Search results for: behavior detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9704

Search results for: behavior detection

8924 Religious Identity in the Diaspora: Peculiarities of Religious Consciousness and Behavior of Armenians in Tbilisi and Tehran

Authors: Nelli R. Khachaturian

Abstract:

The development of modern societies is largely associated with ethno-religious processes. The study of diasporas through the prism of religious processes is primarily aimed at identifying the impact of religious consciousness and behavior on the processes of reproduction of ethnic identity. Most often, it is religion that is associated with ethnic culture and historical heritage. Due to the peculiarities of the country of residence, different segments of the same ethnic group may demonstrate different religious consciousness and behavior. This paper is devoted to a comparative analysis of the religious behavior and consciousness of the representatives of the Armenian communities of Tbilisi and Tehran, based on the data obtained from the large-scale ethnic-sociological studies realized from 2013 to 2017 in Tehran and Tbilisi in the context of various spheres of public relations. Such research experience is of interest not only for understanding the dynamics of ethno-religious processes in the diasporas but also for understanding the role of religion as one of the most important factors in the formation of the mechanisms of self-preservation of an ethnic group, its current state and development prospects in the context of its own, different ethnic and / or foreign religious (non-confessional) environment.

Keywords: Armenian ethnicity, Armenian diaspora, religious consciousness, religious behavior, Armenian community of Tbilisi, Armenian community of Tehran

Procedia PDF Downloads 25
8923 Automatic Vowel and Consonant's Target Formant Frequency Detection

Authors: Othmane Bouferroum, Malika Boudraa

Abstract:

In this study, a dual exponential model for CV formant transition is derived from locus theory of speech perception. Then, an algorithm for automatic vowel and consonant’s target formant frequency detection is developed and tested on real speech. The results show that vowels and consonants are detected through transitions rather than their small stable portions. Also, vowel reduction is clearly observed in our data. These results are confirmed by the observations made in perceptual experiments in the literature.

Keywords: acoustic invariance, coarticulation, formant transition, locus equation

Procedia PDF Downloads 270
8922 Sensor Fault-Tolerant Model Predictive Control for Linear Parameter Varying Systems

Authors: Yushuai Wang, Feng Xu, Junbo Tan, Xueqian Wang, Bin Liang

Abstract:

In this paper, a sensor fault-tolerant control (FTC) scheme using robust model predictive control (RMPC) and set theoretic fault detection and isolation (FDI) is extended to linear parameter varying (LPV) systems. First, a group of set-valued observers are designed for passive fault detection (FD) and the observer gains are obtained through minimizing the size of invariant set of state estimation-error dynamics. Second, an input set for fault isolation (FI) is designed offline through set theory for actively isolating faults after FD. Third, an RMPC controller based on state estimation for LPV systems is designed to control the system in the presence of disturbance and measurement noise and tolerate faults. Besides, an FTC algorithm is proposed to maintain the plant operate in the corresponding mode when the fault occurs. Finally, a numerical example is used to show the effectiveness of the proposed results.

Keywords: fault detection, linear parameter varying, model predictive control, set theory

Procedia PDF Downloads 252
8921 Bullying Perpetration and Victimization in Juvenile Institutions

Authors: Nazirah Hassan, Andrew Kendrick

Abstract:

This study investigates the prevalence of perpetration behavior and victimization in juvenile correctional institutions. It investigates the dimensions of institutional environments and explores which environmental features relate to perpetration behaviors. The project focused on two hundred and eighty nine male and female young offenders aged 12 to 21 years old, in eight juvenile institutions in Malaysia. The research collected quantitative and qualitative data using a mixed-method approach. All participants completed the scale version of Direct and Indirect Prisoner behavior Checklist (DIPC-SCALED) and the Measuring the Quality of Prison life (MQPL). In addition, twenty-four interviews were carried out which involved sixteen residents and eight institutional staff. The findings showed that 95 per cent reported at least one behavior indicative of perpetration, and 99 per cent reported at least one behavior indicative of victimization in the past month. The DIPC-SCALED scored significantly higher on the verbal sub-scale. In addition, factors such as harmony, staff professionalism, security, family and wellbeing showed significant relation to the perpetration behavior. In the interviews, the residents identified circumstances, which affected their behavior within the institutions. This reflected the choices and decisions about how to confront the institutional life. These findings are discussed in terms of existing literature and their practical implications are considered.

Keywords: juvenile institutions, incarcerated offenders, perpetration, victimization

Procedia PDF Downloads 300
8920 Real Time Detection of Application Layer DDos Attack Using Log Based Collaborative Intrusion Detection System

Authors: Farheen Tabassum, Shoab Ahmed Khan

Abstract:

The brutality of attacks on networks and decisive infrastructures are on the climb over recent years and appears to continue to do so. Distributed Denial of service attack is the most prevalent and easy attack on the availability of a service due to the easy availability of large botnet computers at cheap price and the general lack of protection against these attacks. Application layer DDoS attack is DDoS attack that is targeted on wed server, application server or database server. These types of attacks are much more sophisticated and challenging as they get around most conventional network security devices because attack traffic often impersonate normal traffic and cannot be recognized by network layer anomalies. Conventional techniques of single-hosted security systems are becoming gradually less effective in the face of such complicated and synchronized multi-front attacks. In order to protect from such attacks and intrusion, corporation among all network devices is essential. To overcome this issue, a collaborative intrusion detection system (CIDS) is proposed in which multiple network devices share valuable information to identify attacks, as a single device might not be capable to sense any malevolent action on its own. So it helps us to take decision after analyzing the information collected from different sources. This novel attack detection technique helps to detect seemingly benign packets that target the availability of the critical infrastructure, and the proposed solution methodology shall enable the incident response teams to detect and react to DDoS attacks at the earliest stage to ensure that the uptime of the service remain unaffected. Experimental evaluation shows that the proposed collaborative detection approach is much more effective and efficient than the previous approaches.

Keywords: Distributed Denial-of-Service (DDoS), Collaborative Intrusion Detection System (CIDS), Slowloris, OSSIM (Open Source Security Information Management tool), OSSEC HIDS

Procedia PDF Downloads 354
8919 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform

Procedia PDF Downloads 150
8918 Development of Real Time System for Human Detection and Localization from Unmanned Aerial Vehicle Using Optical and Thermal Sensor and Visualization on Geographic Information Systems Platform

Authors: Nemi Bhattarai

Abstract:

In recent years, there has been a rapid increase in the use of Unmanned Aerial Vehicle (UAVs) in search and rescue (SAR) operations, disaster management, and many more areas where information about the location of human beings are important. This research will primarily focus on the use of optical and thermal camera via UAV platform in real-time detection, localization, and visualization of human beings on GIS. This research will be beneficial in disaster management search of lost humans in wilderness or difficult terrain, detecting abnormal human behaviors in border or security tight areas, studying distribution of people at night, counting people density in crowd, manage people flow during evacuation, planning provisions in areas with high human density and many more.

Keywords: UAV, human detection, real-time, localization, visualization, haar-like, GIS, thermal sensor

Procedia PDF Downloads 465
8917 Pyramidal Lucas-Kanade Optical Flow Based Moving Object Detection in Dynamic Scenes

Authors: Hyojin Lim, Cuong Nguyen Khac, Yeongyu Choi, Ho-Youl Jung

Abstract:

In this paper, we propose a simple moving object detection, which is based on motion vectors obtained from pyramidal Lucas-Kanade optical flow. The proposed method detects moving objects such as pedestrians, the other vehicles and some obstacles at the front-side of the host vehicle, and it can provide the warning to the driver. Motion vectors are obtained by using pyramidal Lucas-Kanade optical flow, and some outliers are eliminated by comparing the amplitude of each vector with the pre-defined threshold value. The background model is obtained by calculating the mean and the variance of the amplitude of recent motion vectors in the rectangular shaped local region called the cell. The model is applied as the reference to classify motion vectors of moving objects and those of background. Motion vectors are clustered to rectangular regions by using the unsupervised clustering K-means algorithm. Labeling method is applied to label groups which is close to each other, using by distance between each center points of rectangular. Through the simulations tested on four kinds of scenarios such as approaching motorbike, vehicle, and pedestrians to host vehicle, we prove that the proposed is simple but efficient for moving object detection in parking lots.

Keywords: moving object detection, dynamic scene, optical flow, pyramidal optical flow

Procedia PDF Downloads 349
8916 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 114
8915 Determining the Effectiveness of Dialectical Behavior Therapy in Reducing the Psychopathic Deviance of Criminals

Authors: Setareh Gerayeli

Abstract:

The present study tries to determine the effectiveness of dialectical behavior therapy in reducing the psychopathic deviance of employed criminals released from prison. The experimental method was used in this study, and the statistical population included employed criminals released from prison in Mashhad. Thirty offenders were selected randomly as the samples of the study. The MMPI-2 was used to collect data in the pre-test and post-test stages. The behavioral therapy was conducted on the experimental group during fourteen two and a half hour sessions, while the control group did not receive any intervention. Data analysis was conducted by using covariance. The results showed there is a significant difference between the post-test mean scores of the two groups. The findings suggest that dialectical behavior therapy is effective in reducing psychopathic deviance.

Keywords: criminals, dialectical behavior therapy, psychopathic deviance, prison

Procedia PDF Downloads 232
8914 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: axial loading, computational mechanics, energy absorption performance, crashworthiness behavior, deformation mode

Procedia PDF Downloads 441
8913 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 267
8912 Survey of Intrusion Detection Systems and Their Assessment of the Internet of Things

Authors: James Kaweesa

Abstract:

The Internet of Things (IoT) has become a critical component of modern technology, enabling the connection of numerous devices to the internet. The interconnected nature of IoT devices, along with their heterogeneous and resource-constrained nature, makes them vulnerable to various types of attacks, such as malware, denial-of-service attacks, and network scanning. Intrusion Detection Systems (IDSs) are a key mechanism for protecting IoT networks and from attacks by identifying and alerting administrators to suspicious activities. In this review, the paper will discuss the different types of IDSs available for IoT systems and evaluate their effectiveness in detecting and preventing attacks. Also, examine the various evaluation methods used to assess the performance of IDSs and the challenges associated with evaluating them in IoT environments. The review will highlight the need for effective and efficient IDSs that can cope with the unique characteristics of IoT networks, including their heterogeneity, dynamic topology, and resource constraints. The paper will conclude by indicating where further research is needed to develop IDSs that can address these challenges and effectively protect IoT systems from cyber threats.

Keywords: cyber-threats, iot, intrusion detection system, networks

Procedia PDF Downloads 80
8911 Moral Identity and Moral Attentiveness as Predictors of Ethical Leadership in Financial Sector

Authors: Pilar Gamarra Gamarra, Michele Girotto

Abstract:

In the expanding field of leaders’ ethical behavior research, little attention has been paid to the association between finance leaders’ ethical traits (beyond personality) and ethical leadership, and more importantly, how these ethical characteristics can be predictors of ethical behavior at the leadership level in the financial sector. In this study, we tested a theoretical model based on uponsocial cognitive theory (Bandura, 1986) and the cognitive-developmental model (Piaget, 1932) to examine leaders’ moral identity and moral attentiveness as antecedents of ethical leadership. After the 2008 economic crisis, the marketplace has awakened to the potential dangers of unethical behavior. The unethical behavior of the leaders of the financial sector was identified as guilty of this economic catastrophe. For that reason, it seems increasingly prudent for organizations to have leaders who are cognitively inclined toward ethical behavior. This evidence suggests that moral attentiveness and moral identity is perhaps one way of identifying those kinds of leaders. For leaders who are morally attentive and have a high moral identity, themes of ethics interventions are consistent with their way of seeing the word. As a result, these leaders could become critical components of change in organizations and could provide the energy and skills necessary for these efforts to be successful. Ethical behavior of leader from the financial sector and marketing sectors must be joined to manage the change. In this study, a leader’s moral identity, leader’s moral attentiveness, and self-importance of Ethical Leadership are measured for financial and marketing leaders to be compared to determine the relationship between the three variables in each sector. Other conclusion related to gender, educational level or generation are obtained.

Keywords: ethical leadership, moral identity, moral attentiveness, financial leaders, marketing leaders, ethical behavior

Procedia PDF Downloads 175
8910 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air

Authors: Desissa Yadeta Muleta

Abstract:

Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensing

Keywords: deoxyribonucliec acid, long persistent luminescent materials, water, air

Procedia PDF Downloads 76
8909 Insights on Behavior of Tunisian Auditors

Authors: Dammak Saida, Mbarek Sonia

Abstract:

This paper aims to examine the impact of public interest commitment, the attitude towards independence enforcement, and organizational ethical culture on auditors' ethical behavior. It also tests the moderating effect of gender diversity on these relationships. The sample consisted of 100 Tunisian chartered accountants. An online survey was used to collect the data. Data analysis techniques used to test hypotheses The findings of this study provide practical implications for accounting professionals, regulators, and audit firms as they help understand auditors' beliefs and behaviors, which implies more effective mechanisms for improving their ethical values.

Keywords: public interest, independence, organizational culture, professional behavior, Tunisian auditors

Procedia PDF Downloads 74
8908 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
8907 Highly Specific DNA-Aptamer-Based Electrochemical Biosensor for Mercury (II) and Lead (II) Ions Detection in Water Samples

Authors: H. Abu-Ali, A. Nabok, T. Smith

Abstract:

Aptamers are single-strand of DNA or RNA nucleotides sequence which is designed in vitro using selection process known as SELEX (systematic evolution of ligands by exponential enrichment) were developed for the selective detection of many toxic materials. In this work, we have developed an electrochemical biosensor for highly selective and sensitive detection of Hg2+ and Pb2+ using a specific aptamer probe (SAP) labelled with ferrocene (or methylene blue) in (5′) end and the thiol group at its (3′) termini, respectively. The SAP has a specific coil structure that matching with G-G for Pb2+ and T-T for Hg2+ interaction binding nucleotides ions, respectively. Aptamers were immobilized onto surface of screen-printed gold electrodes via SH groups; then the cyclic voltammograms were recorded in binding buffer with the addition of the above metal salts in different concentrations. The resulted values of anode current increase upon binding heavy metal ions to aptamers and analyte due to the presence of electrochemically active probe, i.e. ferrocene or methylene blue group. The correlation between the anodic current values and the concentrations of Hg2+ and Pb2+ ions has been established in this work. To the best of our knowledge, this is the first example of using a specific DNA aptamers for electrochemical detection of heavy metals. Each increase in concentration of 0.1 μM results in an increase in the anode current value by simple DC electrochemical test i.e (Cyclic Voltammetry), thus providing an easy way of determining Hg2+ and Pb2+concentration.

Keywords: aptamer, based, biosensor, DNA, electrochemical, highly, specific

Procedia PDF Downloads 159
8906 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model

Authors: Sujay Kotwale, Ramasubba Reddy M.

Abstract:

Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.

Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost

Procedia PDF Downloads 119
8905 Monocular 3D Person Tracking AIA Demographic Classification and Projective Image Processing

Authors: McClain Thiel

Abstract:

Object detection and localization has historically required two or more sensors due to the loss of information from 3D to 2D space, however, most surveillance systems currently in use in the real world only have one sensor per location. Generally, this consists of a single low-resolution camera positioned above the area under observation (mall, jewelry store, traffic camera). This is not sufficient for robust 3D tracking for applications such as security or more recent relevance, contract tracing. This paper proposes a lightweight system for 3D person tracking that requires no additional hardware, based on compressed object detection convolutional-nets, facial landmark detection, and projective geometry. This approach involves classifying the target into a demographic category and then making assumptions about the relative locations of facial landmarks from the demographic information, and from there using simple projective geometry and known constants to find the target's location in 3D space. Preliminary testing, although severely lacking, suggests reasonable success in 3D tracking under ideal conditions.

Keywords: monocular distancing, computer vision, facial analysis, 3D localization

Procedia PDF Downloads 139
8904 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 516
8903 A Statistical Study on Young UAE Driver’s Behavior towards Road Safety

Authors: Sadia Afroza, Rakiba Rouf

Abstract:

Road safety and associated behaviors have received significant attention in recent years, reflecting general public concern. This paper portrays a statistical scenario of the young drivers in UAE with emphasis on various concern points of young driver’s behavior and license issuance. Although there are many factors contributing to road accidents, statistically it is evident that age plays a major role in road accidents. Despite ensuring strict road safety laws enforced by the UAE government, there is a staggering correlation among road accidents and young driver’s at UAE. However, private organizations like BMW and RoadSafetyUAE have extended its support on conducting surveys on driver’s behavior with an aim to ensure road safety. Various strategies such as road safety law enforcement, license issuance, adapting new technologies like safety cameras and raising awareness can be implemented to improve the road safety concerns among young drivers.

Keywords: driving behavior, Graduated Driver Licensing System (GLDS), road safety, UAE drivers, young drivers

Procedia PDF Downloads 261
8902 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 169
8901 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
8900 Understanding Consumer Behavior Towards Business Ethics: Is it Really Important for Consumers

Authors: Ömer Akkaya, Muammer Zerenler

Abstract:

Ethics is important for all shareholders and stakeholders that a firm has in its environment. Whether a firm behaves ethically or unethically has a significant influence on consumers’ decision making and buying process. This research tries to explain business ethics from consumers’ perspective. The survey includes several questions to explain how consumers react if they know a firm behave unethically or ethically. What are consumers’ expectations regarding the ethical behavior of firm? Do consumer reward or punish the firms considering the ethics? Does it really important for consumers firms behaving ethical?

Keywords: business ethics, consumer behavior, ethics, social responsibility

Procedia PDF Downloads 361
8899 Microstructural Investigation and Fatigue Damage Quantification of Anisotropic Behavior in AA2017 Aluminum Alloy under Cyclic Loading

Authors: Abdelghani May

Abstract:

This paper reports on experimental investigations concerning the underlying reasons for the anisotropic behavior observed during the cyclic loading of AA2017 aluminum alloy. Initially, we quantified the evolution of fatigue damage resulting from controlled proportional cyclic loadings along the axial and shear directions. Our primary objective at this stage was to verify the anisotropic mechanical behavior recently observed. To accomplish this, we utilized various models of fatigue damage quantification and conducted a comparative study of the obtained results. Our analysis confirmed the anisotropic nature of the material under investigation. In the subsequent step, we performed microstructural investigations aimed at understanding the origins of the anisotropic mechanical behavior. To this end, we utilized scanning electron microscopy to examine the phases and precipitates in both the transversal and longitudinal sections. Our findings indicate that the structure and morphology of these entities are responsible for the anisotropic behavior observed in the aluminum alloy. Furthermore, results obtained from Kikuchi diagrams, pole figures, and inverse pole figures have corroborated these conclusions. These findings demonstrate significant differences in the crystallographic texture of the material.

Keywords: microstructural investigation, fatigue damage quantification, anisotropic behavior, AA2017 aluminum alloy, cyclic loading, crystallographic texture, scanning electron microscopy

Procedia PDF Downloads 76
8898 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing

Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh

Abstract:

Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.

Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis

Procedia PDF Downloads 471
8897 Modeling the Cyclic Behavior of High Damping Rubber Bearings

Authors: Donatello Cardone

Abstract:

Bilinear hysteresis models are usually used to describe the cyclic behavior of high damping rubber bearings. However, they neglect a number of phenomena (such as the interaction between axial load and shear force, buckling and post-buckling behavior, cavitation, scragging effects, etc.) that can significantly influence the dynamic behavior of such isolation devices. In this work, an advanced hysteresis model is examined and properly calibrated using consolidated procedures. Results of preliminary numerical analyses, performed in OpenSees, are shown and compared with the results of experimental tests on high damping rubber bearings and simulation analyses using alternative nonlinear models. The findings of this study can provide an useful tool for the accurate evaluation of the seismic response of structures with rubber-based isolation systems.

Keywords: seismic isolation, high damping rubber bearings, numerical modeling, axial-shear force interaction

Procedia PDF Downloads 124
8896 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability

Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo

Abstract:

Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.

Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory

Procedia PDF Downloads 459
8895 The Effectiveness of Dialectical Behavior Therapy in Developing Emotion Regulation Skill for Adolescent with Intellectual Disability

Authors: Shahnaz Safitri, Rose Mini Agoes Salim, Pratiwi Widyasari

Abstract:

Intellectual disability is characterized by significant limitations in intellectual functioning and adaptive behavior that appears before the age of 18 years old. The prominent impacts of intellectual disability in adolescents are failure to establish interpersonal relationships as socially expected and lower academic achievement. Meanwhile, it is known that emotion regulation skills have a role in supporting the functioning of individual, either by nourishing the development of social skills as well as by facilitating the process of learning and adaptation in school. This study aims to look for the effectiveness of Dialectical Behavior Therapy (DBT) in developing emotion regulation skills for adolescents with intellectual disability. DBT's special consideration toward clients’ social environment and their biological condition is foreseen to be the key for developing emotion regulation capacity for subjects with intellectual disability. Through observations on client's behavior, conducted before and after the completion of DBT intervention program, it was found that there is an improvement in client's knowledge and attitudes related to the mastery of emotion regulation skills. In addition, client's consistency to actually practice emotion regulation techniques over time is largely influenced by the support received from the client's social circles.

Keywords: adolescent, dialectical behavior therapy, emotion regulation, intellectual disability

Procedia PDF Downloads 304