Search results for: LGBTQIA+ recognition
905 Behavioral Patterns of Adopting Digitalized Services (E-Sport versus Sports Spectating) Using Agent-Based Modeling
Authors: Justyna P. Majewska, Szymon M. Truskolaski
Abstract:
The growing importance of digitalized services in the so-called new economy, including the e-sports industry, can be observed recently. Various demographic or technological changes lead consumers to modify their needs, not regarding the services themselves but the method of their application (attracting customers, forms of payment, new content, etc.). In the case of leisure-related to competitive spectating activities, there is a growing need to participate in events whose content is not sports competitions but computer games challenge – e-sport. The literature in this area so far focuses on determining the number of e-sport fans with elements of a simple statistical description (mainly concerning demographic characteristics such as age, gender, place of residence). Meanwhile, the development of the industry is influenced by a combination of many different, intertwined demographic, personality and psychosocial characteristics of customers, as well as the characteristics of their environment. Therefore, there is a need for a deeper recognition of the determinants of the behavioral patterns upon selecting digitalized services by customers, which, in the absence of available large data sets, can be achieved by using econometric simulations – multi-agent modeling. The cognitive aim of the study is to reveal internal and external determinants of behavioral patterns of customers taking into account various variants of economic development (the pace of digitization and technological development, socio-demographic changes, etc.). In the paper, an agent-based model with heterogeneous agents (characteristics of customers themselves and their environment) was developed, which allowed identifying a three-stage development scenario: i) initial interest, ii) standardization, and iii) full professionalization. The probabilities regarding the transition process were estimated using the Method of Simulated Moments. The estimation of the agent-based model parameters and sensitivity analysis reveals crucial factors that have driven a rising trend in e-sport spectating and, in a wider perspective, the development of digitalized services. Among the psychosocial characteristics of customers, they are the level of familiarization with the rules of games as well as sports disciplines, active and passive participation history and individual perception of challenging activities. Environmental factors include general reception of games, number and level of recognition of community builders and the level of technological development of streaming as well as community building platforms. However, the crucial factor underlying the good predictive power of the model is the level of professionalization. While in the initial interest phase, the entry barriers for new customers are high. They decrease during the phase of standardization and increase again in the phase of full professionalization when new customers perceive participation history inaccessible. In this case, they are prone to switch to new methods of service application – in the case of e-sport vs. sports to new content and more modern methods of its delivery. In a wider context, the findings in the paper support the idea of a life cycle of services regarding methods of their application from “traditional” to digitalized.Keywords: agent-based modeling, digitalized services, e-sport, spectators motives
Procedia PDF Downloads 172904 Using Classifiers to Predict Student Outcome at Higher Institute of Telecommunication
Authors: Fuad M. Alkoot
Abstract:
We aim at highlighting the benefits of classifier systems especially in supporting educational management decisions. The paper aims at using classifiers in an educational application where an outcome is predicted based on given input parameters that represent various conditions at the institute. We present a classifier system that is designed using a limited training set with data for only one semester. The achieved system is able to reach at previously known outcomes accurately. It is also tested on new input parameters representing variations of input conditions to see its prediction on the possible outcome value. Given the supervised expectation of the outcome for the new input we find the system is able to predict the correct outcome. Experiments were conducted on one semester data from two departments only, Switching and Mathematics. Future work on other departments with larger training sets and wider input variations will show additional benefits of classifier systems in supporting the management decisions at an educational institute.Keywords: machine learning, pattern recognition, classifier design, educational management, outcome estimation
Procedia PDF Downloads 278903 Legal Pluralism and Ideology: The Recognition of the Indigenous Justice Administration in Bolivia through the "Indigenismo" and "Decolonisation" Discourses
Authors: Adriana Pereira Arteaga
Abstract:
In many Latin American countries the transition towards legal pluralism - has developed as part of what is called Latin-American-Constitutionalism over the last thirty years. The aim of this paper is to discuss how legal pluralism in its current form in Bolivia may produce exclusion and violence. Legal sources and discourse analysis - as an approach to examine written language on discourse documentation- will be used to develop this paper. With the constitution of 2009, Bolivia was symbolically "re-founded" into a multi-nation state. This shift goes hand in hand with the "indigenista" and "decolonisation" ideologies developing since the early 20th century. Discourses based on these ideologies reflect the rejection of liberal and western premises on which the Bolivian republic was originally built after independence. According to the "indigenista" movements, the liberal nation-state generates institutions corresponding to a homogenous society. These liberal institutions not only ignore the Bolivian multi-nation reality, but also maintain the social structures originating form the colony times, based on prejudices against the indigenous. The described statements were elaborated through the image: the indigenous people humiliated by a cruel western system as highlighted by the constitution's preamble. This narrative had a considerable impact on the sensitivity of people and received great social support. Therefore the proposal for changing structures of the nation-state, is charged with an emancipatory message of restoring even the pre-Columbian order. An order at times romantically described as the perfect order. Legally this connotes a rejection of the positivistic national legal system based on individual rights and the promotion of constitutional recognition of indigenous justice administration. The pluralistic Constitution is supposed to promote tolerance and a peaceful coexistence among nations, so that the unity and integrity of the country could be maintained. In its current form, legal pluralism in Bolivia is justified on pre-existing rights contained for example in the International - Labour - Organization - Convention 169, but it is more developed on the described discursive constructions. Over time these discursive constructions created inconsistencies in terms of putting indigenous justice administration into practice: First, because legal pluralism has been more developed on level of political discourse, so a real interaction between the national and the indigenous jurisdiction cannot be observed. There are no clear coordination and cooperation mechanisms. Second, since the recently reformed constitution is based on deep sensitive experiences, little is said about the general legal principles on which a pluralistic administration of justice in Bolivia should be based. Third, basic rights, liberties, and constitutional guarantees are also affected by the antagonized image of the national justice administration. As a result, fundamental rights could be violated on a large scale because many indigenous justice administration practices run counter to these constitutional rules. These problems are not merely Bolivian but may also be encountered in other regional countries with similar backgrounds, like Ecuador.Keywords: discourse, indigenous justice, legal pluralism, multi-nation
Procedia PDF Downloads 447902 Modern Technology-Based Methods in Neurorehabilitation for Social Competence Deficit in Children with Acquired Brain Injury
Authors: M. Saard, A. Kolk, K. Sepp, L. Pertens, L. Reinart, C. Kööp
Abstract:
Introduction: Social competence is often impaired in children with acquired brain injury (ABI), but evidence-based rehabilitation for social skills has remained undeveloped. Modern technology-based methods create effective and safe learning environments for pediatric social skills remediation. The aim of the study was to implement our structured model of neuro rehab for socio-cognitive deficit using multitouch-multiuser tabletop (MMT) computer-based platforms and virtual reality (VR) technology. Methods: 40 children aged 8-13 years (yrs) have participated in the pilot study: 30 with ABI -epilepsy, traumatic brain injury and/or tic disorder- and 10 healthy age-matched controls. From the patients, 12 have completed the training (M = 11.10 yrs, SD = 1.543) and 20 are still in training or in the waiting-list group (M = 10.69 yrs, SD = 1.704). All children performed the first individual and paired assessments. For patients, second evaluations were performed after the intervention period. Two interactive applications were implemented into rehabilitation design: Snowflake software on MMT tabletop and NoProblem on DiamondTouch Table (DTT), which allowed paired training (2 children at once). Also, in individual training sessions, HTC Vive VR device was used with VR metaphors of difficult social situations to treat social anxiety and train social skills. Results: At baseline (B) evaluations, patients had higher deficits in executive functions on the BRIEF parents’ questionnaire (M = 117, SD = 23.594) compared to healthy controls (M = 22, SD = 18.385). The most impaired components of social competence were emotion recognition, Theory of Mind skills (ToM), cooperation, verbal/non-verbal communication, and pragmatics (Friendship Observation Scale scores only 25-50% out of 100% for patients). In Sentence Completion Task and Spence Anxiety Scale, the patients reported a lack of friends, behavioral problems, bullying in school, and social anxiety. Outcome evaluations: Snowflake on MMT improved executive and cooperation skills and DTT developed communication skills, metacognitive skills, and coping. VR, video modelling and role-plays improved social attention, emotional attitude, gestural behaviors, and decreased social anxiety. NEPSY-II showed improvement in Affect Recognition [B = 7, SD = 5.01 vs outcome (O) = 10, SD = 5.85], Verbal ToM (B = 8, SD = 3.06 vs O = 10, SD = 4.08), Contextual ToM (B = 8, SD = 3.15 vs O = 11, SD = 2.87). ToM Stories test showed an improved understanding of Intentional Lying (B = 7, SD = 2.20 vs O = 10, SD = 0.50), and Sarcasm (B=6, SD = 2.20 vs O = 7, SD = 2.50). Conclusion: Neurorehabilitation based on the Structured Model of Neurorehab for Socio-Cognitive Deficit in children with ABI were effective in social skills remediation. The model helps to understand theoretical connections between components of social competence and modern interactive computerized platforms. We encourage therapists to implement these next-generation devices into the rehabilitation process as MMT and VR interfaces are motivating for children, thus ensuring good compliance. Improving children’s social skills is important for their and their families’ quality of life and social capital.Keywords: acquired brain injury, children, social skills deficit, technology-based neurorehabilitation
Procedia PDF Downloads 120901 The Role of Polar Body in the Female Gamete
Authors: Parsa Sheikhzadeh
Abstract:
Polar bodies are cells that form by oogenesis in meiosis which differentiate and develop from oocytes. Although in many animals, these cells often die following meiotic maturation of the oocyte. Oocyte activation is during mammalian fertilization, sperm is fused with the oocyte's membrane, triggering the resumption of meiosis from the metaphase II arrest, the extrusion of the second polar body, and the exocytosis of cortical granules. The origin recognition complex proteins 4 (ORC4) forms a cage around the set of chromosomes that will be extruded during polar body formation before it binds to the chromatin shortly before zygotic DNA replication. One unique feature of the female gamete is that the polar bodies can provide beneficial information about the genetic background of the oocyte without potentially destroying it. Testing at the polar body (PB) stage was the least accurate, mainly due to the high incidence of post-zygotic events. On the other hand, the results from PB1-MII oocyte pair validated that PB1 contains nearly the same methylome (average Pearson correlation is 0.92) with sibling MII oocyte. In this article, we comprehensively examine the role of polar bodies in female human gametes.Keywords: polar bodies, ORC4, oocyte, genetic, methylome, gamete, female
Procedia PDF Downloads 94900 The Location Problem of Electric Vehicle Charging Stations: A Case Study of Istanbul
Authors: Müjde Erol Genevois, Hatice Kocaman
Abstract:
Growing concerns about the increasing consumption of fossil energy and the improved recognition of environmental protection require sustainable road transportation technology. Electric vehicles (EVs) can contribute to improve environmental sustainability and to solve the energy problem with the right infrastructure. The problem of where to locate electric vehicle charging station can be grouped as decision-making problems because of including many criteria and alternatives that have to be considered simultaneously. The purpose of this paper is to present an integrated AHP and TOPSIS model to rank the optimal sites of EVs charging station in Istanbul, Turkey. Ten different candidate points and three decision criteria are identified. The performances of each candidate points with respect to criteria are obtained according to AHP calculations. These performances are used as an input for TOPSIS method to rank the candidate points. It is obtained accurate and robust results by integrating AHP and TOPSIS methods.Keywords: electric vehicle charging station (EVCS), AHP, TOPSIS, location selection
Procedia PDF Downloads 324899 Providing a Secure Hybrid Method for Graphical Password Authentication to Prevent Shoulder Surfing, Smudge and Brute Force Attack
Authors: Faraji Sepideh
Abstract:
Nowadays, purchase rate of the smart device is increasing and user authentication is one of the important issues in information security. Alphanumeric strong passwords are difficult to memorize and also owners write them down on papers or save them in a computer file. In addition, text password has its own flaws and is vulnerable to attacks. Graphical password can be used as an alternative to alphanumeric password that users choose images as a password. This type of password is easier to use and memorize and also more secure from pervious password types. In this paper we have designed a more secure graphical password system to prevent shoulder surfing, smudge and brute force attack. This scheme is a combination of two types of graphical passwords recognition based and Cued recall based. Evaluation the usability and security of our proposed scheme have been explained in conclusion part.Keywords: brute force attack, graphical password, shoulder surfing attack, smudge attack
Procedia PDF Downloads 161898 Oncogenic Role of MicroRNA-346 in Human Non-Small Cell Lung Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Determinants of growth and metastasis in cancer remain of great interest to define. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. Here, we report the definition of miR-346 as an oncogenic microRNA that facilitates non-small cell lung cancer (NSCLC) cell growth and metastasis. XPC, an important DNA damage recognition factor in nucleotide excision repair was defined as a target for down-regulation by miR-346, functioning through direct interaction with the 3'-UTR of XPC mRNA. Blocking miR-346 by an antagomiR was sufficient to inhibit NSCLC cell growth and metastasis, an effect that could be phenol-copied by RNAi-mediated silencing of XPC. In vivo studies established that miR-346 overexpression was sufficient to promote tumor growth by A549 cells in xenografts mice, relative to control cells. Overall, our results defined miR-346 as an oncogenic miRNA in NSCLC, the levels of which contributed to tumor growth and invasive aggressiveness.Keywords: microRNA-346, miR-346, XPC, non-small cell lung cancer, oncogenesis
Procedia PDF Downloads 312897 Alternative Housing Solutions in Southern California
Authors: Scott Kelting, Lucas Nozick
Abstract:
The perpetually growing population and economy within the United States necessitates building construction of all types. Increased building generates environmental concerns, and rightfully so. This industry accounts for approximately 4% of the total GDP in the United States while creating around two-thirds of the material waste annually. The green building movement is certainly gaining popularity in both application and recognition through entities such as the United States Green Building Council (USGBC) and their LEED program; however, builders are also producing their ideas. Alternative housing solutions that include pre-fabricated building components and shipping container homes are making great strides in the residential construction industry, and will certainly play an important role in the future. This paper will compare the cost and schedule of modular, panelized and shipping container homes to traditional stick frame home construction in the Greater Los Angeles Metropolitan Area and recommend the best application for each option.Keywords: cost, prefabricated, schedule, shipping container, stick framed
Procedia PDF Downloads 305896 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning
Procedia PDF Downloads 551895 A Rare Atypical Presentation of Iichthyosis Follicularis, Alopecia, and Photophobia Syndrome
Authors: D. R. Apoorva
Abstract:
Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome is a rare oculocutaneous disorder of genetic origin. This disorder results from mutations in the membrane-bound transcription factor protease site, two genes that impair cholesterol homeostasis, and the ability to cope with endoplasmic reticulum stress. We report a rare case of IFAP syndrome with an atypical presentation, and it was interesting to note that the child had patchy non-scarring alopecia over the scalp along with unilateral madarosis. To our best knowledge, this unique presentation has not been described earlier. The child presented with photophobia and unilateral ptosis. The child also had short stature and intellectual disability. Skin histopathology was nonspecific and consisted of dilated hair follicles with keratin plugs extending above the skin surface. This rare oculocutaneous disorder requires proper documentation so that identification of its variants may be possible in the future. Early recognition of atypical presentations can help in preventing cardiovascular complications, which remain the major cause of death.Keywords: alopecia, photophobia, ichthyosis follicularis, IFAP syndrome
Procedia PDF Downloads 79894 The Role of Artificial Intelligence Algorithms in Decision-Making Policies
Authors: Marisa Almeida AraúJo
Abstract:
Artificial intelligence (AI) tools are being used (including in the criminal justice system) and becomingincreasingly popular. The many questions that these (future) super-beings pose the neuralgic center is rooted in the (old) problematic between rationality and morality. For instance, if we follow a Kantian perspective in which morality derives from AI, rationality will also surpass man in ethical and moral standards, questioning the nature of mind, the conscience of self and others, and moral. The recognition of superior intelligence in a non-human being puts us in the contingency of having to recognize a pair in a form of new coexistence and social relationship. Just think of the humanoid robot Sophia, capable of reasoning and conversation (and who has been recognized for Saudi citizenship; a fact that symbolically demonstrates our empathy with the being). Machines having a more intelligent mind, and even, eventually, with higher ethical standards to which, in the alluded categorical imperative, we would have to subject ourselves under penalty of contradiction with the universal Kantian law. Recognizing the complex ethical and legal issues and the significant impact on human rights and democratic functioning itself is the goal of our work.Keywords: ethics, artificial intelligence, legal rules, principles, philosophy
Procedia PDF Downloads 198893 Influencing Factors of Residents’ Intention to Participate in the Governance of Old Community Renewal: A Case Study of Nanjing
Authors: Tiantian Gu, Dezhi Li, Mian Zhang, Ying Jiang
Abstract:
Considering the characteristics of residents’ participation in the governance of old community renewal (OCR), a theoretical model of the determinant of residents’ intention to participate in the governance of OCR has been built based on the theory of planned behavior. Seven old communities in Nanjing have been chosen as cases to conduct empirical analysis. The result indicates that participation attitude, subjective norm and perceived behavioral control have significant positive effects on residents’ intention to participate in the governance of the OCR. Recognition of the community, cognition of the OCR and perceived behavioral control have indirect positive effects on residents’ intention to participate in the OCR. In addition, the education level and the length of residence have positive effects on their participation intention, while the gender, age, and monthly income have little effect on it. The research result provides suggestions for the improvement of residents’ participation in the OCR.Keywords: old community renewal, residents’ participation in governance, intention, theory of planned behavior
Procedia PDF Downloads 187892 Scenario-Based Scales and Situational Judgment Tasks to Measure the Social and Emotional Skills
Authors: Alena Kulikova, Leonid Parmaksiz, Ekaterina Orel
Abstract:
Social and emotional skills are considered by modern researchers as predictors of a person's success both in specific areas of activity and in the life of a person as a whole. The popularity of this scientific direction ensures the emergence of a large number of practices aimed at developing and evaluating socio-emotional skills. Assessment of social and emotional development is carried out at the national level, as well as at the level of individual regions and institutions. Despite the fact that many of the already existing social and emotional skills assessment tools are quite convenient and reliable, there are now more and more new technologies and task formats which improve the basic characteristics of the tools. Thus, the goal of the current study is to develop a tool for assessing social and emotional skills such as emotion recognition, emotion regulation, empathy and a culture of self-care. To develop a tool assessing social and emotional skills, Rasch-Gutman scenario-based approach was used. This approach has shown its reliability and merit for measuring various complex constructs: parental involvement; teacher practices that support cultural diversity and equity; willingness to participate in the life of the community after psychiatric rehabilitation; educational motivation and others. To assess emotion recognition, we used a situational judgment task based on OCC (Ortony, Clore, and Collins) emotions theory. The main advantage of these two approaches compare to classical Likert scales is that it reduces social desirability in answers. A field test to check the psychometric properties of the developed instrument was conducted. The instrument was developed for the presidential autonomous non-profit organization “Russia - Land of Opportunity” for nationwide soft skills assessment among higher education students. The sample for the field test consisted of 500 people, students aged from 18 to 25 (mean = 20; standard deviation 1.8), 71% female. 67% of students are only studying and are not currently working and 500 employed adults aged from 26 to 65 (mean = 42.5; SD 9), 57% female. Analysis of the psychometric characteristics of the scales was carried out using the methods of IRT (Item Response Theory). A one-parameter rating scale model RSM (Rating scale model) and Graded Response model (GRM) of the modern testing theory were applied. GRM is a polyatomic extension of the dichotomous two-parameter model of modern testing theory (2PL) based on the cumulative logit function for modeling the probability of a correct answer. The validity of the developed scales was assessed using correlation analysis and MTMM (multitrait-multimethod matrix). The developed instrument showed good psychometric quality and can be used by HR specialists or educational management. The detailed results of a psychometric study of the quality of the instrument, including the functioning of the tasks of each scale, will be presented. Also, the results of the validity study by MTMM analysis will be discussed.Keywords: social and emotional skills, psychometrics, MTMM, IRT
Procedia PDF Downloads 74891 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 290890 Developing Women’s Football in Asia and Oceania - 1970s to 1990s
Authors: Luciane Lauffer
Abstract:
Over the past decade, the expansion of women’s football as a competitive sport has gained more attention from the media and researchers. However, the practice of the sport is not new, and in Asia and Oceania, women’s football has emerged as a common physical activity in many countries since the 1970s. This study recovers the major occurrences that made women’s football possible in an international context, also resulting from the main achievements of the feminist movement in most Westernized countries. Using archival research, the author reviews documents that compose the history of the women’s game, marked by many imposed barriers imposed by social and gender norms. This materials present how women managed their sport in their respective countries and regions, mostly prompted by a spirit of cooperation and partnerships that allowed the staging of major international events. The findings point out that, despite the layers of gendered boundaries that attempted to contain the expansion of the sport, women from Asia and Oceania made the sport flourish and eventually achieving recognition at the international level.Keywords: women’s football, gender norms, game development, Asia-pacific
Procedia PDF Downloads 106889 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine
Procedia PDF Downloads 152888 A Short Dermatoscopy Training Increases Diagnostic Performance in Medical Students
Authors: Magdalena Chrabąszcz, Teresa Wolniewicz, Cezary Maciejewski, Joanna Czuwara
Abstract:
BACKGROUND: Dermoscopy is a clinical tool known to improve the early detection of melanoma and other malignancies of the skin. Over the past few years melanoma has grown into a disease of socio-economic importance due to the increasing incidence and persistently high mortality rates. Early diagnosis remains the best method to reduce melanoma and non-melanoma skin cancer– related mortality and morbidity. Dermoscopy is a noninvasive technique that consists of viewing pigmented skin lesions through a hand-held lens. This simple procedure increases melanoma diagnostic accuracy by up to 35%. Dermoscopy is currently the standard for clinical differential diagnosis of cutaneous melanoma and for qualifying lesion for the excision biopsy. Like any clinical tool, training is required for effective use. The introduction of small and handy dermoscopes contributed significantly to the switch of dermatoscopy toward a first-level useful tool. Non-dermatologist physicians are well positioned for opportunistic melanoma detection; however, education in the skin cancer examination is limited during medical school and traditionally lecture-based. AIM: The aim of this randomized study was to determine whether the adjunct of dermoscopy to the standard fourth year medical curriculum improves the ability of medical students to distinguish between benign and malignant lesions and assess acceptability and satisfaction with the intervention. METHODS: We performed a prospective study in 2 cohorts of fourth-year medical students at Medical University of Warsaw. Groups having dermatology course, were randomly assigned to: cohort A: with limited access to dermatoscopy from their teacher only – 1 dermatoscope for 15 people Cohort B: with a full access to use dermatoscopy during their clinical classes:1 dermatoscope for 4 people available constantly plus 15-minute dermoscopy tutorial. Students in both study arms got an image-based test of 10 lesions to assess ability to differentiate benign from malignant lesions and postintervention survey collecting minimal background information, attitudes about the skin cancer examination and course satisfaction. RESULTS: The cohort B had higher scores than the cohort A in recognition of nonmelanocytic (P < 0.05) and melanocytic (P <0.05) lesions. Medical students who have a possibility to use dermatoscope by themselves have also a higher satisfaction rates after the dermatology course than the group with limited access to this diagnostic tool. Moreover according to our results they were more motivated to learn dermatoscopy and use it in their future everyday clinical practice. LIMITATIONS: There were limited participants. Further study of the application on clinical practice is still needed. CONCLUSION: Although the use of dermatoscope in dermatology as a specialty is widely accepted, sufficiently validated clinical tools for the examination of potentially malignant skin lesions are lacking in general practice. Introducing medical students to dermoscopy in their fourth year curricula of medical school may improve their ability to differentiate benign from malignant lesions. It can can also encourage students to use dermatoscopy in their future practice which can significantly improve early recognition of malignant lesions and thus decrease melanoma mortality.Keywords: dermatoscopy, early detection of melanoma, medical education, skin cancer
Procedia PDF Downloads 114887 Spectral Anomaly Detection and Clustering in Radiological Search
Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk
Abstract:
Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.Keywords: radiological search, radiological mapping, radioactivity, radiation protection
Procedia PDF Downloads 696886 The Lubrication Regimes Recognition of a Pressure-Fed Journal Bearing by Time and Frequency Domain Analysis of Acoustic Emission Signals
Authors: S. Hosseini, M. Ahmadi Najafabadi, M. Akhlaghi
Abstract:
The health of the journal bearings is very important in preventing unforeseen breakdowns in rotary machines, and poor lubrication is one of the most important factors for producing the bearing failures. Hydrodynamic lubrication (HL), mixed lubrication (ML), and boundary lubrication (BL) are three regimes of a journal bearing lubrication. This paper uses acoustic emission (AE) measurement technique to correlate features of the AE signals to the three lubrication regimes. The transitions from HL to ML based on operating factors such as rotating speed, load, inlet oil pressure by time domain and time-frequency domain signal analysis techniques are detected, and then metal-to-metal contacts between sliding surfaces of the journal and bearing are identified. It is found that there is a significant difference between theoretical and experimental operating values that are obtained for defining the lubrication regions.Keywords: acoustic emission technique, pressure fed journal bearing, time and frequency signal analysis, metal-to-metal contact
Procedia PDF Downloads 155885 Development of Innovative Islamic Web Applications
Authors: Farrukh Shahzad
Abstract:
The rich Islamic resources related to religious text, Islamic sciences, and history are widely available in print and in electronic format online. However, most of these works are only available in Arabic language. In this research, an attempt is made to utilize these resources to create interactive web applications in Arabic, English and other languages. The system utilizes the Pattern Recognition, Knowledge Management, Data Mining, Information Retrieval and Management, Indexing, storage and data-analysis techniques to parse, store, convert and manage the information from authentic Arabic resources. These interactive web Apps provide smart multi-lingual search, tree based search, on-demand information matching and linking. In this paper, we provide details of application architecture, design, implementation and technologies employed. We also presented the summary of web applications already developed. We have also included some screen shots from the corresponding web sites. These web applications provide an Innovative On-line Learning Systems (eLearning and computer based education).Keywords: Islamic resources, Muslim scholars, hadith, narrators, history, fiqh
Procedia PDF Downloads 283884 The Association between Corporate Social Responsibility Disclosure, Assurance, and Tax Aggressiveness: Evidence from Indonesia
Authors: Eko Budi Santoso
Abstract:
There is a growing interest in Corporate Social Responsibility (CSR) issues in developing countries such as Indonesia. Firms disclose their CSR activities, and some provide assurance to gain recognition as socially responsible firms. However, several of those socially responsible firms involve in tax scandals and raise a question of whether CSR disclosure is used to disguise firm misconduct or as a reflection of socially responsible firms. Specifically, whether firms engage in CSR disclosure and its assurance also responsible for their tax matters. This study examines the association between CSR disclosure and tax aggressiveness and the role of sustainability reporting assurance to the association. This research develops a modified index according to global reporting initiatives to measure CSR disclosure and various measurement for tax aggressiveness. Using a sample of Indonesian go public companies issued CSR disclosure, the empirical result shows that there is an association between CSR disclosure and tax aggressiveness. In addition, results also indicate sustainability reporting assurance moderate those association. The findings suggest that stakeholder in developing countries should examine carefully firms with active CSR disclosure before label it as socially responsible firms. JEL Classification: M14Keywords: CSR disclosure, tax aggressiveness, assurance, business ethics
Procedia PDF Downloads 139883 Computational Analysis of Potential Inhibitors Selected Based on Structural Similarity for the Src SH2 Domain
Authors: W. P. Hu, J. V. Kumar, Jeffrey J. P. Tsai
Abstract:
The inhibition of SH2 domain regulated protein-protein interactions is an attractive target for developing an effective chemotherapeutic approach in the treatment of disease. Molecular simulation is a useful tool for developing new drugs and for studying molecular recognition. In this study, we searched potential drug compounds for the inhibition of SH2 domain by performing structural similarity search in PubChem Compound Database. A total of 37 compounds were screened from the database, and then we used the LibDock docking program to evaluate the inhibition effect. The best three compounds (AP22408, CID 71463546 and CID 9917321) were chosen for MD simulations after the LibDock docking. Our results show that the compound CID 9917321 can produce a more stable protein-ligand complex compared to other two currently known inhibitors of Src SH2 domain. The compound CID 9917321 may be useful for the inhibition of SH2 domain based on these computational results. Subsequently experiments are needed to verify the effect of compound CID 9917321 on the SH2 domain in the future studies.Keywords: nonpeptide inhibitor, Src SH2 domain, LibDock, molecular dynamics simulation
Procedia PDF Downloads 269882 Data Analytics of Electronic Medical Records Shows an Age-Related Differences in Diagnosis of Coronary Artery Disease
Authors: Maryam Panahiazar, Andrew M. Bishara, Yorick Chern, Roohallah Alizadehsani, Dexter Hadleye, Ramin E. Beygui
Abstract:
Early detection plays a crucial role in enhancing the outcome for a patient with coronary artery disease (CAD). We utilized a big data analytics platform on ~23,000 patients with CAD from a total of 960,129 UCSF patients in 8 years. We traced the patients from their first encounter with a physician to diagnose and treat CAD. Characteristics such as demographic information, comorbidities, vital, lab tests, medications, and procedures are included. There are statistically significant gender-based differences in patients younger than 60 years old from the time of the first physician encounter to coronary artery bypass grafting (CABG) with a p-value=0.03. There are no significant differences between the patients between 60 and 80 years old (p-value=0.8) and older than 80 (p-value=0.4) with a 95% confidence interval. This recognition would affect significant changes in the guideline for referral of the patients for diagnostic tests expeditiously to improve the outcome by avoiding the delay in treatment.Keywords: electronic medical records, coronary artery disease, data analytics, young women
Procedia PDF Downloads 148881 Wavelet Based Signal Processing for Fault Location in Airplane Cable
Authors: Reza Rezaeipour Honarmandzad
Abstract:
Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal
Procedia PDF Downloads 524880 Federalizing the Philippines: What Does It Mean for the Igorot Indigenous Peoples?
Authors: Shierwin Agagen Cabunilas
Abstract:
The unitary form of Philippine government has built a tradition of bureaucracy that strengthened oligarch and clientele politics. Consequently, the Philippines is lagged behind development. There is so much poverty, unemployment, and inadequate social services. In addition, it seems that the rights of national ethnic minority groups like the Igorots to develop their political and economic interests, linguistic and cultural heritage are neglected. Given these circumstances, a paradigm shift is inevitable. The author advocates a transition from a unitary to a federal system of government. Contrary to the notion that a unitary system facilitates better governance, it actually stifles it. As a unitary government, the Philippines seems (a) to exhibit incompetence in delivering efficient, necessary services to the people and (b) to exclude the minority from political participation and policy making. This shows that Philippine unitary system is highly centralized and operates from a top-bottom scheme. However, a federal system encourages decentralization, plurality and political participation. In my view, federalism is beneficial to the Philippine society and congenial to the Igorot indigenous peoples insofar as participative decision-making and development goals are concerned. This research employs critical and constructive analyses. The former interprets some complex practices of Philippine politics while the latter investigates how theories of federalism can be appropriated to deal with political deficits, ethnic diversity, and indigenous peoples’ rights to self-determination. The topic is developed accordingly: First, the author briefly examines the unitary structure of the Philippines and its impact on inter-governmental affairs and processes, asserting that bureaucracy and corruption, for example, are counterproductive to a participative political life, to economic development and to the recognition of national ethnic minorities. Second, he scrutinizes why federalism might transform this. Here, he assesses various opposing philosophical contentions on federal system in managing ethnically diverse society, like the Philippines, and argue that decentralization of political power, economic and cultural developments are reasons to exit from unitary government. Third, he suggests that federalism can be instrumental to Igorots self-determination. Self-determination is neither opposed to national development nor to the ideals of democracy – liberty, justice, solidarity. For example, as others have already noted, a politics in the vernacular facilitates greater participation among the people. Hence, there is a greater chance to arrive at policies that serve the interest of the people. Some may wary that decentralization disintegrates a nation. According to the author, however, the recognition of minority rights which includes self-determination may promote filial devotion to the state. If Igorot indigenous peoples have access to suitable institutions to determine their political life, economic goals, social needs, i.e., education, culture, language, chances are it moves the country forward to development fostering national unity. Remarkably, federal system thus best responds to the Philippines’s democratic and development deficits. Federalism can also significantly rectify the practices that oppress and dislocate national ethnic minorities as it ensures the creation of localized institutions for optimum political, economic, cultural determination and maximizes representation in the public sphere.Keywords: federalism, Igorot, indigenous peoples, self-determination
Procedia PDF Downloads 338879 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 297878 Research on the Cognition and Actual Phenomenon of School Bullying from the Perspective of Students
Authors: Chia-Chun Wu, Yu-Hsien Sung
Abstract:
This study aims to examine the consistency between students’ predictions and their actual observations on the bullying prevalence rate among different types of high-risk victims, thereby clarifying the reliability of students’ reports on the identification of bullying. A total of 1,732 Taiwanese students (734 males and 998 females) participated in this study. A Rasch model was adopted for data analysis. The results showed that students with “personality or behavioral issues” are more likely to be bullied in schools, based on both students’ predictions and actual observations. Moreover, the results differed significantly between genders and between various educational levels in students’ predictions and their actual observations on the bullying prevalence rate of different types of high-risk victims. To summarize, this study not only suggests that students’ reports on the identification of bullying are accurate and could be a valuable reference in terms of recognizing a bullying incident, but it also argues that more attention should be paid to students’ gender and educational level when taking their perspectives into consideration when it comes to identifying bullying behaviors.Keywords: school bullying, student, bullying recognition, high-risk victims
Procedia PDF Downloads 84877 An Aptasensor Based on Magnetic Relaxation Switch and Controlled Magnetic Separation for the Sensitive Detection of Pseudomonas aeruginosa
Authors: Fei Jia, Xingjian Bai, Xiaowei Zhang, Wenjie Yan, Ruitong Dai, Xingmin Li, Jozef Kokini
Abstract:
Pseudomonas aeruginosa is a Gram-negative, aerobic, opportunistic human pathogen that is present in the soil, water, and food. This microbe has been recognized as a representative food-borne spoilage bacterium that can lead to many types of infections. Considering the casualties and property loss caused by P. aeruginosa, the development of a rapid and reliable technique for the detection of P. aeruginosa is crucial. The whole-cell aptasensor, an emerging biosensor using aptamer as a capture probe to bind to the whole cell, for food-borne pathogens detection has attracted much attention due to its convenience and high sensitivity. Here, a low-field magnetic resonance imaging (LF-MRI) aptasensor for the rapid detection of P. aeruginosa was developed. The basic detection principle of the magnetic relaxation switch (MRSw) nanosensor lies on the ‘T₂-shortening’ effect of magnetic nanoparticles in NMR measurements. Briefly speaking, the transverse relaxation time (T₂) of neighboring water protons get shortened when magnetic nanoparticles are clustered due to the cross-linking upon the recognition and binding of biological targets, or simply when the concentration of the magnetic nanoparticles increased. Such shortening is related to both the state change (aggregation or dissociation) and the concentration change of magnetic nanoparticles and can be detected using NMR relaxometry or MRI scanners. In this work, two different sizes of magnetic nanoparticles, which are 10 nm (MN₁₀) and 400 nm (MN₄₀₀) in diameter, were first immobilized with anti- P. aeruginosa aptamer through 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) chemistry separately, to capture and enrich the P. aeruginosa cells. When incubating with the target, a ‘sandwich’ (MN₁₀-bacteria-MN₄₀₀) complex are formed driven by the bonding of MN400 with P. aeruginosa through aptamer recognition, as well as the conjugate aggregation of MN₁₀ on the surface of P. aeruginosa. Due to the different magnetic performance of the MN₁₀ and MN₄₀₀ in the magnetic field caused by their different saturation magnetization, the MN₁₀-bacteria-MN₄₀₀ complex, as well as the unreacted MN₄₀₀ in the solution, can be quickly removed by magnetic separation, and as a result, only unreacted MN₁₀ remain in the solution. The remaining MN₁₀, which are superparamagnetic and stable in low field magnetic field, work as a signal readout for T₂ measurement. Under the optimum condition, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with the detection limit as low as 100 cfu/mL. The feasibility and specificity of the aptasensor are demonstrated in detecting real food samples and validated by using plate counting methods. Only two steps and less than 2 hours needed for the detection procedure, this robust aptasensor can detect P. aeruginosa with a wide linear range from 3.1 ×10² cfu/mL to 3.1 ×10⁷ cfu/mL, which is superior to conventional plate counting method and other molecular biology testing assay. Moreover, the aptasensor has a potential to detect other bacteria or toxins by changing suitable aptamers. Considering the excellent accuracy, feasibility, and practicality, the whole-cell aptasensor provides a promising platform for a quick, direct and accurate determination of food-borne pathogens at cell-level.Keywords: magnetic resonance imaging, meat spoilage, P. aeruginosa, transverse relaxation time
Procedia PDF Downloads 152876 Frequent-Pattern Tree Algorithm Application to S&P and Equity Indexes
Authors: E. Younsi, H. Andriamboavonjy, A. David, S. Dokou, B. Lemrabet
Abstract:
Software and time optimization are very important factors in financial markets, which are competitive fields, and emergence of new computer tools further stresses the challenge. In this context, any improvement of technical indicators which generate a buy or sell signal is a major issue. Thus, many tools have been created to make them more effective. This worry about efficiency has been leading in present paper to seek best (and most innovative) way giving largest improvement in these indicators. The approach consists in attaching a signature to frequent market configurations by application of frequent patterns extraction method which is here most appropriate to optimize investment strategies. The goal of proposed trading algorithm is to find most accurate signatures using back testing procedure applied to technical indicators for improving their performance. The problem is then to determine the signatures which, combined with an indicator, outperform this indicator alone. To do this, the FP-Tree algorithm has been preferred, as it appears to be the most efficient algorithm to perform this task.Keywords: quantitative analysis, back-testing, computational models, apriori algorithm, pattern recognition, data mining, FP-tree
Procedia PDF Downloads 361