Search results for: grammatical error correction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2409

Search results for: grammatical error correction

1629 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations

Authors: Jyh Sheen, Yong-Lin Wang

Abstract:

This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.

Keywords: microwave measurement, dielectric constant, mixture rules, composites

Procedia PDF Downloads 367
1628 Attention States in the Sustained Attention to Response Task: Effects of Trial Duration, Mind-Wandering and Focus

Authors: Aisling Davies, Ciara Greene

Abstract:

Over the past decade the phenomenon of mind-wandering in cognitive tasks has attracted widespread scientific attention. Research indicates that mind-wandering occurrences can be detected through behavioural responses in the Sustained Attention to Response Task (SART) and several studies have attributed a specific pattern of responding around an error in this task to an observable effect of a mind-wandering state. SART behavioural responses are also widely accepted as indices of sustained attention and of general attention lapses. However, evidence suggests that these same patterns of responding may be attributable to other factors associated with more focused states and that it may also be possible to distinguish the two states within the same task. To use behavioural responses in the SART to study mind-wandering, it is essential to establish both the SART parameters that would increase the likelihood of errors due to mind-wandering, and exactly what type of responses are indicative of mind-wandering, neither of which have yet been determined. The aims of this study were to compare different versions of the SART to establish which task would induce the most mind-wandering episodes and to determine whether mind-wandering related errors can be distinguished from errors during periods of focus, by behavioural responses in the SART. To achieve these objectives, 25 Participants completed four modified versions of the SART that differed from the classic paradigm in several ways so to capture more instances of mind-wandering. The duration that trials were presented for was increased proportionately across each of the four versions of the task; Standard, Medium Slow, Slow, and Very Slow and participants intermittently responded to thought probes assessing their level of focus and degree of mind-wandering throughout. Error rates, reaction times and variability in reaction times decreased in proportion to the decrease in trial duration rate and the proportion of mind-wandering related errors increased, until the Very Slow condition where the extra decrease in duration no longer had an effect. Distinct reaction time patterns around an error, dependent on level of focus (high/low) and level of mind-wandering (high/low) were also observed indicating four separate attention states occurring within the SART. This study establishes the optimal duration of trial presentation for inducing mind-wandering in the SART, provides evidence supporting the idea that different attention states can be observed within the SART and highlights the importance of addressing other factors contributing to behavioural responses when studying mind-wandering during this task. A notable finding in relation to the standard SART, was that while more errors were observed in this version of the task, most of these errors were during periods of focus, raising significant questions about our current understanding of mind-wandering and associated failures of attention.

Keywords: attention, mind-wandering, trial duration rate, Sustained Attention to Response Task (SART)

Procedia PDF Downloads 182
1627 Application of Unmanned Aerial Vehicle in Urban Rail Transit Intelligent Inspection

Authors: Xinglu Nie, Feifei Tang, Chuntao Wei, Zhimin Ruan, Qianhong Zhu

Abstract:

Current method of manual-style inspection can not fully meet the requirement of the urban rail transit security in China. In this paper, an intelligent inspection method using unmanned aerial vehicle (UAV) is utilized. A series of orthophoto of rail transit monitored area was collected by UAV, image correction and registration were operated among multi-phase images, then the change detection was used to detect the changes, judging the engineering activities and human activities that may become potential threats to the security of urban rail. Not only qualitative judgment, but also quantitative judgment of changes in the security control area can be provided by this method, which improves the objectives and efficiency of the patrol results. The No.6 line of Chongqing Municipality was taken as an example to verify the validation of this method.

Keywords: rail transit, control of protected areas, intelligent inspection, UAV, change detection

Procedia PDF Downloads 369
1626 Near Optimal Closed-Loop Guidance Gains Determination for Vector Guidance Law, from Impact Angle Errors and Miss Distance Considerations

Authors: Karthikeyan Kalirajan, Ashok Joshi

Abstract:

An optimization problem is to setup to maximize the terminal kinetic energy of a maneuverable reentry vehicle (MaRV). The target location, the impact angle is given as constraints. The MaRV uses an explicit guidance law called Vector guidance. This law has two gains which are taken as decision variables. The problem is to find the optimal value of these gains which will result in minimum miss distance and impact angle error. Using a simple 3DOF non-rotating flat earth model and Lockheed martin HP-MARV as the reentry vehicle, the nature of solutions of the optimization problem is studied. This is achieved by carrying out a parametric study for a range of closed loop gain values and the corresponding impact angle error and the miss distance values are generated. The results show that there are well defined lower and upper bounds on the gains that result in near optimal terminal guidance solution. It is found from this study, that there exist common permissible regions (values of gains) where all constraints are met. Moreover, the permissible region lies between flat regions and hence the optimization algorithm has to be chosen carefully. It is also found that, only one of the gain values is independent and that the other dependent gain value is related through a simple straight-line expression. Moreover, to reduce the computational burden of finding the optimal value of two gains, a guidance law called Diveline guidance is discussed, which uses single gain. The derivation of the Diveline guidance law from Vector guidance law is discussed in this paper.

Keywords: Marv guidance, reentry trajectory, trajectory optimization, guidance gain selection

Procedia PDF Downloads 427
1625 Views of the Self in Beast and Beauty K-Dramas: The South Korean Paradigm of Beauty

Authors: Patricia P. M. C. Lourenço

Abstract:

South Korean Entertainment Industry has reversed the gender binary through Beast and Beauty Korean dramas that perpetuate Korean unrealistic beauty standards by emphasizing freckles, acne, pimples, excessive weight, fizzy hair, glasses, and braces as ugly and unattractive, therefore in need of correction to fit into society’s pre-established beauty mould. This pursuit of physical beauty as a happiness goal only detracts singularity in favour of mundaneness, sustaining the illusion that unsightly women need to undergo a physical transformation to improve their lives while handsome, wealthy men need not do anything more than altruistically accept them for who they really are inside. Five Beast and Beauty dramas were analysed for this paper. The assessment revealed that there is standardization and typecasting of Beast and Beauty roles in K-Dramas, a reflection of South Korean’s patriarchal society where women and men are continuously expected to fulfil their pre-established gender binary roles and stereotypes.

Keywords: K-dramas, beauty, low self-esteem, plastic surgery, South Korean stereotypes

Procedia PDF Downloads 214
1624 Acute Severe Hyponatremia in Patient with Psychogenic Polydipsia, Learning Disability and Epilepsy

Authors: Anisa Suraya Ab Razak, Izza Hayat

Abstract:

Introduction: The diagnosis and management of severe hyponatremia in neuropsychiatric patients present a significant challenge to physicians. Several factors contribute, including diagnostic shadowing and attributing abnormal behavior to intellectual disability or psychiatric conditions. Hyponatraemia is the commonest electrolyte abnormality in the inpatient population, ranging from mild/asymptomatic, moderate to severe levels with life-threatening symptoms such as seizures, coma and death. There are several documented fatal case reports in the literature of severe hyponatremia secondary to psychogenic polydipsia, often diagnosed only in autopsy. This paper presents a case study of acute severe hyponatremia in a neuropsychiatric patient with early diagnosis and admission to intensive care. Case study: A 21-year old Caucasian male with known epilepsy and learning disability was admitted from residential living with generalized tonic-clonic self-terminating seizures after refusing medications for several weeks. Evidence of superficial head injury was detected on physical examination. His laboratory data demonstrated mild hyponatremia (125 mmol/L). Computed tomography imaging of his brain demonstrated no acute bleed or space-occupying lesion. He exhibited abnormal behavior - restlessness, drinking water from bathroom taps, inability to engage, paranoia, and hypersexuality. No collateral history was available to establish his baseline behavior. He was loaded with intravenous sodium valproate and leveritircaetam. Three hours later, he developed vomiting and a generalized tonic-clonic seizure lasting forty seconds. He remained drowsy for several hours and regained minimal recovery of consciousness. A repeat set of blood tests demonstrated profound hyponatremia (117 mmol/L). Outcomes: He was referred to intensive care for peripheral intravenous infusion of 2.7% sodium chloride solution with two-hourly laboratory monitoring of sodium concentration. Laboratory monitoring identified dangerously rapid correction of serum sodium concentration, and hypertonic saline was switched to a 5% dextrose solution to reduce the risk of acute large-volume fluid shifts from the cerebral intracellular compartment to the extracellular compartment. He underwent urethral catheterization and produced 8 liters of urine over 24 hours. Serum sodium concentration remained stable after 24 hours of correction fluids. His GCS recovered to baseline after 48 hours with improvement in behavior -he engaged with healthcare professionals, understood the importance of taking medications, admitted to illicit drug use and drinking massive amounts of water. He was transferred from high-dependency care to ward level and was initiated on multiple trials of anti-epileptics before achieving seizure-free days two weeks after resolution of acute hyponatremia. Conclusion: Psychogenic polydipsia is often found in young patients with intellectual disability or psychiatric disorders. Patients drink large volumes of water daily ranging from ten to forty liters, resulting in acute severe hyponatremia with mortality rates as high as 20%. Poor outcomes are due to challenges faced by physicians in making an early diagnosis and treating acute hyponatremia safely. A low index of suspicion of water intoxication is required in this population, including patients with known epilepsy. Monitoring urine output proved to be clinically effective in aiding diagnosis. Early referral and admission to intensive care should be considered for safe correction of sodium concentration while minimizing risk of fatal complications e.g. central pontine myelinolysis.

Keywords: epilepsy, psychogenic polydipsia, seizure, severe hyponatremia

Procedia PDF Downloads 122
1623 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
1622 Evaluating the Validity of CFD Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the geometric mean bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow

Procedia PDF Downloads 135
1621 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network

Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin

Abstract:

The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.

Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake

Procedia PDF Downloads 64
1620 The Use of Authentic Videos to Change Learners’ Negative Attitudes and Perceptions toward Grammar Learning

Authors: Khaldi Youcef

Abstract:

This investigation seeks to inquire into the effectiveness of using authentic videos for grammar teaching purposes. In this investigation, an English animated situation, Hercules, was used as a type of authentic multimedia to teach a particular grammatical structure, namely conditional sentences. This study also aims at investigating the EFL learners’ attitudes toward grammar learning after being exposed to such an authentic video. To reach that purpose, 56 EFL learners were required ultimately to respond to a questionnaire with an aim to reveal their attitudes towards grammar as a language entity and as a subject for being learned. Then, as a second stage of the investigation, the EFL learners were divided into a control group and an experimental group with 28 learners in each. The first group was taught grammar -conditional sentences- using a deductive-inductive approach, while the second group was exposed to an authentic video to learn conditional sentences. There was a post-lesson stage that included a questionnaire to be answered by learners of each group. The aim of this stage is to capture any change in learners' attitudes shown in the pre-lesson questionnaire. The findings of the first stage revealed learners' negative attitudes towards grammar learning. And the third stage results showed the effectiveness of authentic videos in entirely turning learners' attitudes toward grammar learning to be significantly positive. Also, the utility of authentic videos in highly motivating EFL learners can be deduced. The findings of this survey asserted the need for incorporation and integration of authentic videos in EFL classrooms as they resulted in rising effectively learners’ awareness of grammar and looking at it from a communicative perspective.

Keywords: multimedia, authentic videos, negative attitudes, grammar learning, EFL learners

Procedia PDF Downloads 99
1619 Acceleration-Based Motion Model for Visual Simultaneous Localization and Mapping

Authors: Daohong Yang, Xiang Zhang, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that obtains information in the environment for self-positioning and mapping. It is widely used in computer vision, robotics and other fields. Many visual SLAM systems, such as OBSLAM3, employ a constant-speed motion model that provides the initial pose of the current frame to improve the speed and accuracy of feature matching. However, in actual situations, the constant velocity motion model is often difficult to be satisfied, which may lead to a large deviation between the obtained initial pose and the real value, and may lead to errors in nonlinear optimization results. Therefore, this paper proposed a motion model based on acceleration, which can be applied on most SLAM systems. In order to better describe the acceleration of the camera pose, we decoupled the pose transformation matrix, and calculated the rotation matrix and the translation vector respectively, where the rotation matrix is represented by rotation vector. We assume that, in a short period of time, the changes of rotating angular velocity and translation vector remain the same. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of constant velocity model was analyzed theoretically. Finally, we applied our proposed approach to the ORBSLAM3 system and evaluated two sets of sequences on the TUM dataset. The results showed that our proposed method had a more accurate initial pose estimation and the accuracy of ORBSLAM3 system is improved by 6.61% and 6.46% respectively on the two test sequences.

Keywords: error estimation, constant acceleration motion model, pose estimation, visual SLAM

Procedia PDF Downloads 94
1618 Photoelastic Analysis of the Proximal Femur in Deviations of the Mechanical Axis of the Lower Limb

Authors: S. F. Fakhouri, M.M. Shimano, D. Maranho, C. A. Araújo, M. V. Guimarães, A. C. Shimano, J. B. Volpon

Abstract:

Pathological deviations of the mechanical axis of the lower limbs deeply alter the stress distributions on the femur and tibia and the hip, knee, and ankle articulations. The purpose of this research was to assess the effects of pathological deviations in different levels of the lower limbs in the distribution of stress in the proximal femur region using photoelasticity of plane transmission. For most of the types of deviations studied, the results showed that the internal stress was generally higher in the calcar region than in the trochanteric region, followed by the third distal of the femur head. This study allowed for the development of better criteria for the correction of angular deviations and helped identify the deviations that are most harmful to the mechanical axis in terms of the effects on the bone and the articular effort of the lower limbs. These results will lead to future improvements in studies on prostheses.

Keywords: alignment, deviations, inferior limbs, mechanical axis, photoelasticity, stress

Procedia PDF Downloads 383
1617 Lamb Waves Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average Bit Error Rate. Results have shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: lamb waves communication, wireless communication, coherent demodulation, bit error rate

Procedia PDF Downloads 260
1616 A Pilot Study to Investigate the Use of Machine Translation Post-Editing Training for Foreign Language Learning

Authors: Hong Zhang

Abstract:

The main purpose of this study is to show that machine translation (MT) post-editing (PE) training can help our Chinese students learn Spanish as a second language. Our hypothesis is that they might make better use of it by learning PE skills specific for foreign language learning. We have developed PE training materials based on the data collected in a previous study. Training material included the special error types of the output of MT and the error types that our Chinese students studying Spanish could not detect in the experiment last year. This year we performed a pilot study in order to evaluate the PE training materials effectiveness and to what extent PE training helps Chinese students who study the Spanish language. We used screen recording to record these moments and made note of every action done by the students. Participants were speakers of Chinese with intermediate knowledge of Spanish. They were divided into two groups: Group A performed PE training and Group B did not. We prepared a Chinese text for both groups, and participants translated it by themselves (human translation), and then used Google Translate to translate the text and asked them to post-edit the raw MT output. Comparing the results of PE test, Group A could identify and correct the errors faster than Group B students, Group A did especially better in omission, word order, part of speech, terminology, mistranslation, official names, and formal register. From the results of this study, we can see that PE training can help Chinese students learn Spanish as a second language. In the future, we could focus on the students’ struggles during their Spanish studies and complete the PE training materials to teach Chinese students learning Spanish with machine translation.

Keywords: machine translation, post-editing, post-editing training, Chinese, Spanish, foreign language learning

Procedia PDF Downloads 144
1615 Calendar Anomalies in Islamic Frontier Markets

Authors: Aslam Faheem, Hunjra Ahmed Imran, Tayachi Tahar, Verhoeven Peter, Tariq Yasir

Abstract:

We investigate the evidence of three risk-adjusted calendar anomalies in eight frontier markets. Our sample consists of the daily closing prices of their stock indices for the period of January 2006 to September 2019. We categorize the data with respect to day-of-the-week, Lunar calendar and Islamic calendar. Using Morgan Stanley Capital International (MSCI) eight Markets Index as our proxy of the market portfolio, most of the frontier markets tested exhibit calendar seasonality. We confirm that systematic risk varies with respect to day-of-the-week, Lunar months and Islamic months. After consideration of time-varying risk and applying Bonferroni correction, few frontier markets exhibit profitable investment opportunities from calendar return anomalies for active investment managers.

Keywords: asset pricing, frontier markets, market efficiency, Islamic calendar effects, Islamic stock markets

Procedia PDF Downloads 166
1614 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 170
1613 Design of the Compliant Mechanism of a Biomechanical Assistive Device for the Knee

Authors: Kevin Giraldo, Juan A. Gallego, Uriel Zapata, Fanny L. Casado

Abstract:

Compliant mechanisms are designed to deform in a controlled manner in response to external forces, utilizing the flexibility of their components to store potential elastic energy during deformation, gradually releasing it upon returning to its original form. This article explores the design of a knee orthosis intended to assist users during stand-up motion. The orthosis makes use of a compliant mechanism to balance the user’s weight, thereby minimizing the strain on leg muscles during standup motion. The primary function of the compliant mechanism is to store and exchange potential energy, so when coupled with the gravitational potential of the user, the total potential energy variation is minimized. The design process for the semi-rigid knee orthosis involved material selection and the development of a numerical model for the compliant mechanism seen as a spring. Geometric properties are obtained through the numerical modeling of the spring once the desired stiffness and safety factor values have been attained. Subsequently, a 3D finite element analysis was conducted. The study demonstrates a strong correlation between the maximum stress in the mathematical model (250.22 MPa) and the simulation (239.8 MPa), with a 4.16% error. Both analyses safety factors: 1.02 for the mathematical approach and 1.1 for the simulation, with a consistent 7.84% margin of error. The spring’s stiffness, calculated at 90.82 Nm/rad analytically and 85.71 Nm/rad in the simulation, exhibits a 5.62% difference. These results suggest significant potential for the proposed device in assisting patients with knee orthopedic restrictions, contributing to ongoing efforts in advancing the understanding and treatment of knee osteoarthritis.

Keywords: biomechanics, complaint mechanisms, gonarthrosis, orthoses

Procedia PDF Downloads 36
1612 Formation of Clipped Forms in Hausa Language

Authors: Maryam Maimota Shehu

Abstract:

Words are the basic building blocks of a language. In everyday usage of a language, words are used, and new words are formed and reformed in order to contain and accommodate all entities, phenomena, qualities and every aspect of the entire life. Despite the fact that many studies have been conducted on morphological processes in Hausa language. Most of the works concentrated on borrowing, affixation, reduplication and derivation, but clipping has been neglected to the extent that only a few scholars sited some examples in the language. Therefore, the current study investigates and examines clipping as one of the word formation processes fully found in the language. The study focuses its main attention on clipping as a word-formation process and how this process is used adequately in the formation of words and their occurrence in Hausa sentences. In order to achieve the aims, the research answered these questions: 1) is clipping used as process of word formation in Hausa? 2) What are the words formed using this process? This study utilizes the Natural Morphology Theory proposed by Dressler, (1985) which was adopted by belly (2007). The data of this study have been collected from newspaper articles, novels, and written literature of Hausa language. Based on the findings, this study found out that, there exist many kinds of words formed in Hausa language using clipping in sentence and discuss, which previous findings did not either reveals, or explain in detail. Other part of the finding shows that clipping in Hausa language occurs on nouns, verbs, adjectives, reduplicated words and compounds while retains their meanings and grammatical classes.

Keywords: clipping, Hausa language, morphology, word formation processes

Procedia PDF Downloads 471
1611 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
1610 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 392
1609 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer

Authors: Aprajeeta Jha, Punyadarshini P. Tripathy

Abstract:

Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.

Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer

Procedia PDF Downloads 150
1608 Electronic Structure and Optical Properties of YNi₄Si-Type GdNi₅: A Coulomb Corrected Local-Spin Density Approximation Study

Authors: Sapan Mohan Saini

Abstract:

In this work, we report the calculations on the electronic and optical properties of YNi₄Si-type GdNi₅ compound. Calculations are performed using the full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Spin polarised calculations of band structure show that several bands cross the Fermi level (EF) reflect the metallic character. Analysis of density of states (DOS) demonstrates that spin up Gd-f states lie around 7.5 eV below EF and spin down Gd-f lie around 4.5 eV above EF. We found Ni-3d states mainly contribute to DOS from -5.0 eV to the EF. Our calculated results of optical conductivity agree well with the experimental data.

Keywords: electronic structure, optical properties, FPLAPW method, YNi₄Si-type GdNi₅

Procedia PDF Downloads 171
1607 Evaluating Language Loss Effect on Autobiographical Memory by Examining Memory Phenomenology in Bilingual Speakers

Authors: Anastasia Sorokina

Abstract:

Graduate language loss or attrition has been well documented in individuals who migrate and become emersed in a different language environment. This phenomenon of first language (L1) attrition is an example of non-pathological (not due to trauma) and can manifest itself in frequent pauses, search for words, or grammatical errors. While the widely experienced loss of one’s first language might seem harmless, there is convincing evidence from the disciplines of Developmental Psychology, Bilingual Studies, and even Psychotherapy that language plays a crucial role in the memory of self. In fact, we remember, store, and share personal memories with the help of language. Dual-Coding Theory suggests that language memory code deterioration could lead to forgetting. Yet, no one has investigated a possible connection between language loss and memory. The present study aims to address this research gap by examining a corpus of 1,495 memories of Russian-English bilinguals who are on a continuum of L1 (first language) attrition. Since phenomenological properties capture how well a memory is remembered, the following descriptors were selected - vividness, ease of recall, emotional valence, personal significance, and confidence in the event. A series of linear regression statistical analyses were run to examine the possible negative effects of L1 attrition on autobiographical memory. The results revealed that L1 attrition might compromise perceived vividness and confidence in the event, which is indicative of memory deterioration. These findings suggest the importance of heritage language maintenance in immigrant communities who might be forced to assimilate as language loss might negatively affect the memory of self.

Keywords: L1 attrition, autobiographical memory, language loss, memory phenomenology, dual coding

Procedia PDF Downloads 119
1606 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization

Procedia PDF Downloads 143
1605 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 432
1604 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
1603 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 177
1602 Portfolio Optimization under a Hybrid Stochastic Volatility and Constant Elasticity of Variance Model

Authors: Jai Heui Kim, Sotheara Veng

Abstract:

This paper studies the portfolio optimization problem for a pension fund under a hybrid model of stochastic volatility and constant elasticity of variance (CEV) using asymptotic analysis method. When the volatility component is fast mean-reverting, it is able to derive asymptotic approximations for the value function and the optimal strategy for general utility functions. Explicit solutions are given for the exponential and hyperbolic absolute risk aversion (HARA) utility functions. The study also shows that using the leading order optimal strategy results in the value function, not only up to the leading order, but also up to first order correction term. A practical strategy that does not depend on the unobservable volatility level is suggested. The result is an extension of the Merton's solution when stochastic volatility and elasticity of variance are considered simultaneously.

Keywords: asymptotic analysis, constant elasticity of variance, portfolio optimization, stochastic optimal control, stochastic volatility

Procedia PDF Downloads 299
1601 On the Alternative Sanctions to Capital Punishment in China

Authors: Huang Gui

Abstract:

There can be little doubt that our world is inexorably moving towards being execution-free. However, China is still on the way until now, in other words, China is still a retentionist state in the term of capital punishment but it is developing domestic criminal law toward that goal (eventual abolition of the capital punishment). The alternative sanction to capital punishment, which would be imposed on a criminal who should have been sentenced to death by law, is a substitute for execution and it should be provided with the basis of the present criminal punishment structure and with the premise of abolishing capital punishment or limiting its use. The aim of this paper, therefore, is to explore a substitute for capital punishment in China. For the criminal sanction system in China, the death penalty with suspension, naturally, is an execution, so it wouldn’t be the substitute; life sentences without parole is out of the tune with punishment policy that promoting correction and rehabilitation; life-imprisonment, which is one of the most severe punishment measure in the sanction system, should be a suitable substitute for executing but it needs to be improved, including the term of imprisonment, the commutation and parole conditions.

Keywords: alternative sanctions, capital punishment, life imprisonment, life imprisonment without parole, China

Procedia PDF Downloads 288
1600 On the Question of Ideology: Criticism of the Enlightenment Approach and Theory of Ideology as Objective Force in Gramsci and Althusser

Authors: Edoardo Schinco

Abstract:

Studying the Marxist intellectual tradition, it is possible to verify that there were numerous cases of philosophical regression, in which the important achievements of detailed studies have been replaced by naïve ideas and previous misunderstandings: one of most important example of this tendency is related to the question of ideology. According to a common Enlightenment approach, the ideology is essentially not a reality, i.e., a factor capable of having an effect on the reality itself; in other words, the ideology is a mere error without specific historical meaning, which is only due to ignorance or inability of subjects to understand the truth. From this point of view, the consequent and immediate practice against every form of ideology are the rational dialogue, the reasoning based on common sense, in order to dispel the obscurity of ignorance through the light of pure reason. The limits of this philosophical orientation are however both theoretical and practical: on the one hand, the Enlightenment criticism of ideology is not an historicistic thought, since it cannot grasp the inner connection that ties an historical context and its peculiar ideology together; moreover, on the other hand, when the Enlightenment approach fails to release people from their illusions (e.g., when the ideology persists, despite the explanation of its illusoriness), it usually becomes a racist or elitarian thought. Unlike this first conception of ideology, Gramsci attempts to recover Marx’s original thought and to valorize its dialectical methodology with respect to the reality of ideology. As Marx suggests, the ideology – in negative meaning – is surely an error, a misleading knowledge, which aims to defense the current state of things and to conceal social, political or moral contradictions; but, that is precisely why the ideological error is not casual: every ideology mediately roots in a particular material context, from which it takes its reason being. Gramsci avoids, however, any mechanistic interpretation of Marx and, for this reason; he underlines the dialectic relation that exists between material base and ideological superstructure; in this way, a specific ideology is not only a passive product of base but also an active factor that reacts on the base itself and modifies it. Therefore, there is a considerable revaluation of ideology’s role in maintenance of status quo and the consequent thematization of both ideology as objective force, active in history, and ideology as cultural hegemony of ruling class on subordinate groups. Among the Marxists, the French philosopher Louis Althusser also gives his contribution to this crucial question; as follower of Gramsci’s thought, he develops the idea of ideology as an objective force through the notions of Repressive State Apparatus (RSA) and Ideological State Apparatuses (ISA). In addition to this, his philosophy is characterized by the presence of structuralist elements, which must be studied, since they deeply change the theoretical foundation of his Marxist thought.

Keywords: Althusser, enlightenment, Gramsci, ideology

Procedia PDF Downloads 199