Search results for: synthetic dataset
1460 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate
Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez
Abstract:
Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements
Procedia PDF Downloads 1221459 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 1011458 Impact of Financial Technology Growth on Bank Performance in Gulf Cooperation Council Region
Authors: Ahmed BenSaïda
Abstract:
This paper investigates the association between financial technology (FinTech) growth and bank performance in the Gulf Cooperation Council (GCC) region. Application is conducted on a panel dataset containing the annual observations of banks covering the period from 2012 to 2021. FinTech growth is set as an explanatory variable on three proxies of bank performance. These proxies are the return on assets (ROA), return on equity (ROE), and net interest margin (NIM). Moreover, several control variables are added to the model, including bank-specific and macroeconomic variables. The results are significant as all the proxies of the bank performance are negatively affected by the growth of FinTech startups. Consequently, banks are urged to proactively invest in FinTech startups and engage in partnerships to avoid the risk of disruption.Keywords: financial technology, bank performance, GCC countries, panel regression
Procedia PDF Downloads 781457 Nutrient Removal and Microalgal Biomass Growth of Chlorella Vulgaris in Response to Centrate Wastewater Loadings
Authors: Lingfeng Wang, Zhipeng Chen, Shuang Qiu, Shijian Ge
Abstract:
The effects of wastewater, with four different nutrient loadings, from synthetic centrate on biomass production of Chlorella vulgaris, nutrient removal, microalgal settling, and lipid production were investigated in photobioreactors under both batches and, subsequently, semi-continuous operations. At higher centrate concentration factors (17.2% and 36.2%), hydraulic retention time and pH adjustments could be employed to sustain acceptable microalgal growth rates and wastewater treatment. Similar nutrient removals efficiencies (>95%) and biomass production (0.42-0.51 g/L) were observed for the four centrate concentrations. Both the lipid productivity and lipid content decreased with increasing nutrient loading in the wastewater. The results also demonstrated that the mass ratio of carbohydrate to protein could provide a good indication of microalgal settling performance, rather than sole component composition or total extracellular polymeric substances.Keywords: lipid production, microalgae, nutrient removal, wastewater
Procedia PDF Downloads 2401456 Robust Variable Selection Based on Schwarz Information Criterion for Linear Regression Models
Authors: Shokrya Saleh A. Alshqaq, Abdullah Ali H. Ahmadini
Abstract:
The Schwarz information criterion (SIC) is a popular tool for selecting the best variables in regression datasets. However, SIC is defined using an unbounded estimator, namely, the least-squares (LS), which is highly sensitive to outlying observations, especially bad leverage points. A method for robust variable selection based on SIC for linear regression models is thus needed. This study investigates the robustness properties of SIC by deriving its influence function and proposes a robust SIC based on the MM-estimation scale. The aim of this study is to produce a criterion that can effectively select accurate models in the presence of vertical outliers and high leverage points. The advantages of the proposed robust SIC is demonstrated through a simulation study and an analysis of a real dataset.Keywords: influence function, robust variable selection, robust regression, Schwarz information criterion
Procedia PDF Downloads 1391455 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems
Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake
Procedia PDF Downloads 3201454 Chemotactic Behaviour of Human Mesenchymal Stem Cells in Response to Silicate Substituted Hydroxyapatite
Authors: Dinara Ikramova, Karin A. Hing, Simon C. F. Rawlinson
Abstract:
Silicate-substituted hydroxyapatite (SiHA) has been shown to enhance bone regeneration in vivo compared with phase pure stoichiometric hydroxyapatite. Evidence suggests that substrate chemistry dependent formation of a permissive protein layer on the surface of synthetic bone graft substitute materials is key for bioactivity and cell attachment. However, little information is available on whether the substrate chemistry may affect cell migration and recruitment. The aim of this study is to investigate whether or not human Mesenchymal Stem Cells (hMSCs) exhibit a chemotactic response to SiHA porous granules and if it can be linked to either the ion exchange or protein sequestering and enrichment on the surface of the material. 150mg of SiHA granules with 80% total porosity and 20% strut porosity were incubated in 1ml of either Serum Free Media (SFM) or 10% Serum Containing Media (SCM) under static cell culture conditions (37°C, 5% CO2) in absence of cells. Protein sequestering and exchange of calcium, phosphate and silicate ions were analysed at 0.5, 1, 2, 4, 8, 16 and 24 hours with n=12 per time point. Migration of hMSCs in the presence of 150mg of SiHA granules was assessed over 24 hours using a modified transwell migration system in either SFM or SCM (n=6) with 30% serum containing media acting as a positive control. At 24 hours protein sequestering and ionic exchange were analysed, and the number of cells was quantified using a high throughput confocal microscope (IN Cell Analyser 6000). In acellular condition, both calcium and phosphate ion concentrations in media showed a decrease at 24 hours which was greater in SFM than in SCM. This suggests possible formation and precipitation of a bone like apatite on the surface of SiHA. Reduction in this activity observed in SCM indicates that the presence of serum proteins is interfering with the ion exchange at the material and media interface. Adsorbed protein levels showed fluctuation over time followed by sharp decrease at 24 hours, suggesting a possible protein rearrangement on the surface of the material. The ion analysis performed on SFM and SCM after 24-hour incubation with cells in the presence of granules showed a greater reduction in phosphate concentration in both SFM and SCM compared to phosphate levels in acellular condition. Silicate concentration in SCM increased from 1.6mM (absence of cells) to 5.1mM (presence of cells). This indicates that the cells are promoting the uptake of phosphate and release of silicate ions. No significant change was seen in levels of adsorbed proteins in the presence and absence of cells. Further analysis is required to determine whether the species of these proteins change over time. The analysis of cell migration after 24-hour incubation showed more cells migrating towards the granules, 12.7% in SFM and 8.3% in SCM, than in positive control, 4.5% in SFM and 3.6% in SCM respectively. These results suggest that SiHA has a chemotactic activity independent of serum proteins. A property which has not previously been demonstrated for a synthetic bone graft material.Keywords: cell migration, hMSCs, SiHA, transwell migration system
Procedia PDF Downloads 1311453 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking
Authors: Noga Bregman
Abstract:
Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves
Procedia PDF Downloads 511452 Evaluation of Methodologies for Measuring Harmonics and Inter-Harmonics in Photovoltaic Facilities
Authors: Anésio de Leles Ferreira Filho, Wesley Rodrigues de Oliveira, Jéssica Santoro Gonçalves, Jorge Andrés Cormane Angarita
Abstract:
The increase in electric power demand in face of environmental issues has intensified the participation of renewable energy sources such as photovoltaics, in the energy matrix of various countries. Due to their operational characteristics, they can generate time-varying harmonic and inter-harmonic distortions. For this reason, the application of methods of measurement based on traditional Fourier analysis, as proposed by IEC 61000-4-7, can provide inaccurate results. Considering the aspects mentioned herein, came the idea of the development of this work which aims to present the results of a comparative evaluation between a methodology arising from the combination of the Prony method with the Kalman filter and another method based on the IEC 61000-4-30 and IEC 61000-4-7 standards. Employed in this study were synthetic signals and data acquired through measurements in a 50kWp photovoltaic installation.Keywords: harmonics, inter-harmonics, iec61000-4-7, parametric estimators, photovoltaic generation
Procedia PDF Downloads 4871451 The Role of Leapfrogging: Cross-Level Interactions and MNE Decision-Making in Conflict-Settings
Authors: Arrian Cornwell, Larisa Yarovaya, Mary Thomson
Abstract:
This paper seeks to examine the transboundary nature of foreign subsidiary exit vs. stay decisions when threatened by conflict in a host country. Using the concepts of nested vulnerability and teleconnections, we show that the threat of conflict can transcend bounded territories and have non-linear outcomes for actors, institutions and systems at broader scales of analysis. To the best of our knowledge, this has not been done before. By introducing the concepts of ‘leapfrogging upwards’ and ‘cascading downwards’, we develop a two-stage model which characterises the impacts of conflict as transboundary phenomena. We apply our model to a dataset of 266 foreign subsidiaries in six conflict-afflicted host countries over 2011-2015. Our results indicate that information is transmitted upwards and subsequent pressure flows cascade downwards, which, in turn, influence exit decisions.Keywords: subsidiary exit, conflict, information transmission, pressure flows, transboundary
Procedia PDF Downloads 2761450 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 1101449 Spatial Point Process Analysis of Dengue Fever in Tainan, Taiwan
Authors: Ya-Mei Chang
Abstract:
This research is intended to apply spatio-temporal point process methods to the dengue fever data in Tainan. The spatio-temporal intensity function of the dataset is assumed to be separable. The kernel estimation is a widely used approach to estimate intensity functions. The intensity function is very helpful to study the relation of the spatio-temporal point process and some covariates. The covariate effects might be nonlinear. An nonparametric smoothing estimator is used to detect the nonlinearity of the covariate effects. A fitted parametric model could describe the influence of the covariates to the dengue fever. The correlation between the data points is detected by the K-function. The result of this research could provide useful information to help the government or the stakeholders making decisions.Keywords: dengue fever, spatial point process, kernel estimation, covariate effect
Procedia PDF Downloads 3511448 Performance Prediction Methodology of Slow Aging Assets
Authors: M. Ben Slimene, M.-S. Ouali
Abstract:
Asset management of urban infrastructures faces a multitude of challenges that need to be overcome to obtain a reliable measurement of performances. Predicting the performance of slowly aging systems is one of those challenges, which helps the asset manager to investigate specific failure modes and to undertake the appropriate maintenance and rehabilitation interventions to avoid catastrophic failures as well as to optimize the maintenance costs. This article presents a methodology for modeling the deterioration of slowly degrading assets based on an operating history. It consists of extracting degradation profiles by grouping together assets that exhibit similar degradation sequences using an unsupervised classification technique derived from artificial intelligence. The obtained clusters are used to build the performance prediction models. This methodology is applied to a sample of a stormwater drainage culvert dataset.Keywords: artificial Intelligence, clustering, culvert, regression model, slow degradation
Procedia PDF Downloads 1111447 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns
Authors: J. Suneetha, Vijayalaxmi
Abstract:
Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability
Procedia PDF Downloads 3401446 Synthesis and Photophysical Studies of BOPIDY Dyes Conjugated with 4-Benzyloxystyryl Substituents
Authors: Bokolombe Pitchou Ngoy, John Mack, Tebello Nyokong
Abstract:
Synthesis and photochemical studies of BODIPY dyes have been investigated in this work in order to have a broad benchmark of this functionalized photosensitizer for biological applications such as photodynamic therapy or antimicrobial activity. The common acid catalyzed synthetic method was used, and BODIPY dyes were obtained in quite a good yield (25 %) followed by bromination and Knoevenagel condensation to afford the BODIPY dyes conjugated with maximum absorbance in the near-infrared region of the electromagnetic spectrum. The fluorescence lifetimes, fluorescence quantum yield, and Singlet oxygen quantum yield of the conjugated BODIPY dyes were determined in different solvents by using Time Correlation Single Photon Counting (TCSPC), fluorimeter, and Laser Flash Photolysis respectively. It was clearly shown that the singlet oxygen quantum yield was higher in THF followed by DMSO compared to another solvent. The same trend was observed for the fluorescence lifetimes.Keywords: BODIPY, photodynamic therapy, photosensitizer, singlet oxygen
Procedia PDF Downloads 3001445 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift
Procedia PDF Downloads 3151444 Estimating Estimators: An Empirical Comparison of Non-Invasive Analysis Methods
Authors: Yan Torres, Fernanda Simoes, Francisco Petrucci-Fonseca, Freddie-Jeanne Richard
Abstract:
The non-invasive samples are an alternative of collecting genetic samples directly. Non-invasive samples are collected without the manipulation of the animal (e.g., scats, feathers and hairs). Nevertheless, the use of non-invasive samples has some limitations. The main issue is degraded DNA, leading to poorer extraction efficiency and genotyping. Those errors delayed for some years a widespread use of non-invasive genetic information. Possibilities to limit genotyping errors can be done using analysis methods that can assimilate the errors and singularities of non-invasive samples. Genotype matching and population estimation algorithms can be highlighted as important analysis tools that have been adapted to deal with those errors. Although, this recent development of analysis methods there is still a lack of empirical performance comparison of them. A comparison of methods with dataset different in size and structure can be useful for future studies since non-invasive samples are a powerful tool for getting information specially for endangered and rare populations. To compare the analysis methods, four different datasets used were obtained from the Dryad digital repository were used. Three different matching algorithms (Cervus, Colony and Error Tolerant Likelihood Matching - ETLM) are used for matching genotypes and two different ones for population estimation (Capwire and BayesN). The three matching algorithms showed different patterns of results. The ETLM produced less number of unique individuals and recaptures. A similarity in the matched genotypes between Colony and Cervus was observed. That is not a surprise since the similarity between those methods on the likelihood pairwise and clustering algorithms. The matching of ETLM showed almost no similarity with the genotypes that were matched with the other methods. The different cluster algorithm system and error model of ETLM seems to lead to a more criterious selection, although the processing time and interface friendly of ETLM were the worst between the compared methods. The population estimators performed differently regarding the datasets. There was a consensus between the different estimators only for the one dataset. The BayesN showed higher and lower estimations when compared with Capwire. The BayesN does not consider the total number of recaptures like Capwire only the recapture events. So, this makes the estimator sensitive to data heterogeneity. Heterogeneity in the sense means different capture rates between individuals. In those examples, the tolerance for homogeneity seems to be crucial for BayesN work properly. Both methods are user-friendly and have reasonable processing time. An amplified analysis with simulated genotype data can clarify the sensibility of the algorithms. The present comparison of the matching methods indicates that Colony seems to be more appropriated for general use considering a time/interface/robustness balance. The heterogeneity of the recaptures affected strongly the BayesN estimations, leading to over and underestimations population numbers. Capwire is then advisable to general use since it performs better in a wide range of situations.Keywords: algorithms, genetics, matching, population
Procedia PDF Downloads 1431443 A Bio-Inspired Approach to Produce Wettable Nylon Fabrics
Authors: Sujani B. Y. Abeywardena, Srimala Perera, K. M. Nalin De Silva, S. Walpalage
Abstract:
Surface modifications are vital to accomplish the moisture management property in highly demanded synthetic fabrics. Biomimetic and bio-inspired surface modifications are identified as one of the fascinating areas of research. In this study, nature’s way of cooling elephants’ body temperature using mud bathing was mimicked to create a superior wettable nylon fabric with improved comfortability. For that, bentonite nanoclay was covalently grafted on nylon fabric using silane as a coupling agent. Fourier transform infrared spectra and Scanning electron microscopy images confirmed the successful grafting of nanoclay on nylon. The superior wettability of surface modified nylon was proved by standard protocols. This fabric coating strongly withstands more than 50 cycles of laundry. It is expected that this bio-inspired wettable nylon fabric may break the barrier of using nylon in various hydrophilic textile applications.Keywords: bentonite nanoclay, biomimetic, covalent modification, nylon fabric, surface, wettability
Procedia PDF Downloads 2001442 Microplastic Concentrations in Cultured Oyster in Two Bays of Baja California, Mexico
Authors: Eduardo Antonio Lozano Hernandez, Nancy Ramirez Alvarez, Lorena Margarita Rios Mendoza, Jose Vinicio Macias Zamora, Felix Augusto Hernandez Guzman, Jose Luis Sanchez Osorio
Abstract:
Microplastics (MPs) are one of the most numerous reported wastes found in the marine ecosystem, representing one of the greatest risks for organisms that inhabit that environment due to their bioavailability. Such is the case of bivalve mollusks, since they are capable of filtering large volumes of water, which increases the risk of contamination by microplastics through the continuous exposure to these materials. This study aims to determine, quantify and characterize microplastics found in the cultured oyster Crassostrea gigas. We also analyzed if there are spatio-temporal differences in the microplastic concentration of organisms grown in two bays having quite different human population. In addition, we wanted to have an idea of the possible impact on humans via consumption of these organisms. Commercial size organisms (>6cm length; n = 15) were collected by triplicate from eight oyster farming sites in Baja California, Mexico during winter and summer. Two sites are located in Todos Santos Bay (TSB), while the other six are located in San Quintin Bay (SQB). Site selection was based on commercial concessions for oyster farming in each bay. The organisms were chemically digested with 30% KOH (w/v) and 30% H₂O₂ (v/v) to remove the organic matter and subsequently filtered using a GF/D filter. All particles considered as possible MPs were quantified according to their physical characteristics using a stereoscopic microscope. The type of synthetic polymer was determined using a FTIR-ATR microscope and using a user as well as a commercial reference library (Nicolet iN10 Thermo Scientific, Inc.) of IR spectra of plastic polymers (with a certainty ≥70% for polymers pure; ≥50% for composite polymers). Plastic microfibers were found in all the samples analyzed. However, a low incidence of MP fragments was observed in our study (approximately 9%). The synthetic polymers identified were mainly polyester and polyacrylonitrile. In addition, polyethylene, polypropylene, polystyrene, nylon, and T. elastomer. On average, the content of microplastics in organisms were higher in TSB (0.05 ± 0.01 plastic particles (pp)/g of wet weight) than found in SQB (0.02 ± 0.004 pp/g of wet weight) in the winter period. The highest concentration of MPs found in TSB coincides with the rainy season in the region, which increases the runoff from streams and wastewater discharges to the bay, as well as the larger population pressure (> 500,000 inhabitants). Otherwise, SQB is a mainly rural location, where surface runoff from streams is minimal and in addition, does not have a wastewater discharge into the bay. During the summer, no significant differences (Manne-Whitney U test; P=0.484) were observed in the concentration of MPs found in the cultured oysters of TSB and SQB, (average: 0.01 ± 0.003 pp/g and 0.01 ± 0.002 pp/g, respectively). Finally, we concluded that the consumption of oyster does not represent a risk for humans due to the low concentrations of MPs found. The concentration of MPs is influenced by the variables such as temporality, circulations dynamics of the bay and existing demographic pressure.Keywords: FTIR-ATR, Human risk, Microplastic, Oyster
Procedia PDF Downloads 1741441 Quantum Kernel Based Regressor for Prediction of Non-Markovianity of Open Quantum Systems
Authors: Diego Tancara, Raul Coto, Ariel Norambuena, Hoseein T. Dinani, Felipe Fanchini
Abstract:
Quantum machine learning is a growing research field that aims to perform machine learning tasks assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic examples where the kernel involves quantum states, and the Gram matrix is calculated from the overlapping between these states. With the kernel at hand, a regular machine learning model is used for the learning process. In this paper we investigate the quantum support vector machine and quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We perform digital quantum simulation of amplitude damping and phase damping channels to create our quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to compute the overlapping between quantum states. We observe a good performance of the models.Keywords: quantum, machine learning, kernel, non-markovianity
Procedia PDF Downloads 1801440 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 4551439 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony
Procedia PDF Downloads 3791438 Cadmium Removal from Aqueous Solution Using Chitosan Beads Prepared from Shrimp Shell Extracted Chitosan
Authors: Bendjaballah Malek; Makhlouf Mohammed Rabeh; Boukerche Imane; Benhamza Mohammed El Hocine
Abstract:
In this study, chitosan was derived from Parapenaeus longirostris shrimp shells sourced from a local market in Annaba, eastern Algeria. The extraction process entailed four chemical stages: demineralization, deproteinization, decolorization, and deacetylation. The degree of deacetylation was calculated to be 80.86 %. The extracted chitosan was physically altered to synthesize chitosan beads and characterized via FTIR and XRD analysis. These beads were employed to eliminate cadmium ions from synthetic water. The batch adsorption process was optimized by analyzing the impact of contact time, pH, adsorbent dose, and temperature. The adsorption capacity of and Cd+2 on chitosan beads was found to be 6.83 mg/g and 7.94 mg/g, respectively. The kinetic adsorption of Cd+2 conformed to the pseudo-first-order model, while the isotherm study indicated that the Langmuir Isotherm model well described the adsorption of cadmium . A thermodynamic analysis demonstrated that the adsorption of Cd+2 on chitosan beads is spontaneous and exothermic.Keywords: Cd, chitosan, chitosanbeds, bioadsorbent
Procedia PDF Downloads 1011437 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 661436 From 'Segregation' to 'Integration': The Dynamic Mechanism of Residential Segregation and the Responsive Sustainable Regeneration Methods in China
Authors: Yang Chen
Abstract:
The property-led regeneration has played an important role in the process of rapid urbanization during the past twenty years in China, but it is also been criticized unsustainable as it always focuses on the economic aspect and overlooks the social issues, especially it has exacerbated the residential segregation in the inner city. Based on author’s studying the area around Nanjing railway station, this paper demonstrates that residential segregation indeed exists in the inner city through synthetic analysis on patterns of residents’ living, consumption and welfare, and to some extent, the segregation distribution characteristics represent in a concentric ring model. According to author’s further investigation on the property right and age of the dwelling buildings, the housing-commercialization-led regeneration is defined as the mainspring of the segregation. To solve these problems, the system of sustainable community should be established in both policy and practice, above all, well-designed public facilities including green infrastructure will be appropriate to promote the residential integration and sustainable development in contemporary China.Keywords: China, dynamic mechanism, residential segregation, sustainable regeneration
Procedia PDF Downloads 4601435 Real-Time Neuroimaging for Rehabilitation of Stroke Patients
Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge
Abstract:
Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation
Procedia PDF Downloads 3871434 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 4441433 A Machine Learning Approach to Detecting Evasive PDF Malware
Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran
Abstract:
The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.Keywords: PDF, PDF malware, decision tree classifier, random forest classifier
Procedia PDF Downloads 911432 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings
Authors: Sorin Valcan, Mihail Gaianu
Abstract:
Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.Keywords: labeling automation, infrared camera, driver monitoring, eye detection, convolutional neural networks
Procedia PDF Downloads 1171431 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit
Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini
Abstract:
Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift
Procedia PDF Downloads 290