Search results for: stock movement prediction
3946 Prediction of Marine Ecosystem Changes Based on the Integrated Analysis of Multivariate Data Sets
Authors: Prozorkevitch D., Mishurov A., Sokolov K., Karsakov L., Pestrikova L.
Abstract:
The current body of knowledge about the marine environment and the dynamics of marine ecosystems includes a huge amount of heterogeneous data collected over decades. It generally includes a wide range of hydrological, biological and fishery data. Marine researchers collect these data and analyze how and why the ecosystem changes from past to present. Based on these historical records and linkages between the processes it is possible to predict future changes. Multivariate analysis of trends and their interconnection in the marine ecosystem may be used as an instrument for predicting further ecosystem evolution. A wide range of information about the components of the marine ecosystem for more than 50 years needs to be used to investigate how these arrays can help to predict the future.Keywords: barents sea ecosystem, abiotic, biotic, data sets, trends, prediction
Procedia PDF Downloads 1183945 A Comparative Analysis Of Da’wah Methodology Applied by the Two Variant Factions of Jama’atu Izalatil Bid’ah Wa-Iqamatis Sunnah in Nigeria
Authors: Aminu Alhaji Bala
Abstract:
The Jama’atu Izalatil Bid’ah Wa-Iqamatis Sunnah is a Da’wah organization and reform movement launched in Jos - Nigeria in 1978 as a purely reform movement under the leadership of late Shaykh Ismai’la Idris. The organization started a full fledge preaching sessions at National, State and Local Government levels immediately after its formation. The contributions of this organization to da'wah activities in Nigeria are paramount. The organization conducted its preaching under the council of preaching with the help of the executives, elders and patrons of the movement. Teaching and preaching have been recognized as the major programs of the society. Its preaching activities are conducted from ward, local, state and national levels throughout the states of Nigeria and beyond. It also engaged itself in establishing Mosques, schools and offers sermons during Friday congregation and Eid days throughout its mosques where its sermon is translated into vernacular language, this attracted many Muslims who don’t understand Arabic to patronize the its activities. The organization however split into two faction due to different approaches to Da’wah methodology and some seemingly selfish interests among its leaders. It is upon this background that this research was conducted using analytical method to compare and contrast the da’wah methodology applied by the two factions of the organization. The research discussed about the formation, Da’wah activities of the organization. It also compared and contrast the Da’wah approach and methodology of the two factions. The research finding reveals that different approach and methods applied by these factions is one of the main reason of their split in addition to other selfish interest among its leaders.Keywords: activities, Da’wah, methodology, organization
Procedia PDF Downloads 2233944 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 1073943 Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes
Authors: Dariush Jafari, S. Mostafa Nowee
Abstract:
In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model.Keywords: thermodynamic modeling, ANN, solubility, ternary electrolyte system
Procedia PDF Downloads 3853942 Effect of Hydrogen Content and Structure in Diamond-Like Carbon Coatings on Hydrogen Permeation Properties
Authors: Motonori Tamura
Abstract:
The hydrogen barrier properties of the coatings of diamond-like carbon (DLC) were evaluated. Using plasma chemical vapor deposition and sputtering, DLC coatings were deposited on Type 316L stainless steels. The hydrogen permeation rate was reduced to 1/1000 or lower by the DLC coatings. The DLC coatings with high hydrogen content had high hydrogen barrier function. For hydrogen diffusion in coatings, the movement of atoms through hydrogen trap sites such as pores in coatings, and crystal defects such as dislocations, is important. The DLC coatings are amorphous, and there are both sp3 and sp2 bonds, and excess hydrogen could be found in the interstitial space and the hydrogen trap sites. In the DLC coatings with high hydrogen content, these hydrogen trap sites are likely already filled with hydrogen atoms, and the movement of new hydrogen atoms could be limited.Keywords: hydrogen permeation, stainless steels, diamond-like carbon, hydrogen trap sites
Procedia PDF Downloads 3483941 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 993940 Performance of Shariah-Based Investment: Evidence from Pakistani Listed Firms
Authors: Mohsin Sadaqat, Hilal Anwar Butt
Abstract:
Following the stock selection guidelines provided by the Sharia Board (SB), we segregate the firms listed at Pakistan Stock Exchange (PSX) into Sharia Compliant (SC) and Non-Sharia Compliant (NSC) stocks. Subsequently, we form portfolios within each group based on market capitalization and volatility. The purpose is to analyze and compare the performance of these two groups as the SC stocks have lesser diversification opportunities due to SB restrictions. Using data ranging from January 2004 until June 2016, our results indicate that in most of the cases the risk-adjusted returns (alphas) for the returns differential between SC and NCS firms are positive. In addition, the SC firms in comparison to their counterparts in PSX provides excess returns that are hedged against the market, size, and value-based systematic risks factors. Overall, these results reconcile with one prevailing notion that the SC stocks that have lower financial leverage and higher investment in real assets are lesser exposed to market-based risks. Further, the SC firms that are more capitalized and less volatile, perform better than lower capitalized and higher volatile SC and NSC firms. To sum up our results, we do not find any substantial evidence for opportunity loss due to limited diversification opportunities in case of SC firms. To optimally utilize scarce resources, investors should consider SC firms as a candidate in portfolio construction.Keywords: diversification, performance, sharia compliant stocks, risk adjusted returns
Procedia PDF Downloads 1993939 A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker
Authors: Jong Won, Park, Sung Hyun, Kim
Abstract:
The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life.Keywords: impact energy, impact frequency, hydraulic breaker, life prediction
Procedia PDF Downloads 4413938 A Regression Model for Residual-State Creep Failure
Authors: Deepak Raj Bhat, Ryuichi Yatabe
Abstract:
In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils
Procedia PDF Downloads 4083937 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2123936 Service Life Prediction of Tunnel Structures Subjected to Water Seepage
Authors: Hassan Baji, Chun-Qing Li, Wei Yang
Abstract:
Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.Keywords: water seepage, tunnels, time-dependent reliability, service life
Procedia PDF Downloads 4833935 Indonesia: Top Five Tax Haven Countries as the Strategy to Tax Avoidance
Authors: Maya Safira Dewi
Abstract:
Indonesia is one in the top ten countries most funds flowing into Tax Haven. Illegal funds flowing out of Indonesia reached USD 10.9 billion per year. While the total to 2010 of the Indonesian financial assets are in tax havens from Indonesia amounted to USD 331 billion (Kar and Freitas, 2012). Singapore, Netherlands, Virgin Island, Mauritius and Cayman Island are the highest countries that became the location of companies affiliated with the company listed in Indonesia Stock Exchange. The 469 companies listed on the stock exchange there are 128 companies (27.29%) with overseas entities, listed total overseas affiliated companies amounted to 417 firms in 2012 and 415 companies in 2011. The most of the branches or the parent company are located in Singapore, Netherlands, Virgin Island, Mauritius and Cayman Island. Judging from the existing tax provisions in these countries, have corporate tax rates that is lower than Indonesia. Tax avoidance to tax haven countries can be made by using some Strategies. They are transfer pricing, shopping treaty, thin capitalization and the controlled foreign company. Singapore, Netherlands, Virgin Island, Mauritius and Cayman Island are tax haven countries which become a tax heaven for Indonesian tax payer. It can be concluded that tax havens are a serious problem for Indonesia, and the need for a more assertive policy establishment and more detail about tax havens.Keywords: tax avoidance, tax haven, transfer pricing, tax rate, tax payer
Procedia PDF Downloads 4113934 Demographic Bomb or Bonus in All Provinces in 100 Years after Indonesian Independence
Authors: Fitri CaturLestari
Abstract:
According to National Population and Family Planning Board (BKKBN), demographic bonus will occur in 2025-2035, when the number of people within the productive age bracket is higher than the number of elderly people and children. This time will be a gold moment for Indonesia to achieve maximum productivity and prosperity. But it will be a demographic bomb if it isn’t balanced by economic and social aspect considerations. Therefore it is important to make a prediction mapping of all provinces in Indonesia whether in demographic bomb or bonus condition after 100 years Indonesian independence. The purpose of this research were to make the demographic mapping based on the economic and social aspects of the provinces in Indonesia and categorizing them into demographic bomb and bonus condition. The research data are gained from Statistics Indonesia (BPS) as the secondary data. The multiregional component method, regression and quadrant analysis were used to predict the number of people, economic growth, Human Development Index (HDI), and gender equality in education and employment. There were different characteristic of provinces in Indonesia from economic aspect and social aspect. The west Indonesia was already better developed than the east one. The prediction result, many provinces in Indonesia will get demographic bonus but the others will get demographic bomb. It is important to prepare particular strategy to particular provinces with all of their characteristic based on the prediction result so the demographic bomb can be minimalized.Keywords: demography, economic growth, gender, HDI
Procedia PDF Downloads 3353933 Diagnosis and Treatment of Sleep Disorders
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Introduction: There are many different types of sleep disorders, each with serious implications for a person's health and a large financial burden on society. Method: This review offers a framework based on the International Classification of Sleep Disorders to aid in the diagnosis and treatment of sleep disorders. Differentiating between primary and secondary insomnia is covered, along with pharmacological and nonpharmacological therapy options. Common abnormalities of the circadian rhythm are mentioned along with their therapies, such as light therapy and chronotherapy. This article discusses the identification and management of periodic limb movement disorder and restless legs syndrome. The therapy of upper airway resistance syndrome and obstructive sleep apnea are the main topics of discussion. Conclusion: The range of narcolepsy symptoms and results, as well as diagnostic procedures and treatment, are discussed. The causes, outcomes, and treatments of many types of insomnias, such as sleep terrors, somnambulism, and rapid eye movement (REM) behavior sleep disorders, are discussed.Keywords: diagnosis, treatment, sleep disorders, insomnia
Procedia PDF Downloads 623932 Terrorism: A Threat in Constant Evolution Still Misunderstood
Authors: M. J. Gazapo Lapayese
Abstract:
It is a well-established fact that terrorism is one of the foremost threats to present-day international security. The creation of tools or mechanisms for confronting it in an effective and efficient manner will only be possible by way of an objective assessment of the phenomenon. In order to achieve this, this paper has the following three main objectives: Firstly, setting out to find the reasons that have prevented the establishment of a universally accepted definition of terrorism, and consequently trying to outline the main features defining the face of the terrorist threat in order to discover the fundamental goals of what is now a serious blight on world society. Secondly, trying to explain the differences between a terrorist movement and a terrorist organisation, and the reasons for which a terrorist movement can be led to transform itself into an organisation. After analysing these motivations and the characteristics of a terrorist organisation, an example of the latter will be succinctly analysed to help the reader understand the ideas expressed. Lastly, discovering and exposing the factors that can lead to the appearance of terrorist tendencies, and discussing the most efficient and effective responses that can be given to this global security threat.Keywords: responses, resilience, security, terrorism
Procedia PDF Downloads 4533931 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms
Authors: Senol Dogan, Gunay Karli
Abstract:
Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model
Procedia PDF Downloads 2103930 Morality in Actual Behavior: The Moderation Effect of Identification with the Ingroup and Religion on Norm Compliance
Authors: Shauma L. Tamba
Abstract:
This study examined whether morality is the most important aspect in actual behavior. The prediction was that people tend to behave in line with moral (as compared to competence) norms, especially when such norms are presented by their ingroup. The actual behavior that was tested was support for a military intervention without a mandate from the UN. In addition, this study also examined whether identification with the ingroup and religion moderated the effect of group and norm on support for the norm that was prescribed by their ingroup. The prediction was that those who identified themselves higher with the ingroup moral would show a higher support for the norm. Furthermore, the prediction was also that those who have religion would show a higher support for the norm in the ingroup moral rather than competence. In an online survey, participants were asked to read a scenario in which a military intervention without a mandate was framed as either the moral (but stupid) or smart (but immoral) thing to do by members of their own (ingroup) or another (outgroup) society. This study found that when people identified themselves with the smart (but immoral) norm, they showed a higher support for the norm. However, when people identified themselves with the moral (but stupid) norm, they tend to show a lesser support towards the norm. Most of the results in the study did not support the predictions. Possible explanations and implications are discussed.Keywords: morality, competence, ingroup identification, religion, group norm
Procedia PDF Downloads 4083929 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 1493928 Diffusion of “Not One Woman Less”: Argentina and Beyond
Authors: Adriana Piatti-Crocker
Abstract:
Drawing on archival documentation, digital platforms, academic journals, and reports, this research will explore the diffusion of a protest movement in Latin America. Starting in Argentina in 2015, this paper will explain how the hashtag #NiUnaMenos (“Not One Woman Less”), created to combat violence against women and girls, led to the spread of a regionwide movement. A year after its introduction, hundreds of thousands of activists mobilized on the streets of major cities in Latin America. Movements arose to protest against specific circumstances and contexts under the hashtag #NiUnaMenos, but the main goal of all of these protests was to fight against misogynist violence. Moreover, unlike previous social movements, the use of social media, such as Facebook, Instagram, Whatsapp, and Twitter, changed the depth and scope of these protests and led to an unprecedented speed in helping transmit their messages, strategies, identities, and goals.Keywords: social protests, #NiUnaMenos ( Not one woman less), diffusion of social protests, protests and mysoginist violence
Procedia PDF Downloads 953927 The Effect of Observational Practice on the Volleyball Service Learning with Emphasis on the Role of Self–Efficacy
Authors: Majed Zobairy, Payam Mohammadpanahi
Abstract:
Introduction: Skill movement education is one of extremely important duty for sport coaches and sport teachers. Researchers have done lots of studies in this filed to gain the best methodology in movement learning. One of the essential aspects in skill movement education is observational learning. Observational learning, or learning by watching demonstrations, has been characterized as one of the most important methods by which people learn variety of skill and behaviours.The purpose of this study was determined the effect of observational practice on the volleyball service learning with emphasis on the Role of Self–Efficacy. Methods: The Sample consisted of100 male students was assigned accessible sampling technique and homogeneous manner with emphasis on the Role of Self–Efficacy level to 4 groups. The first group performed physical training, the second group performed observational practice task, the third practiced physically and observationally and the fourth group served as the control group. The experimental groups practiced in a one day acquisition and performed the retention task, after 72 hours. Kolmogorov-Smirnov test and independent t-test were used for Statistical analyses. Results and Discussion: Results shows that observation practice task group can significantly improve volleyball services skills acquisition (T=7.73). Also mixed group (physically and observationally) is significantly better than control group regarding to volleyball services skills acquisition (T=7.04). Conclusion: Results have shown observation practice task group and mixed group are significantly better than control group in acquisition test. The present results are in line with previous studies, suggesting that observation learning can improve performance. On the other hand, results shows that self-efficacy level significantly effect on acquisition movement skill. In other words, high self-efficacy is important factor in skill learning level in volleyball service.Keywords: observational practice, volleyball service, self–efficacy, sport science
Procedia PDF Downloads 3943926 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1413925 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 4603924 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in the years 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research was obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in the years 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for the years 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in the years 2019-2021 were also calculated using a chosen method -a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate
Procedia PDF Downloads 1203923 Infilling Strategies for Surrogate Model Based Multi-disciplinary Analysis and Applications to Velocity Prediction Programs
Authors: Malo Pocheau-Lesteven, Olivier Le Maître
Abstract:
Engineering and optimisation of complex systems is often achieved through multi-disciplinary analysis of the system, where each subsystem is modeled and interacts with other subsystems to model the complete system. The coherence of the output of the different sub-systems is achieved through the use of compatibility constraints, which enforce the coupling between the different subsystems. Due to the complexity of some sub-systems and the computational cost of evaluating their respective models, it is often necessary to build surrogate models of these subsystems to allow repeated evaluation these subsystems at a relatively low computational cost. In this paper, gaussian processes are used, as their probabilistic nature is leveraged to evaluate the likelihood of satisfying the compatibility constraints. This paper presents infilling strategies to build accurate surrogate models of the subsystems in areas where they are likely to meet the compatibility constraint. It is shown that these infilling strategies can reduce the computational cost of building surrogate models for a given level of accuracy. An application of these methods to velocity prediction programs used in offshore racing naval architecture further demonstrates these method's applicability in a real engineering context. Also, some examples of the application of uncertainty quantification to field of naval architecture are presented.Keywords: infilling strategy, gaussian process, multi disciplinary analysis, velocity prediction program
Procedia PDF Downloads 1573922 Carbon Stock Estimation of Urban Forests in Selected Public Parks in Addis Ababa
Authors: Meseret Habtamu, Mekuria Argaw
Abstract:
Urban forests can help to improve the microclimate and air quality. Urban forests in Addis Ababa are important sinks for GHGs as the number of vehicles and the traffic constrain is steadily increasing. The objective of this study was to characterize the vegetation types in selected public parks and to estimate the carbon stock potential of urban forests by assessing carbon in the above, below ground biomass, in the litter and soil. Species which vegetation samples were taken using a systematic transect sampling within value DBH ≥ 5cm were recorded to measure the above, the below ground biomass and the amount of C stored. Allometric models (Y= 34.4703 - 8.0671(DBH) + 0.6589(DBH2) were used to calculate the above ground and Below ground biomass (BGB) = AGB × 0.2 and sampling of soil and litter was based on quadrates. There were 5038 trees recorded from the selected study sites with DBH ≥ 5cm. Most of the Parks had large number of indigenous species, but the numbers of exotic trees are much larger than the indigenous trees. The mean above ground and below ground biomass is 305.7 ± 168.3 and 61.1± 33.7 respectively and the mean carbon in the above ground and below ground biomass is 143.3±74.2 and 28.1 ± 14.4 respectively. The mean CO2 in the above ground and below ground biomass is 525.9 ± 272.2 and 103.1 ± 52.9 respectively. The mean carbon in dead litter and soil carbon were 10.5 ± 2.4 and 69.2t ha-1 respectively. Urban trees reduce atmospheric carbon dioxide (CO2) through sequestration which is important for climate change mitigation, they are also important for recreational, medicinal value and aesthetic and biodiversity conservation.Keywords: biodiversity, carbon sequestration, climate change, urban forests
Procedia PDF Downloads 2293921 Using Analytics to Redefine Athlete Resilience
Authors: Phil P. Wagner
Abstract:
There is an overwhelming amount of athlete-centric information available for sport practitioners in this era of tech and big data, but protocols in athletic rehabilitation remain arbitrary. It is a common assumption that the rate at which tissue heals amongst individuals is the same; yielding protocols that are entirely time-based. Progressing athletes through rehab programs that lack individualization can potentially expose athletes to stimuli they are not prepared for or unnecessarily lengthen their recovery period. A 7-year aggregated and anonymous database was used to develop reliable and valid assessments to measure athletic resilience. Each assessment utilizes force plate technology with proprietary protocols and analysis to provide key thresholds for injury risk and recovery. Using a T score to analyze movement qualities, much like the Z score used for bone density from a Dexa scan, specific prescriptions are provided to mitigate the athlete’s inherent injury risk. In addition to obliging to surgical clearance, practitioners must put in place a clearance protocol guided by standardized assessments and achievement in strength thresholds. In order to truly hold individuals accountable (practitioners, athletic trainers, performance coaches, etc.), success in improving pre-defined key performance indicators must be frequently assessed and analyzed.Keywords: analytics, athlete rehabilitation, athlete resilience, injury prediction, injury prevention
Procedia PDF Downloads 2283920 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1023919 Men and Feminism: Social Constructions of Masculinities in Relation to the Feminist Movement
Authors: Leonardo Dias Cruz
Abstract:
The advent of web 2.0 has enabled users to engage in translocal and transtemporal interactions in which meanings can be constantly (re)constructed. The fluidity of such interactions in the time-space spectrum makes it evident that D/discourses are always in movement and that here-and-now discursive practices are always linked to macro Discourses in social structures. Considering these assumptions, this study aims at exploring the social construction of masculinities in light of feminist D/discourses in online interactions. The data used are a series of comments from readers of articles posted in a website for (projected) male audiences. In order to approach the movable and fluid nature of such interactions, I examine the data through the lens of processes of entextualization, social positioning and indexical cues. The analysis explores the interactions as social arenas in which struggles for the control over entextualization processes are clearly noticeable. Moreover, two main stances are perceived: one that legitimates male’s participation in Feminism and one that rejects such participation.Keywords: entextualization, feminism, masculinities, positionings
Procedia PDF Downloads 4673918 Collective Movement between Two Lego EV3 Mobile Robots
Authors: Luis Fernando Pinedo-Lomeli, Rosa Martha Lopez-Gutierrez, Jose Antonio Michel-Macarty, Cesar Cruz-Hernandez, Liliana Cardoza-Avendaño, Humberto Cruz-Hernandez
Abstract:
Robots are working in industry and services performing repetitive or dangerous tasks, however, when flexible movement capabilities and complex tasks are required, the use of many robots is needed. Also, productivity can be improved by reducing times to perform tasks. In the last years, a lot of effort has been invested in research and development of collective control of mobile robots. This interest is justified as there are many advantages when two or more robots are collaborating in a particular task. Some examples are: cleaning toxic waste, transportation and manipulation of objects, exploration, and surveillance, search and rescue. In this work a study of collective movements of mobile robots is presented. A solution of collisions avoidance is developed. This solution is levered on a communication implementation that allows coordinate movements in different paths were avoiding obstacles.Keywords: synchronization, communication, robots, legos
Procedia PDF Downloads 4323917 Behind Fuzzy Regression Approach: An Exploration Study
Authors: Lavinia B. Dulla
Abstract:
The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data.Keywords: fuzzy regression approach, minimum fuzziness criterion, interval regression, prediction interval
Procedia PDF Downloads 299