Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević
Abstract:
In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal
Procedia PDF Downloads 3171987 Mechanical Properties of the Palm Fibers Reinforced HDPE Composites
Authors: Daniella R. Mulinari, Araujo J. F. Marina, Gabriella S. Lopes
Abstract:
Natural fibers are used in polymer composites to improve mechanical properties, substituting inorganic reinforcing agents produced by non-renewable resources. The present study investigates the tensile, flexural and impact behaviors of palm fibers-high density polyethylene (HDPE) composite as a function of volume fraction. The surface of the fibers was modified by mercerization treatments to improve the wetting behavior of the apolar HDPE. The treatment characterization was obtained by scanning electron microscopy, X-Ray diffraction and infrared spectroscopy. Results evidence that a good adhesion interfacial between fibers-matrix causing an increase strength and modulus flexural as well as impact strength in the modified fibers/HDPE composites when compared to the pure HDPE and unmodified fibers reinforced composites.Keywords: palm fibers, polymer composites, mechanical properties, high density polyethylene (HDPE)
Procedia PDF Downloads 3971986 Experimental Investigation of Seawater Thermophysical Properties: Understanding Climate Change Impacts on Marine Ecosystems Through Internal Pressure and Cohesion Energy Analysis
Authors: Nishaben Dholakiya, Anirban Roy, Ranjan Dey
Abstract:
The unprecedented rise in global temperatures has triggered complex changes in marine ecosystems, necessitating a deeper understanding of seawater's thermophysical properties by experimentally measuring ultrasonic velocity and density at varying temperatures and salinity. This study investigates the critical relationship between temperature variations and molecular-level interactions in Arabian Sea surface waters, specifically focusing on internal pressure (π) and cohesion energy density (CED) as key indicators of ecosystem disruption. Our experimental findings reveal that elevated temperatures significantly reduce internal pressure, weakening the intermolecular forces that maintain seawater's structural integrity. This reduction in π correlates directly with decreased habitat stability for marine organisms, particularly affecting pressure-sensitive species and their physiological processes. Similarly, the observed decline in cohesion energy density at higher temperatures indicates a fundamental shift in water molecule organization, impacting the dissolution and distribution of vital nutrients and gases. These molecular-level changes cascade through the ecosystem, affecting everything from planktonic organisms to complex food webs. By employing advanced machine learning techniques, including Stacked Ensemble Machine Learning (SEML) and AdaBoost (AB), we developed highly accurate predictive models (>99% accuracy) for these thermophysical parameters. The results provide crucial insights into the mechanistic relationship between climate warming and marine ecosystem degradation, offering valuable data for environmental policymaking and conservation strategies. The novelty of this research serves as no such thermodynamic investigation has been conducted before in literature, whereas this research establishes a quantitative framework for understanding how molecular-level changes in seawater properties directly influence marine ecosystem stability, emphasizing the urgent need for climate change mitigation efforts.Keywords: thermophysical properties, Arabian Sea, internal pressure, cohesion energy density, machine learning
Procedia PDF Downloads 31985 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis
Authors: Chang-Hui Shen, Paulina Konarzewska
Abstract:
Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1
Procedia PDF Downloads 1271984 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses
Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar
Abstract:
Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers
Procedia PDF Downloads 931983 The Concept of Development: A Normative Restructured Model in the Light of Indian Political Thought and Classical Liberalism
Authors: Sarthak S. Salunke
Abstract:
Development, as a notion, is seen in perspective of western philosophical conceptions, and the western developed nations have become a yardstick for setting up development goals for developing and underdeveloped nations around the world. This blanket term of development becomes superficial and materialistic in context of the vast geopolitical, territorial, cultural and behavioral diversities existing in countries of the Africa and the Asia, and tends to undermine the atomistic aspect of development. Indian political theories, which are often seen as religious philosophies, have inherent structure of development of human being as an individual and as a part of the society, and, in result, development of the State. These theories, primarily individualistic in nature, have a combination of altruism and rationalism which guides human beings towards constructing a collectively developed and morally sustainable society. This research focuses on the application of this Indian thought in combination of classical liberal thought to tackle the issues of development in diverse societies. The proposed restructured model of development is based on molecular individualism, instead of atomic individual approach of liberalists, which lets development modelers to target meaningful clusters for designating goals for development based on the particular needs based on geopolitical, cultural and ethical requirements, and making it meaningful in conjunction with global development to establish a harmony between western and eastern worlds.Keywords: Indian political thought, development, liberalism, molecular individualism
Procedia PDF Downloads 1851982 QSAR, Docking and E-pharmacophore Approach on Novel Series of HDAC Inhibitors with Thiophene Linker as Anticancer Agents
Authors: Harish Rajak, Preeti Patel
Abstract:
HDAC inhibitors can reactivate gene expression and inhibit the growth and survival of cancer cells. The 3D-QSAR and Pharmacophore modeling studies were performed to identify important pharmacophoric features and correlate 3D-chemical structure with biological activity. The pharmacophore hypotheses were developed using e-pharmacophore script and phase module. Pharmacophore hypothesis represents the 3D arrangement of molecular features necessary for activity. A series of 55 compounds with well-assigned HDAC inhibitory activity was used for 3D-QSAR model development. Best 3D-QSAR model, which is a five PLS factor model with good statistics and predictive ability, acquired Q2 (0.7293), R2 (0.9811) and standard deviation (0.0952). Molecular docking were performed using Histone Deacetylase protein (PDB ID: 1t69) and prepared series of hydroxamic acid based HDAC inhibitors. Docking study of compound 43 show significant binding interactions Ser 276 and oxygen atom of dioxine cap region, Gly 151 and amino group and Asp 267 with carboxyl group of CONHOH, which are essential for anticancer activity. On docking, most of the compounds exhibited better glide score values between -8 to -10.5. We have established structure activity correlation using docking, energetic based pharmacophore modelling, pharmacophore and atom based 3D QSAR model. The results of these studies were further used for the design and testing of new HDAC analogs.Keywords: Docking, e-pharmacophore, HDACIs, QSAR, Suberoylanilidehydroxamic acid.
Procedia PDF Downloads 3011981 Molecular Diagnosis of a Virus Associated with Red Tip Disease and Its Detection by Non Destructive Sensor in Pineapple (Ananas comosus)
Authors: A. K. Faizah, G. Vadamalai, S. K. Balasundram, W. L. Lim
Abstract:
Pineapple (Ananas comosus) is a common crop in tropical and subtropical areas of the world. Malaysia once ranked as one of the top 3 pineapple producers in the world in the 60's and early 70's, after Hawaii and Brazil. Moreover, government’s recognition of the pineapple crop as one of priority commodities to be developed for the domestics and international markets in the National Agriculture Policy. However, pineapple industry in Malaysia still faces numerous challenges, one of which is the management of disease and pest. Red tip disease on pineapple was first recognized about 20 years ago in a commercial pineapple stand located in Simpang Renggam, Johor, Peninsular Malaysia. Since its discovery, there has been no confirmation on its causal agent of this disease. The epidemiology of red tip disease is still not fully understood. Nevertheless, the disease symptoms and the spread within the field seem to point toward viral infection. Bioassay test on nucleic acid extracted from the red tip-affected pineapple was done on Nicotiana tabacum cv. Coker by rubbing the extracted sap. Localised lesions were observed 3 weeks after inoculation. Negative staining of the fresh inoculated Nicotiana tabacum cv. Coker showed the presence of membrane-bound spherical particles with an average diameter of 94.25nm under transmission electron microscope. The shape and size of the particles were similar to tospovirus. SDS-PAGE analysis of partial purified virions from inoculated N. tabacum produced a strong and a faint protein bands with molecular mass of approximately 29 kDa and 55 kDa. Partial purified virions of symptomatic pineapple leaves from field showed bands with molecular mass of approximately 29 kDa, 39 kDa and 55kDa. These bands may indicate the nucleocapsid protein identity of tospovirus. Furthermore, a handheld sensor, Greenseeker, was used to detect red tip symptoms on pineapple non-destructively based on spectral reflectance, measured as Normalized Difference Vegetation Index (NDVI). Red tip severity was estimated and correlated with NDVI. Linear regression models were calibrated and tested developed in order to estimate red tip disease severity based on NDVI. Results showed a strong positive relationship between red tip disease severity and NDVI (r= 0.84).Keywords: pineapple, diagnosis, virus, NDVI
Procedia PDF Downloads 791