Search results for: geospatial data science
26024 Escape Room Pedagogy: Using Gamification to Promote Engagement, Encourage Connections, and Facilitate Skill Development in Undergraduate Students
Authors: Scott McCutcheon, Karen Schreder
Abstract:
Higher education is facing a new reality. Student connection with coursework, instructor, and peers competes with online gaming, screen time, and instant gratification. Pedagogical methods that align student connection and critical thinking in a content-rich environment are important in supporting student learning, a sense of community, and emotional health. This mixed methods study focuses on exploring how the use of educational escape rooms (EERs) can support student learning and learning retention while fostering engagement with each other, the instructor, and the coursework. EERs are content-specific, cooperative, team-based learning activities designed to be completed within a short segment of a typical class. Data for the study was collected over three semesters and includes results from the implementation of EERs in science-based and liberal studies courses taught by different instructors. Twenty-seven students were surveyed regarding their learning experiences with this pedagogy, and interviews with four student volunteers were conducted to add depth to the survey data. A key finding from this research indicates that students felt more connected to each other and the course content after participating in the escape room activity. Additional findings point to increased engagement and comprehension of the class material. Data indicates that the use of an EER pedagogy supports student engagement, well-being, subject comprehension, and student-student and student-instructor connection.Keywords: gamification, innovative pedagogy, student engagement, student emotional well being
Procedia PDF Downloads 6726023 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 30726022 Transdisciplinary Methodological Innovation: Connecting Natural and Social Sciences Research through a Training Toolbox
Authors: Jessica M. Black
Abstract:
Although much of natural and social science research aims to enhance human flourishing and address social problems, the training within the two fields is significantly different across theory, methodology, and implementation of results. Social scientists are trained in social, psychological, and to the extent that it is relevant to their discipline, spiritual development, theory, and accompanying methodologies. They tend not to receive training or learn about accompanying methodology related to interrogating human development and social problems from a biological perspective. On the other hand, those in the natural sciences, and for the purpose of this work, human biological sciences specifically – biology, neuroscience, genetics, epigenetics, and physiology – are often trained first to consider cellular development and related methodologies, and may not have opportunity to receive formal training in many of the foundational principles that guide human development, such as systems theory or person-in-environment framework, methodology related to tapping both proximal and distal psycho-social-spiritual influences on human development, and foundational principles of equity, justice and inclusion in research design. There is a need for disciplines heretofore siloed to know one another, to receive streamlined, easy to access training in theory and methods from one another and to learn how to build interdisciplinary teams that can speak and act upon a shared research language. Team science is more essential than ever, as are transdisciplinary approaches to training and research design. This study explores the use of a methodological toolbox that natural and social scientists can use by employing a decision-making tree regarding project aims, costs, and participants, among other important study variables. The decision tree begins with a decision about whether the researcher wants to learn more about social sciences approaches or biological approaches to study design. The toolbox and platform are flexible, such that users could also choose among modules, for instance, reviewing epigenetics or community-based participatory research even if those are aspects already a part of their home field. To start, both natural and social scientists would receive training on systems science, team science, transdisciplinary approaches, and translational science. Next, social scientists would receive training on grounding biological theory and the following methodological approaches and tools: physiology, (epi)genetics, non-invasive neuroimaging, invasive neuroimaging, endocrinology, and the gut-brain connection. Natural scientists would receive training on grounding social science theory, and measurement including variables, assessment and surveys on human development as related to the developing person (e.g., temperament and identity), microsystems (e.g., systems that directly interact with the person such as family and peers), mesosystems (e.g., systems that interact with one another but do not directly interact with the individual person, such as parent and teacher relationships with one another), exosystems (e.g., spaces and settings that may come back to affect the individual person, such as a parent’s work environment, but within which the individual does not directly interact, macrosystems (e.g., wider culture and policy), and the chronosystem (e.g., historical time, such as the generational impact of trauma). Participants will be able to engage with the toolbox and one another to foster increased transdisciplinary workKeywords: methodology, natural science, social science, transdisciplinary
Procedia PDF Downloads 11526021 Geographic Information System and Dynamic Segmentation of Very High Resolution Images for the Semi-Automatic Extraction of Sandy Accumulation
Authors: A. Bensaid, T. Mostephaoui, R. Nedjai
Abstract:
A considerable area of Algerian lands is threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mecheria department generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of LANDSAT images (5, 7, and 8) of three scenes 197/37, 198/36 and 198/37 for the year 2020. As a second step, we prospect the use of geospatial techniques to monitor the progression of sand dunes on developed (urban) lands as well as on the formation of sandy accumulations (dune, dunes fields, nebkha, barkhane, etc.). For this purpose, this study made use of the semi-automatic processing method for the dynamic segmentation of images with very high spatial resolution (SENTINEL-2 and Google Earth). This study was able to demonstrate that urban lands under current conditions are located in sand transit zones that are mobilized by the winds from the northwest and southwest directions.Keywords: land development, GIS, segmentation, remote sensing
Procedia PDF Downloads 15526020 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine
Authors: Adriana Haulica
Abstract:
Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics
Procedia PDF Downloads 7026019 Towards a Secure Storage in Cloud Computing
Authors: Mohamed Elkholy, Ahmed Elfatatry
Abstract:
Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security
Procedia PDF Downloads 33526018 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry
Authors: Paulomi Polly Burey, Mark Lynch
Abstract:
It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.Keywords: chemistry, food science, future pedagogy, STEM education
Procedia PDF Downloads 16826017 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 4026016 Student's Difficulties with Classes That Involve Laboratory Education Approach
Authors: Kayondoamunmose Kamafrika
Abstract:
Experimental based Engineering education approach plays a vital role in the development of student’s deep understanding of both social and physical sciences. Experimental based education approach through laboratory class activities prepare students to meet national demand for high-tech skilled individuals in the government and private sector. However, students across the country are faced with difficulties in classes that involve laboratory activities: poor experimental based exposure in their early development of student’s education-life-cycle, lack of student engagement in scientific method practical thinking approach, lack of communication between students and the instructor during class, a large number of students in one classroom, lack of instruments and improper equipment calibration. The purpose of this paper is to help students develop their own scientific knowledge and understanding, develop their methodologies in the design of experiments, collect and analyze data, write laboratory reports, present and explain their findings. Experimental based laboratory activities allow students to learn with high-level understanding as well as engage in the design processes of constructing knowledge through practical means of doing science. Experimental based education systems approach will act as a catalyst in the development of practical-based-educational methodologies in social and physical science and engineering domain of learning; thereby, converting laboratory classes into pilot industries and students into professional experts in finding a solution for complex problems, research, and development of super high- tech systems.Keywords: experimental, engineering, innovation, practicability
Procedia PDF Downloads 18826015 An Appraisal of Maintenance Management Practices in Federal University Dutse and Jigawa State Polytechnic Dutse, Nigeria
Authors: Aminu Mubarak Sadis
Abstract:
This study appraised the maintenance management practice in Federal University Dutse and Jigawa State Polytechnic Dutse, in Nigeria. The Physical Planning, Works and Maintenance Departments of the two Higher Institutions (Federal University Dutse and Jigawa State Polytechnic) are responsible for production and maintenance management of their physical assets. Over–enrollment problem has been a common feature in the higher institutions in Nigeria, Data were collected by the administered questionnaires and subsequent oral interview to authenticate the completed questionnaires. Random sampling techniques was used in selecting 150 respondents across the various institutions (Federal University Dutse and Jigawa State Polytechnic Dutse). Data collected was analyzed using Statistical Package for Social Science (SPSS) and t-test statistical techniques The conclusion was that maintenance management activities are yet to be given their appropriate attention on functions of the university and polytechnic which are crucial to improving teaching, learning and research. The unit responsible for maintenance and managing facilities should focus on their stated functions and effect changes were possible.Keywords: appraisal, maintenance management, university, Polytechnic, practices
Procedia PDF Downloads 25226014 Geospatial Analysis of Spatio-Temporal Dynamic and Environmental Impact of Informal Settlement: A Case of Adama City, Ethiopia
Authors: Zenebu Adere Tola
Abstract:
Informal settlements behave dynamically over space and time and the number of people living in such housing areas is growing worldwide. In the cities of developing countries especially in sub-Saharan Africa, poverty, unemployment rate, poor living condition, lack transparency and accountability, lack of good governance are the major factors to contribute for the people to hold land informally and built houses for residential or other purposes. In most of Ethiopian cities informal settlement is highly seen in peripheral areas this is because people can easily to hold land for housing from local farmers, brokers, speculators without permission from concerning bodies. In Adama informal settlement has created risky living conditions and led to environmental problems in natural areas the main reason for this was the lack of sufficient knowledge about informal settlement development. On the other side there is a strong need to transform informal into formal settlements and to gain more control about the actual spatial development of informal settlements. In another hand to tackle the issue it is at least very important to understand the scale of the problem. To understand the scale of the problem it is important to use up-to-date technology. For this specific problem, it is good to use high-resolution imagery to detect informal settlement in Adama city. The main objective of this study is to assess the spatiotemporal dynamics and environmental impacts of informal settlement using OBIA. Specifically, the objective of this study is to; identify informal settlement in the study area, determine the change in the extent and pattern of informal settlement and to assess the environmental and social impacts of informal settlement in the study area. The methods to be used to detect the informal settlement is object-oriented image analysis. Consequently, reliable procedures for detecting the spatial behavior of informal settlements are required in order to react at an early stage to changing housing situations. Thus, obtaining spatial information about informal settlement areas which is up to date is vital for any actions of enhancement in terms of urban or regional planning. Using data for this study aerial photography for growth and change of informal settlements in Adama city. Software ECognition software for classy to built-up and non-built areas. Thus, obtaining spatial information about informal settlement areas which is up to date is vital for any actions of enhancement in terms of urban or regional planning.Keywords: informal settlement, change detection, environmental impact, object based analysis
Procedia PDF Downloads 8326013 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data
Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah
Abstract:
At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.Keywords: Semantic Web, linked open data, database, statistic
Procedia PDF Downloads 17426012 Pedagogy to Involve Research Process in an Undergraduate Physical Fitness Course: A Case Study
Authors: Indhumathi Gopal
Abstract:
Undergraduate research is well documented in Science, Technology, Engineering, and Mathematics (STEM), neurosciences, and microbiology disciplines, though it is hardly part of a physical fitness & wellness discipline. However, students need experiential learning opportunities, like internships and research assistantships, to get ahead with graduate schools and be gainfully employed. The first step towards this goal is to have students do a simple research project in a semester-long course. The value of research experiences and how to integrate research activity in a physical fitness & wellness course are discussed. The investigator looks into a mini research project, “Awareness of Obesity among College Students” and explains how to guide students through the research process, including journal search, data collection, and basic statistics. Besides, students will be introduced to the statistical package program SPSS 22.0 to assist with data evaluation. The lab component of the combined lecture-physical activity course could include the measurement of student’s weight with respect to their height to obtain body mass index (BMI). Students could categorize themselves in accordance with the World Health Organization’s guidelines. Results obtained after completing the data analysis help students be aware of their own potential health risks associated with overweight and obesity. Overweight and obesity are risk factors for hypertension, hypercholesterolemia, heart disease, stroke, diabetes, and certain types of cancer. It is hoped that this experience will get students interested in scientific studies, gain confidence, think critically, and develop problem-solving and good communication skills.Keywords: physical fitness, undergraduate research experience, obesity, BMI
Procedia PDF Downloads 8126011 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges
Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh
Abstract:
For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.Keywords: guideline, law, data protection officer, personal data
Procedia PDF Downloads 7826010 Your First Step to Understanding Research Ethics: Psychoneurolinguistic Approach
Authors: Sadeq Al Yaari, Ayman Al Yaari, Adham Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Sajedah Al Yaari
Abstract:
Objective: This research aims at investigating the research ethics in the field of science. Method: It is an exploratory research wherein the researchers attempted to cover the phenomenon at hand from all specialists’ viewpoints. Results Discussion is based upon the findings resulted from the analysis the researcher undertook. Concerning the results’ prediction, the researcher needs first to seek highly qualified people in the field of research as well as in the field of statistics who share the philosophy of the research. Then s/he should make sure that s/he is adequately trained in the specific techniques, methods and statically programs that are used at the study. S/he should also believe in continually analysis for the data in the most current methods.Keywords: research ethics, legal, rights, psychoneurolinguistics
Procedia PDF Downloads 4326009 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies
Procedia PDF Downloads 10826008 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 14126007 Impact of Pedagogical Techniques on the Teaching of Sports Sciences
Authors: Muhammad Saleem
Abstract:
Background: The teaching of sports sciences encompasses a broad spectrum of disciplines, including biomechanics, physiology, psychology, and coaching. Effective pedagogical techniques are crucial in imparting both theoretical knowledge and practical skills necessary for students to excel in the field. The impact of these techniques on students’ learning outcomes, engagement, and professional preparedness remains a vital area of study. Objective: This study aims to evaluate the effectiveness of various pedagogical techniques used in the teaching of sports sciences. It seeks to identify which methods most significantly enhance student learning, retention, engagement, and practical application of knowledge. Methods: A mixed-methods approach was employed, including both quantitative and qualitative analyses. The study involved a comparative analysis of traditional lecture-based teaching, experiential learning, problem-based learning (PBL), and technology-enhanced learning (TEL). Data were collected through surveys, interviews, and academic performance assessments from students enrolled in sports sciences programs at multiple universities. Statistical analysis was used to evaluate academic performance, while thematic analysis was applied to qualitative data to capture student experiences and perceptions. Results: The findings indicate that experiential learning and PBL significantly improve students' understanding and retention of complex sports science concepts compared to traditional lectures. TEL was found to enhance engagement and provide students with flexible learning opportunities, but its impact on deep learning varied depending on the quality of the digital resources. Overall, a combination of experiential learning, PBL, and TEL was identified as the most effective pedagogical approach, leading to higher student satisfaction and better preparedness for real-world applications. Conclusion: The study underscores the importance of adopting diverse and student-centered pedagogical techniques in the teaching of sports sciences. While traditional lectures remain useful for foundational knowledge, integrating experiential learning, PBL, and TEL can substantially improve student outcomes. These findings suggest that educators should consider a blended approach to pedagogy to maximize the effectiveness of sports science education.Keywords: sport sciences, pedagogical techniques, health and physical education, problem-based learning, student engagement
Procedia PDF Downloads 2426006 The Utilization of Big Data in Knowledge Management Creation
Authors: Daniel Brian Thompson, Subarmaniam Kannan
Abstract:
The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.Keywords: big data, knowledge management, data driven, knowledge creation
Procedia PDF Downloads 11626005 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya
Authors: Masese Chuma Benard, Martin Onsiro Ronald
Abstract:
Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)
Procedia PDF Downloads 8426004 Cloud Design for Storing Large Amount of Data
Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás
Abstract:
Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization
Procedia PDF Downloads 35226003 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 38226002 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 16026001 Intersectional Perspectives on Gender Equality in Higher Education: A Survey on Swiss Universities of Applied Science
Authors: Birgit Schmid, Brigitte Liebig, Susanne Burren, Maritza Le Breton, Martin Boehnel, Celestina Porta
Abstract:
Internationalization of students is part of the agenda of many universities worldwide. Yet, how well do universities achieve to guarantee educational success for male and female students of migrant background? This contribution aims on analyzing the effects of the Swiss university environment on perceived educational outcome of migrant students from a gender sensitive perspective. Social selectivity and gender inequalities strongly influence students’ access and success at universities. However, the complex interaction between universities and their disciplinary environments, and educational success of migrant students of both sex remains rarely examined so far. Starting from an intersectional perspective and neo-institutional approaches on higher education organizations, this contribution addresses formal/informal factors in the university environment in its impact on male/female students’ perception of well-being, success and dropout motivation. The paper starts from a most recent Swiss online-survey of Bachelor-students in two Universities of Applied Science and a University of Education in Switzerland. It compares students’ perspectives in four large BA degree courses with different male/female ratio, i.e. educational science, technical/computer science, economy, and social work (N=9`608). Results highlight the complex interplay of gender, migrant background and further dimensions of social differentiation on students’ perception in these different fields of education. Further, they illustrate correlations between students’ perception of discriminatory contexts, poor ratings of social integration and study success, as well a higher rate of dropout ideas. The paper lines out, that formal aspects of internationalization are less important for successfully integrating male/female migrant students than informal university conditions, such as a culture of diversity, which has to become integral part of internationalization strategies.Keywords: gender and migration, higher education, internationalization, success
Procedia PDF Downloads 19026000 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia
Authors: Melaku Tsehay
Abstract:
The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.Keywords: data quality, immunization, verification factor, pastoralist region
Procedia PDF Downloads 12325999 Physical Fitness Evaluation of MARA Junior Science Collage Rugby Player
Authors: Mohamad Nizam Asmuni, Ahmad Naszeri Salleh, Yunus Adam, Azhar Yaacob, Mohd Hafiz Rosli, Muhamad Nazrul Hakim Abdullah
Abstract:
Athletes at the school should have good physical fitness to participate in tournament. Currently, there are no standards for the level of physical fitness for MARA Junior Science Collage (MJSC). Therefore, this research is to determine the level of physical fitness of rugby player at MJSC. A total of 62 samples (age 16.4 ± 0.75) among rugby players at MJSC were randomly selected to participate in this study. Height, weight, body fat percentage, body mass index (BMI) and other physical testing are measured and recorded. The results showed that the average of body mass index (BMI) for rugby players is 23.4 ± 4:51. Body mass index (BMI) of rugby players can be categorized as pre-obese based on World Health Organization (WHO) guidelines. BMI for rugby players was categorized as healthy based on body fat ranges for standard adults at NY Obesity Research Center. Bleep test results show that the average Bleep test is level 7 and shuttle 5; average VO2max was 37.94 L/min. Physical fitness and performance of rugby players at MJSC is lower compared to the rugby junior athletes in University Putra Malaysia (UPM). Therefore, physical fitness of rugby players must be improved to ensure the rugby players at MJSC could be performs better in the tournament.Keywords: physical fitness, MARA junior science collage (MJSC), body mass index (BMI), bleep test
Procedia PDF Downloads 48225998 The Development of Open Access in Latin America and Caribbean: Mapping National and International Policies and Scientific Publications of the Region
Authors: Simone Belli, Sergio Minniti, Valeria Santoro
Abstract:
ICTs and technology transfer can benefit and move a country forward in economic and social development. However, ICT and access to the Internet have been inequitably distributed in most developing countries. In terms of science production and dissemination, this divide articulates itself also through the inequitable distribution of access to scientific knowledge and networks, which results in the exclusion of developing countries from the center of science. Developing countries are on the fringe of Science and Technology (S&T) production due not only to low investment in research but also to the difficulties to access international scholarly literature. In this respect, Open access (OA) initiatives and knowledge infrastructure represent key elements for both producing significant changes in scholarly communication and reducing the problems of developing countries. The spreading of the OA movement in the region, exemplified by the growth of regional and national initiatives, such as the creation of OA institutional repositories (e.g. SciELO and Redalyc) and the establishing of supportive governmental policies, provides evidence of the significant role that OA is playing in reducing the scientific gap between Latin American countries and improving their participation in the so-called ‘global knowledge commons’. In this paper, we map OA publications in Latin America and observe how Latin American countries are moving forward and becoming a leading force in widening access to knowledge. Our analysis, developed as part of the H2020 EULAC Focus research project, is based on mixed methods and consists mainly of a bibliometric analysis of OA publications indexed in the most important scientific databases (Web of Science and Scopus) and OA regional repositories, as well as the qualitative analysis of documents related to the main OA initiatives in Latin America. Through our analysis, we aim at reflecting critically on what policies, international standards, and best practices might be adapted to incorporate OA worldwide and improve the infrastructure of the global knowledge commons.Keywords: open access, LAC countries, scientific publications, bibliometric analysis
Procedia PDF Downloads 21225997 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm
Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra
Abstract:
With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction
Procedia PDF Downloads 12425996 Identifying Critical Success Factors for Data Quality Management through a Delphi Study
Authors: Maria Paula Santos, Ana Lucas
Abstract:
Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort
Procedia PDF Downloads 21725995 Theoretical Investigation of Structural and Electronic Properties of AlBi
Authors: S. Louhibi-Fasla, H. Achour, B. Amrani
Abstract:
The purpose of this work is to provide some additional information to the existing data on the physical properties of AlBi with state-of-the-art first-principles method of the full potential linear augmented plane wave (FPLAPW). Additionally to the structural properties, the electronic properties have also been investigated. The dependence of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. The latter are the basis of solid-state science and industrial applications and their study is of importance to extend our knowledge on their specific behaviour when undergoing severe constraints of high pressure and high temperature environments.Keywords: AlBi, FP-LAPW, structural properties, electronic properties
Procedia PDF Downloads 380