Search results for: sensor technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4920

Search results for: sensor technologies

4170 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations

Authors: Siyanda S. Biyela, Willie A. Cronje

Abstract:

This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.

Keywords: cost of energy (COE) tool, sea state, wave energy converter (WEC), WEC-Sim

Procedia PDF Downloads 289
4169 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
4168 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 330
4167 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery

Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina

Abstract:

In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.

Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries

Procedia PDF Downloads 162
4166 Innovative Housing Construction Technologies in Slum Upgrading

Authors: Edmund M. Muthigani

Abstract:

Innovation in the construction industry has been characterized by new products and processes especially in slum upgrading. The need for low cost housing has motivated stakeholders to think outside the box in coming up with solutions. This paper explored innovative construction technologies that have been used in slum upgrading. The main objectives of the paper was to examine innovations in the construction housing sector and to show how incremental derived demand for decent housing has led to adoption of innovative technologies and materials. Systematic literature review was used to review studies on innovative construction technologies in slum upgrading. The review revealed slow process of innovations in the construction industry due to risk aversion by firms and the hesitance to adopt by firms and individuals. Low profit margins in low cost housing and lack of sufficient political support remain the major hurdles to innovative techniques adoption that can actualize right to decent housing. Conventional construction materials have remained unaffordable to many people and this has negated them decent housing. This has necessitated exploration of innovative materials to realize low cost housing. Stabilized soil blocks and sisal-cement roofing blocks are some of the innovative construction materials that have been utilized in slum upgrading. These innovative materials have not only lowered the cost of production of building elements but also eased costs of transport as the raw materials to produce them are readily available in or within the slum sites. Despite their shortcomings in durability and compressive strength, they have proved worthwhile in slum upgrading. Production of innovative construction materials and use of innovative techniques in slum upgrading also provided employment to the locals.

Keywords: construction, housing, innovation, slum, technology

Procedia PDF Downloads 207
4165 Human Factors Issues and Measures in Advanced NPPs

Authors: Jun Su Ha

Abstract:

Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.

Keywords: advanced control room, human factor issues, human performance, human error, nuclear power plant

Procedia PDF Downloads 470
4164 Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Better Implementation

Authors: Mohamed Laamim, Abdelilah Rochd, Aboubakr Benazzouz, Abderrahim El Fadili

Abstract:

Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.

Keywords: smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure.

Procedia PDF Downloads 139
4163 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 370
4162 A Structuring and Classification Method for Assigning Application Areas to Suitable Digital Factory Models

Authors: R. Hellmuth

Abstract:

The method of factory planning has changed a lot, especially when it is about planning the factory building itself. Factory planning has the task of designing products, plants, processes, organization, areas, and the building of a factory. Regular restructuring is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity and Ambiguity) lead to more frequent restructuring measures within a factory. A digital factory model is the planning basis for rebuilding measures and becomes an indispensable tool. Furthermore, digital building models are increasingly being used in factories to support facility management and manufacturing processes. The main research question of this paper is, therefore: What kind of digital factory model is suitable for the different areas of application during the operation of a factory? First, different types of digital factory models are investigated, and their properties and usabilities for use cases are analysed. Within the scope of investigation are point cloud models, building information models, photogrammetry models, and these enriched with sensor data are examined. It is investigated which digital models allow a simple integration of sensor data and where the differences are. Subsequently, possible application areas of digital factory models are determined by means of a survey and the respective digital factory models are assigned to the application areas. Finally, an application case from maintenance is selected and implemented with the help of the appropriate digital factory model. It is shown how a completely digitalized maintenance process can be supported by a digital factory model by providing information. Among other purposes, the digital factory model is used for indoor navigation, information provision, and display of sensor data. In summary, the paper shows a structuring of digital factory models that concentrates on the geometric representation of a factory building and its technical facilities. A practical application case is shown and implemented. Thus, the systematic selection of digital factory models with the corresponding application cases is evaluated.

Keywords: building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 110
4161 Optimizing the Insertion of Renewables in the Colombian Power Sector

Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner

Abstract:

Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.

Keywords: energy policy and planning, stochastic programming, sustainable development, water management

Procedia PDF Downloads 296
4160 Renewable Energy Trends Analysis: A Patents Study

Authors: Sepulveda Juan

Abstract:

This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: patents, scientometric, renewable energy, technology maps

Procedia PDF Downloads 307
4159 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection

Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément

Abstract:

The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.

Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars

Procedia PDF Downloads 117
4158 A Review of Sustainable Energy-Saving Solutions in Active and Passive Solar Systems of Zero Energy Buildings Based on the Internet of Things

Authors: Hanieh Sadat Jannesari, Hoori Jannesar, Alireza Hajian HosseinAbadi

Abstract:

In general, buildings are responsible for a considerable share of consumed energy and carbon emissions worldwide and play a significant role in formulating sustainable development strategies. Therefore, a lot of effort is put into the design and construction of zero-energy buildings (ZEBs) to help eliminate the problems associated with the reduction of energy resources and environmental degradation. Two strategies are significant in designing ZEBs: minimizing the need for energy utilization in buildings (particularly for cooling and heating) through highly energy-efficient designs and using renewable energies and other technologies to meet the remaining energy needs. This paper reviews the works related to these two strategies concerning sustainable energy-saving solutions using renewable energy technologies and the Internet of Things in ZEBs. Drawing on the theories and recently implemented projects of energy engineers in ZEBs, we have reported the required technologies within the framework of this paper’s objectives. Overall, solutions based on renewable and sustainable technologies such as photovoltaic (PV) modules, thermal collectors, Phase Change Material (PCM) techniques, etc., are used in active and passive systems designed for various applications in such buildings as cooling, heating, lighting, cooking, etc. The results obtained from examining these projects show that it is possible to minimize the amount of energy required to be produced for and consumed by these buildings.

Keywords: active and passive renewable energy systems, internet of things, storage, zero energy buildings

Procedia PDF Downloads 29
4157 Focusing of Technology Monitoring Activities Using Indicators

Authors: Günther Schuh, Christina König, Toni Drescher

Abstract:

One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.

Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring

Procedia PDF Downloads 470
4156 Improved Throttled Load Balancing Approach for Cloud Environment

Authors: Sushant Singh, Anurag Jain, Seema Sabharwal

Abstract:

Cloud computing is advancing with a rapid speed. Already, it has been adopted by a huge set of users. Easy to use and anywhere access like potential of cloud computing has made it more attractive relative to other technologies. This has resulted in reduction of deployment cost on user side. It has also allowed the big companies to sell their infrastructure to recover the installation cost for the organization. Roots of cloud computing have extended from Grid computing. Along with the inherited characteristics of its predecessor technologies it has also adopted the loopholes present in those technologies. Some of the loopholes are identified and corrected recently, but still some are yet to be rectified. Two major areas where still scope of improvement exists are security and performance. The proposed work is devoted to performance enhancement for the user of the existing cloud system by improving the basic throttled mapping approach between task and resources. The improved procedure has been tested using the cloud analyst simulator. The results are compared with the original and it has been found that proposed work is one step ahead of existing techniques.

Keywords: cloud analyst, cloud computing, load balancing, throttled

Procedia PDF Downloads 249
4155 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab

Procedia PDF Downloads 90
4154 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis

Authors: Kisik Song, Sungjoo Lee

Abstract:

With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.

Keywords: patent infringement, new technology ideas, patent analysis, F-term

Procedia PDF Downloads 269
4153 Different Goals and Strategies of Smart Cities: Comparative Study between European and Asian Countries

Authors: Yountaik Leem, Sang Ho Lee

Abstract:

In this paper, different goals and the ways to reach smart cities shown in many countries during planning and implementation processes will be discussed. Each country dealt with technologies which have been embedded into space as development of ICTs (information and communication technologies) for their own purposes and by their own ways. For example, European countries tried to adapt technologies to reduce greenhouse gas emission to overcome global warming while US-based global companies focused on the way of life using ICTs such as EasyLiving of Microsoft™ and CoolTown of Hewlett-Packard™ during last decade of 20th century. In the North-East Asian countries, urban space with ICTs were developed in large scale on the viewpoint of capitalism. Ubiquitous city, first introduced in Korea which named after Marc Weiser’s concept of ubiquitous computing pursued new urban development with advanced technologies and high-tech infrastructure including wired and wireless network. Japan has developed smart cities as comprehensive and technology intensive cities which will lead other industries of the nation in the future. Not only the goals and strategies but also new directions to which smart cities are oriented also suggested at the end of the paper. Like a Finnish smart community whose slogan is ‘one more hour a day for citizens,’ recent trend is forwarding everyday lives and cultures of human beings, not capital gains nor physical urban spaces.

Keywords: smart cities, urban strategy, future direction, comparative study

Procedia PDF Downloads 262
4152 Exploring Social and Economic Barriers in Adoption and Expansion of Agricultural Technologies in Woliatta Zone, Southern Ethiopia

Authors: Akalework Mengesha

Abstract:

The adoption of improved agricultural technologies has been connected with higher earnings and lower poverty, enhanced nutritional status, lower staple food prices, and increased employment opportunities for landless laborers. The adoption and extension of the technologies are vastly crucial in that it enables the countries to achieve the millennium development goals (MDG) of reducing extreme poverty and hunger. There are efforts which directed to the enlargement and provision of modern crop varieties in sub-Saharan Africa in the past 30 years. Nevertheless, by and large, the adoption and expansion of rates for improved technologies have insulated behind other regions. This research aims to assess social and economic barriers in the adoption and expansion of agricultural technologies by local communities living around a private agricultural farm in Woliatta Zone, Southern Ethiopia. The study has been carried out among rural households which are located in the three localities selected for the study in the Woliatta zone. Across sectional mixed method, the design was used to address the study objective. The qualitative method was employed (in-depth interview, key informant, and focus group discussion) involving a total of 42 in-depth informants, 17 key-informant interviews, 2 focus group discussions comprising of 10 individuals in each group through purposive sampling techniques. The survey method was mainly used in the study to examine the impact of attitudinal, demographic, and socioeconomic variables on farmers’ adoption of agricultural technologies for quantitative data. The finding of the study revealed that Amibara commercial farm has not made a resolute and well-organized effort to extend agricultural technology to the surrounding local community. A comprehensive agricultural technology transfer scheme hasn’t been put in place by the commercial farm ever since it commenced operating in the study area. Besides, there is an ongoing conflict of interest between the farm and the community, which has kept on widening through time, bounds to be irreversible.

Keywords: adoption, technology transfer, agriculture, barriers

Procedia PDF Downloads 150
4151 Challenges of Translation Knowledge for Pediatric Rehabilitation Technology

Authors: Patrice L. Weiss, Barbara Mazer, Tal Krasovsky, Naomi Gefen

Abstract:

Knowledge translation (KT) involves the process of applying the most promising research findings to practical settings, ensuring that new technological discoveries enhance healthcare accessibility, effectiveness, and accountability. This perspective paper aims to discuss and provide examples of how the KT process can be implemented during a time of rapid advancement in rehabilitation technologies, which have the potential to greatly influence pediatric healthcare. The analysis is grounded in a comprehensive systematic review of literature, where key studies from the past 34 years were carefully interpreted by four expert researchers in scientific and clinical fields. This review revealed both theoretical and practical insights into the factors that either facilitate or impede the successful implementation of new rehabilitation technologies. By utilizing the Knowledge-to-Action cycle, which encompasses the knowledge creation funnel and the action cycle, we demonstrated its application in integrating advanced technologies into clinical practice and guiding healthcare policy adjustments. We highlighted three successful technology applications: powered mobility, head support systems, and telerehabilitation. Moreover, we investigated emerging technologies, such as brain-computer interfaces and robotic assistive devices, which face challenges related to cost, durability, and usability. Recommendations include prioritizing early and ongoing design collaborations, transitioning from research to practical implementation, and determining the optimal timing for clinical adoption of new technologies. In conclusion, this paper informs, justifies, and strengthens the knowledge translation process, ensuring it remains relevant, rigorous, and significantly contributes to pediatric rehabilitation and other clinical fields.

Keywords: knowledge translation, rehabilitation technology, pediatrics, barriers, facilitators, stakeholders

Procedia PDF Downloads 20
4150 Drivers of Digital Product Innovation in Firms: An Empirical Study of Technological, Organizational, and Environmental Factors

Authors: Anne Theresa Eidhoff, Sarah E. Stief, Markus Voeth, Sarah Gundlach

Abstract:

With digitalization increasingly changing the rules of competition, firms face the need to adapt and assimilate digital technologies in order to remain competitive. Firms can choose from various possibilities to integrate digital technologies including the option to embed digital technologies aiming to innovate products or to develop digital products. However, the question of which specific factors influence a firm’s decision to pursue digital product innovation remains unanswered in research. By adopting the Technology-Organization-Environment (TOE)-framework we have designed a qualitative exploratory study including eleven German practitioners to investigate relevant contingency factors. Our results indicate that the most critical factors for a company’s decision to pursue digital product innovation can be found in the technological and environmental dimensions, namely customers, competitive pressure, technological change, as well as digitalization fit. 

Keywords: digital innovation, digitalization, product innovation, TOE-framework

Procedia PDF Downloads 481
4149 The AI Method and System for Analyzing Wound Status in Wound Care Nursing

Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu

Abstract:

This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.

Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance

Procedia PDF Downloads 115
4148 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer

Authors: Nirav J. Patel, Kalpesh K. Dudani

Abstract:

Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.

Keywords: acoustic, partial discharge, perfectly matched layer, sensor

Procedia PDF Downloads 527
4147 Succeeding through Disruption: Exploring the Factors Influencing the Adoption of Disruptive Technologies in the Mobile Telecommunications Industry in Zimbabwe

Authors: Africa Makasi

Abstract:

The research explored factors influencing the adoption of disruptive technologies in the mobile telecommunications industry in Zimbabwe. Data was gathered from the second biggest competitor in the industry with over 3 million subscribers as the main case of study. The survey was conducted by purposively selecting 70 respondents from a population of 3,000,000 (three million) active subscribers from the company’s database. A skip interval of 42,857 was used to randomly select the sample. Customer representatives were selected from the company’s five regional offices using a two-stage cluster sampling technique. Employee participants were purposively selected from the company’s head office. Self-administered questionnaires were used in the research. A pilot test was conducted and the assessment of the reliability of the research instruments used in the research performed. Results of the pilot study were analyzed to test for reliability using SPSS. The results confirmed that the style of leadership and its thrust may help speed up or reduce the adoption of disruptive technologies. This was reflected by a p–value of 0.01 which is less than 0.05. The null hypothesis was thus rejected and the strong relationship between leadership and adoption of disruptive technology is confirmed. Similar results were also obtained with respect to staff competence, availability of funding and the type of infrastructure available Future research should look at organizational ambidexterity as well as exploitation and exploration paradigms in organizations in the telecommunications industry and their impact on the adoption of disruptive technologies.

Keywords: disruptive innovation, adoption, mobile telecommunication industry, exploration and exploitation

Procedia PDF Downloads 369
4146 Distance Education Technologies for Empowerment and Equity in an Information Technology Environment

Authors: Leila Goosen, Toppie N. Mukasa-Lwanga

Abstract:

The purpose of this paper relates to exploring academics’ use of distance education technologies for empowerment and equity in an Information Technology environment. Literature was studied on academics’ technology use towards effective teaching and meaningful learning in a distance education Information Technology environment. Main arguments presented center on formulating and situating significant concepts within an appropriate theoretical and conceptual framework, including those related to distance education, throughput and other measures of academic efficiency. The research design, sampling, data collection instrument and the validity and reliability thereof, as well as the data analysis method used is described. The paper discusses results related to academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment. Conclusions are finally presented on the way in which this paper makes a significant and original contribution regarding academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment.

Keywords: distance, education, technologies, Information Technology Environment

Procedia PDF Downloads 523
4145 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 183
4144 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 58
4143 Supply Chain Technology Adoption in Textile and Apparel Industry

Authors: Zulkifli Mohamed Udin, Lee Khai-Loon, Mohamad Ghozali Hassan

Abstract:

In today’s dynamic business environment, the competition is no longer between firms, but between supply chains to gain competitive advantages. The global manufacturing sector, especially the textile and apparel industry are essentially known for its supply chain dependency. The delicate nature of its business leads to emphasis on the smooth movement of upstream and downstream supply chain. The nature of this industry, however, result in huge dynamic flow of physical, information, and financial. The dynamic management of these flows requires adoption of supply chain technologies. Even though technology is widely implemented and studied in many industries by researchers, adoption of supply chain technologies in Malaysian textile and apparel industry is limited. There is relatively a handful academic study conducted on recent developments in Malaysian textile and apparel industry and supply chain technology adoption indicate a major gap in supply chain performance studies. Considering the importance given to Third Industrial Master Plan by the government Malaysia, it is necessary to understand the power of supply chain technology adoptions. This study aims to investigate supply chain technology adoption by textile and apparel companies in Malaysia. The result highlighted the benefits perceived by textile and apparel companies from supply chain technologies. The indifference of small and medium enterprises to operation management acts as a major inhibitor to the adoption of supply chain technologies, since they have resource limitations. This study could be used as a precursor for further detailed studies on this issue.

Keywords: supply chain technology adoption, supply chain performance, textile, apparel industry

Procedia PDF Downloads 491
4142 AFM Probe Sensor Designed for Cellular Membrane Components

Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp

Abstract:

Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.

Keywords: AFM, sensor, membrane, pores, proteins

Procedia PDF Downloads 307
4141 The Techno-Pedagogical Pivot: Designing and Implementing a Digital Writing Tool

Authors: Justin D. Olmanson, Katrina S. Kennett, Bill Cope

Abstract:

In the field of education technology, innovation is often tightly coupled to recent technological inventions and emerging technologies. Despite this, some scholars have argued that using established technologies in new pedagogical or curricular ways recasts them and places them once more under the umbrella of emerging education technologies. In this study, we trace how an innovative education technology design emerged, not from a technological breakthrough, but rather via a techno-pedagogical pivot. We describe the design and impact of a digital writing tool created to scaffold student self-evaluation of academic texts. We theorize about and trace how innovation can also emerge from a pivot, namely how leveraging existing practices in new ways can create pedagogically and experientially innovative learning opportunities. After describing the design of Info Writer, we unpack the results of a study based on an implementation the tool, and then theorize and reflect on the way the design process and study findings suggest that pivoting an existing practice can lead to innovative education technology designs.

Keywords: design, education, revision, technology, writing

Procedia PDF Downloads 460