Search results for: ring compression tests
4834 Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements
Authors: Armin Solemanifar, Arthur Wilkinson, Kinjalkumar Patel
Abstract:
Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength.Keywords: hybrid composite, thermoplastic fibre, compression strength, damage tolerance
Procedia PDF Downloads 2954833 A Method for Rapid Evaluation of Ore Breakage Parameters from Core Images
Authors: A. Nguyen, K. Nguyen, J. Jackson, E. Manlapig
Abstract:
With the recent advancement in core imaging systems, a large volume of high resolution drill core images can now be collected rapidly. This paper presents a method for rapid prediction of ore-specific breakage parameters from high resolution mineral classified core images. The aim is to allow for a rapid assessment of the variability in ore hardness within a mineral deposit with reduced amount of physical breakage tests. This method sees its application primarily in project evaluation phase, where proper evaluation of the variability in ore hardness of the orebody normally requires prolong and costly metallurgical test work program. Applying this image-based texture analysis method on mineral classified core images, the ores are classified according to their textural characteristics. A small number of physical tests are performed to produce a dataset used for developing the relationship between texture classes and measured ore hardness. The paper also presents a case study in which this method has been applied on core samples from a copper porphyry deposit to predict the ore-specific breakage A*b parameter, obtained from JKRBT tests.Keywords: geometallurgy, hyperspectral drill core imaging, process simulation, texture analysis
Procedia PDF Downloads 3614832 Leaching Properties of Phosphate Rocks in the Nile River
Authors: Abdelkader T. Ahmed
Abstract:
Phosphate Rocks (PR) are natural sediment rocks. These rocks contain several chemical compositions of heavy metals and radioactive elements. Mining and transportation these rocks beside or through the natural water streams may lead to water contamination. When PR is in contact with water in the field, as a consequence of precipitation events, changes in water table or sinking in water streams, elements such as salts and heavy metals, may be released to the water. In this work, the leaching properties of PR in Nile River water was investigated by experimental lab work. The study focused on evaluating potential environmental impacts of some constituents, including phosphors, cadmium, curium and lead of PR on the water quality of Nile by applying tank leaching tests. In these tests the potential impact of changing conditions, such as phosphate content in PR, liquid to solid ratio (L/S) and pH value, was studied on the long-term release of heavy metals and salts. Experimental results showed that cadmium and lead were released in very low concentrations but curium and phosphors were in high concentrations. Results showed also that the release rate from PR for all constituents was low even in long periods.Keywords: leaching tests, Nile river, phosphate rocks, water quality
Procedia PDF Downloads 3224831 Removal of Perchloroethylene, a Common Pollutant, in Groundwater Using Activated Carbon
Authors: Marianne Miguet, Gaël Plantard, Yves Jaeger, Vincent Goetz
Abstract:
The contamination of groundwater is a major concern. A common pollutant, the perchloroethylene, is the target contaminant. Water treatment process as Granular Activated Carbons are very efficient but requires pilot-scale testing to determine the full-scale GAC performance. First, the batch mode was used to get a reliable experimental method to estimate the adsorption capacity of a common volatile compound is settled. The Langmuir model is acceptable to fit the isotherms. Dynamic tests were performed with three columns and different operating conditions. A database of concentration profiles and breakthroughs were obtained. The resolution of the set of differential equations is acceptable to fit the dynamics tests and could be used for a full-scale adsorber.Keywords: activated carbon, groundwater, perchloroethylene, full-scale
Procedia PDF Downloads 4264830 Performance Comparison of Thread-Based and Event-Based Web Servers
Authors: Aikaterini Kentroti, Theodore H. Kaskalis
Abstract:
Today, web servers are expected to serve thousands of client requests concurrently within stringent response time limits. In this paper, we evaluate experimentally and compare the performance as well as the resource utilization of popular web servers, which differ in their approach to handle concurrency. More specifically, Central Processing Unit (CPU)- and I/O intensive tests were conducted against the thread-based Apache and Go as well as the event-based Nginx and Node.js under increasing concurrent load. The tests involved concurrent users requesting a term of the Fibonacci sequence (the 10th, 20th, 30th) and the content of a table from the database. The results show that Go achieved the best performance in all benchmark tests. For example, Go reached two times higher throughput than Node.js and five times higher than Apache and Nginx in the 20th Fibonacci term test. In addition, Go had the smallest memory footprint and demonstrated the most efficient resource utilization, in terms of CPU usage. Instead, Node.js had by far the largest memory footprint, consuming up to 90% more memory than Nginx and Apache. Regarding the performance of Apache and Nginx, our findings indicate that Hypertext Preprocessor (PHP) becomes a bottleneck when the servers are requested to respond by performing CPU-intensive tasks under increasing concurrent load.Keywords: apache, Go, Nginx, node.js, web server benchmarking
Procedia PDF Downloads 974829 Trend Analysis of Annual Total Precipitation Data in Konya
Authors: Naci Büyükkaracığan
Abstract:
Hydroclimatic observation values are used in the planning of the project of water resources. Climate variables are the first of the values used in planning projects. At the same time, the climate system is a complex and interactive system involving the atmosphere, land surfaces, snow and bubbles, the oceans and other water structures. The amount and distribution of precipitation, which is an important climate parameter, is a limiting environmental factor for dispersed living things. Trend analysis is applied to the detection of the presence of a pattern or trend in the data set. Many trends work in different parts of the world are usually made for the determination of climate change. The detection and attribution of past trends and variability in climatic variables is essential for explaining potential future alteration resulting from anthropogenic activities. Parametric and non-parametric tests are used for determining the trends in climatic variables. In this study, trend tests were applied to annual total precipitation data obtained in period of 1972 and 2012, in the Konya Basin. Non-parametric trend tests, (Sen’s T, Spearman’s Rho, Mann-Kendal, Sen’s T trend, Wald-Wolfowitz) and parametric test (mean square) were applied to annual total precipitations of 15 stations for trend analysis. The linear slopes (change per unit time) of trends are calculated by using a non-parametric estimator developed by Sen. The beginning of trends is determined by using the Mann-Kendall rank correlation test. In addition, homogeneities in precipitation trends are tested by using a method developed by Van Belle and Hughes. As a result of tests, negative linear slopes were found in annual total precipitations in Konya.Keywords: trend analysis, precipitation, hydroclimatology, Konya
Procedia PDF Downloads 2184828 Effects of Asphalt Modification with Nanomaterials on Fresh and Stored Bitumen
Authors: Ahmed W. Oda, Ahmed El-Desouky, Hassan Mahdy, Osama M. Moussa
Abstract:
Nanomaterials have many applications in the field of asphalt paving. Two locally produced nanomaterials were used in the asphalt binder modification. The nanomaterials used are Nanosilica (NS), and Nanoclay (NC). The virgin asphalt binder was characterized by the conventional tests. The bitumen was modified by 3%, 5% and 7% of NS and NC. The penetration index(PI), and the retaining penetration (RP) was calculated based on the results of the penetration and the softening point tests. The results show that the RP becomes 95.35% at 5%NS modified bitumen and reaches 97.56% when bitumen is modified with 3% NC. The results show significant improvement in the bitumen stiffness when modified by the two types of nanomaterials, either fresh or aged (stored).Keywords: bitumen, modified bitumen, aged, stored, nanomaterials
Procedia PDF Downloads 1934827 Liquefaction Susceptibility of Tailing Storage Facility-Comparison of National Centre for Earthquake Engineering Research and Finite Element Methods
Authors: Mehdi Ghatei, Masoomeh Lorestani
Abstract:
Upstream Tailings Storage Facilities (TSFs) may experience slope instabilities due to soil liquefaction, especially in regions known to be seismically active. In this study, liquefaction susceptibility of an upstream-raised TSF in Western Australia was assessed using two different approaches. The first approach assessed liquefaction susceptibility using Cone Penetration Tests with pore pressure measurement (CPTu) as described by the National Centre for Earthquake Engineering Research (NCEER). This assessment was based on the four CPTu tests that were conducted on the perimeter embankment of the TSF. The second approach used the Finite Element (FE) method with application of an equivalent linear model to predict the undrained cyclic behavior, the pore water pressure and the liquefaction of the materials. The tailings parameters were estimated from the CPTu profiles and from the laboratory tests. The cyclic parameters were estimated from the literature where test results of similar material were available. The results showed that there was a good agreement, in the liquefaction susceptibility of the tailings material, between the NCEER and FE methods with equivalent linear model.Keywords: liquefaction , CPTU, NCEER, finite element method, equivalent linear model
Procedia PDF Downloads 2724826 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge
Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai
Abstract:
Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength
Procedia PDF Downloads 1294825 Variable Selection in a Data Envelopment Analysis Model by Multiple Proportions Comparison
Authors: Jirawan Jitthavech, Vichit Lorchirachoonkul
Abstract:
A statistical procedure using multiple comparisons test for proportions is proposed for variable selection in a data envelopment analysis (DEA) model. The test statistic in the multiple comparisons is the proportion of efficient decision making units (DMUs) in a DEA model. Three methods of multiple comparisons test for proportions: multiple Z tests with Bonferroni correction, multiple tests in 2Xc crosstabulation and the Marascuilo procedure, are used in the proposed statistical procedure of iteratively eliminating the variables in a backward manner. Two simulation populations of moderately and lowly correlated variables are used to compare the results of the statistical procedure using three methods of multiple comparisons test for proportions with the hypothesis testing of the efficiency contribution measure. From the simulation results, it can be concluded that the proposed statistical procedure using multiple Z tests for proportions with Bonferroni correction clearly outperforms the proposed statistical procedure using the remaining two methods of multiple comparisons and the hypothesis testing of the efficiency contribution measure.Keywords: Bonferroni correction, efficient DMUs, Marascuilo procedure, Pastor et al. method, 2xc crosstabulation
Procedia PDF Downloads 3104824 Computer-Based versus Paper-Based Tests: A Comparative Study of Two Types of Indonesian National Examination for Senior High School Students
Authors: Faizal Mansyur
Abstract:
The objective of this research is to find out whether there is a significant difference in the English language scores of senior high school students in the Indonesia National Examination for students tested by using computer-based and paper-based tests. The population of this research is senior high school students in South Sulawesi Province who sat the Indonesian National Examination for 2015/2016 academic year. The samples of this research are 800 students’ scores from 8 schools taken by employing the multistage random sampling technique. The data of this research is a secondary data since it is obtained from the education office for South Sulawesi. In analyzing the collected data, the researcher employed the independent samples T-Test with the help of SPSS v.24 program. The finding of this research reveals that there is a significant difference in the English language scores of senior high school students in the Indonesia National Examination for students tested by using computer-based and paper-based Tests (p < .05). Moreover, students tested by using PBT (Mean = 63.13, SD = 13.63) achieve higher score than those tested by using CBT (Mean = 46.33, SD = 14.68).Keywords: computer-based test, paper-based test, Indonesian national examination, testing
Procedia PDF Downloads 1674823 Improvement of Mechanical Properties of Recycled High-Density and Low-Density Polyethylene Blends through Extrusion, Reinforcement, and Compatibilization Approaches
Authors: H. Kharmoudi, S. Elkoun, M. Robert, C. Diez
Abstract:
In the literature, the elaboration of polymer blends based on recycled HDPE and LDPE is challenging because of the non-miscibility. Ensuring the compatibility of blends is one of the challenges; this study will discuss the different methods to be adopted to assess the compatibility of polymer blends. The first one aims to act on the extrusion process while varying the speed, flow rate, and residence time. The second method has as its purpose the use of grafted anhydride maleic elastomer chains as a compatibilizer. The results of the formulations will be characterized by means of differential scanning calorimetric (DSC) as well as mechanical tensile and bending tests to assess whether pipes made from recycled polyethylene meet the standards.Keywords: recycled HDPE, LDPE, compatibilizer, mechanical tests
Procedia PDF Downloads 1924822 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method
Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz
Abstract:
In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.Keywords: rheology, biomass, pyrolysis, biochar
Procedia PDF Downloads 1774821 Behavior of Common Wheat under the Influence of Treated Waste Water
Authors: Chiahi Nadia
Abstract:
The aim of our work is to monitor the behavior of soft wheat on a morpho-physiological and agronomic scale under the influence of treated wastewater. Physico-chemical analyses of the treated sewage were also carried out, and our tests were carried out on two varieties of common wheat (Triticum aestivum L), HD1220 and ARZ. For this, a seedling was made, and two different irrigations were chosen, one using treated wastewater from the Sedrata (Wilaya of Souk ahras - Algeria) WWTP and the other stormwater as a control. The tests focused on soil and soft wheat parameters, and based on our results, the soft wheat development, physiological and yield parameters appear to respond favorably to the use of these waters.Keywords: common wheat (Triticum aestivum L.), purified wastewater, irrigation, morph physiological and agronomic parameters
Procedia PDF Downloads 674820 Plants as Alternative Covers at Contaminated Sites
Authors: M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa, F. Pedron
Abstract:
Evapotranspiration (ET) covers are an alternative cover system that utilizes water balance approach to maximize the ET process to reduce the contaminants leaching through the soil profile. Microcosm tests allow to identify in a short time the most suitable plant species to be used as alternative covers, their survival capacity, and simultaneously the transpiration and evaporation rate of the cover in a specific contaminated soil. This work shows the soil characterization and ET results of microcosm tests carried out on two contaminated soils by using Triticum durum and Helianthus annuus species. The data indicated that transpiration was higher than evaporation, supporting the use of plants as alternative cover at this contaminated site.Keywords: contaminated sites, evapotranspiration cover, evapotranspiration, microcosm experiments
Procedia PDF Downloads 2914819 Implementation of Achterbahn-128 for Images Encryption and Decryption
Authors: Aissa Belmeguenai, Khaled Mansouri
Abstract:
In this work, an efficient implementation of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written by MATLAB.7.5. At first two different original images are used for validate the proposed design. Then our developed program was used to transform the original images data into image digits file. Finally, we used our implemented program to encrypt and decrypt images data. Several tests are done for proving the design performance including visual tests and security analysis; we discuss the security analysis of the proposed image encryption scheme including some important ones like key sensitivity analysis, key space analysis, and statistical attacks.Keywords: Achterbahn-128, stream cipher, image encryption, security analysis
Procedia PDF Downloads 5324818 Discussion of Blackness in Wrestling
Authors: Jason Michael Crozier
Abstract:
The wrestling territories of the mid-twentieth century in the United States are widely considered the birthplace of modern professional wrestling, and by many professional wrestlers, to be a beacon of hope for the easing of racial tensions during the civil rights era and beyond. The performers writing on this period speak of racial equality but fail to acknowledge the exploitation of black athletes as a racialized capital commodity who suffered the challenges of systemic racism, codified by a false narrative of aspirational exceptionalism and equality measured by audience diversity. The promoters’ ability to equate racial and capital exploitation with equality leads to a broader discussion of the history of Muscular Christianity in the United States and the exploitation of black bodies. Narratives of racial erasure that dominate the historical discourse when examining athleticism and exceptionalism redefined how blackness existed and how physicality and race are conceived of in sport and entertainment spaces. When discussing the implications of race and professional wrestling, it is important to examine the role of promotions as ‘imagined communities’ where the social agency of wrestlers is defined and quantified based on their ‘desired elements’ as a performer. The intentionally vague nature of this language masks a deep history of racialization that has been perpetuated by promoters and never fully examined by scholars. Sympathetic racism and the omission of cultural identity are also key factors in the limitations and racial barriers placed upon black athletes in the squared circle. The use of sympathetic racism within professional wrestling during the twentieth century defined black athletes into two distinct categorizations, the ‘black savage’ or the ‘black minstrel’. Black wrestlers of the twentieth century were defined by their strength as a capital commodity and their physicality rather than their knowledge of the business and in-ring skill. These performers had little agency in their ability to shape their own character development inside and outside the ring. Promoters would often create personas that heavily racialized the performer by tying them to a regional past or memory, such as that of slavery in the deep south using dog collar matches and adoring black characters in chains. Promoters softened cultural memory by satirizing the historic legacy of slavery and the black identity.Keywords: sympathetic racism, social agency, racial commodification, stereotyping
Procedia PDF Downloads 1354817 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy
Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi
Abstract:
Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.Keywords: electrochemical technique, intergranular corrosion, sensitization, stainless steels
Procedia PDF Downloads 1824816 Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test
Authors: Reza Ziaie Moayed, Ehsan Azini
Abstract:
Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.Keywords: jet grouting column, soil improvement, numerical modeling, in-situ loading test
Procedia PDF Downloads 1434815 Automated Human Balance Assessment Using Contactless Sensors
Authors: Justin Tang
Abstract:
Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.Keywords: automated, concussion detection, contactless sensors, microsoft kinect
Procedia PDF Downloads 3174814 Optimizing the Performance of Thermoelectric for Cooling Computer Chips Using Different Types of Electrical Pulses
Authors: Saleh Alshehri
Abstract:
Thermoelectric technology is currently being used in many industrial applications for cooling, heating and generating electricity. This research mainly focuses on using thermoelectric to cool down high-speed computer chips at different operating conditions. A previously developed and validated three-dimensional model for optimizing and assessing the performance of cascaded thermoelectric and non-cascaded thermoelectric is used in this study to investigate the possibility of decreasing the hotspot temperature of computer chip. Additionally, a test assembly is built and tested at steady-state and transient conditions. The obtained optimum thermoelectric current at steady-state condition is used to conduct a number of pulsed tests (i.e. transient tests) with different shapes to cool the computer chips hotspots. The results of the steady-state tests showed that at hotspot heat rate of 15.58 W (5.97 W/cm2), using thermoelectric current of 4.5 A has resulted in decreasing the hotspot temperature at open circuit condition (89.3 °C) by 50.1 °C. Maximum and minimum hotspot temperatures have been affected by ON and OFF duration of the electrical current pulse. Maximum hotspot temperature was resulted by longer OFF pulse period. In addition, longer ON pulse period has generated the minimum hotspot temperature.Keywords: thermoelectric generator, TEG, thermoelectric cooler, TEC, chip hotspots, electronic cooling
Procedia PDF Downloads 1434813 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR
Authors: Ivana Scidà, Francesco Alotto, Anna Osello
Abstract:
Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.Keywords: building information modelling, digital learning, education, virtual laboratory, virtual reality
Procedia PDF Downloads 1314812 Reliability of Using Standard Penetration Test (SPT) in Evaluation of Soil Properties
Authors: Hossein Alimohammadi, Mohsen Amirmojahedi, Mehrdad Rowhani
Abstract:
Soil properties are used by geotechnical engineers to evaluate and analyze site conditions for designing purposes. Although basic soil classification tests are easy to perform and provide useful information to determine the properties of soils, it may take time to get the result and add some costs to the projects. Standard Penetration Test (SPT) provides an opportunity to evaluate soil parameters without performing laboratory tests. In addition to its simplicity and cheapness, the results become available immediately. This research provides a guideline on the application of the SPT test method, reliability of adapting the SPT test results in evaluating soil physical and mechanical properties such as Atterberg limits, shear strength, and compressive strength compressibility parameters. A total of 70 boreholes were investigated in this study by taking soil samples between depths of 1.2 to 15.25 meters. The project site was located in Morrow County, Ohio. A regression-based formula was proposed based on Tobit regression with a stepwise variable selection analysis conducted between SPT and other typical soil properties obtained from soil tests. The results of the research illustrated that the shear strength and physical properties of the soil affect the SPT number. The proposed correlation can help engineers to use SPT test results in their design with higher accuracy.Keywords: standard penetration test, soil properties, soil classification, regression method
Procedia PDF Downloads 1884811 Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils
Authors: A.Cifarelli, L. Boggioni, F. Bertini, L. Magon, M. Pitalieri, S. Losio
Abstract:
Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength.Keywords: bio-polyols, polyurethane foams, solvent free synthesis, waterborne-polyurethanes
Procedia PDF Downloads 1294810 Study of Tribological Behavior of Zirconium Alloy Against SS-410 at High Temperature
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys exhibit low neutron absorption cross-section and excellent mechanical properties. Due to these unique characteristics, these materials are widely used in designing core components of pressurized heavy water reactors (PHWRs). Another material that is widely used in the design of reactor core is stainless steel. Under operating conditions of the reactor, there are possibilities for mechanical and tribological interaction between the components made of zirconium alloy (Zr-2.5 Nb) and stainless steel (SS-410). This may result in wear of the material. To study the tribological characteristics of Zr-2.5 Nb and SS-410, low amplitude reciprocating wear tests are conducted at room temperature and at high temperatures (260 degrees Celsius). The tests are conducted at frequencies ranging from 5 Hz to 25 Hz. The displacement amplitude is varied from 200 µm to 600 µm. The responses are recorded, analyzed and correlated with damage observed using scanning electron microscopy (SEM) and an optical profilometer. Energy dispersive spectroscopy (EDS) is used to study the damage mechanism prevailing at the contact interface. A higher coefficient of friction (COF) is observed at higher temperatures as compared to the one at room temperature. Tests carried out at high temperature reveals adhesive wear as the dominant mechanism resulting in significant material transfer.Keywords: PHWRs, Zr-2.5Nb, SS-410, wear
Procedia PDF Downloads 924809 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls
Authors: Berna Istegun, Erkan Celebi
Abstract:
The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests
Procedia PDF Downloads 2054808 Numerical Investigation on the Influence of Incoming Flow Conditions on the Rotating Stall in Centrifugal Pump
Authors: Wanru Huang, Fujun Wang, Chaoyue Wang, Yuan Tang, Zhifeng Yao, Ruofu Xiao, Xin Chen
Abstract:
Rotating stall in centrifugal pump is an unsteady flow phenomenon that causes instabilities and high hydraulic losses. It typically occurs at low flow rates due to large flow separation in impeller blade passage. In order to reveal the influence of incoming flow conditions on rotating stall in centrifugal pump, a numerical method for investigating rotating stall was established. This method is based on a modified SST k-ω turbulence model and a fine mesh model was adopted. The calculated flow velocity in impeller by this method was in good agreement with PIV results. The effects of flow rate and sealing-ring leakage on stall characteristics of centrifugal pump were studied by using the proposed numerical approach. The flow structures in impeller under typical flow rates and typical sealing-ring leakages were analyzed. It is found that the stall vortex frequency and circumferential propagation velocity increase as flow rate decreases. With the flow rate decreases from 0.40Qd to 0.30Qd, the stall vortex frequency increases from 1.50Hz to 2.34Hz, the circumferential propagation velocity of the stall vortex increases from 3.14rad/s to 4.90rad/s. Under almost all flow rate conditions where rotating stall is present, there is low frequency of pressure pulsation between 0Hz-5Hz. The corresponding pressure pulsation amplitude increases with flow rate decreases. Taking the measuring point at the leading edge of the blade pressure surface as an example, the flow rate decreases from 0.40Qd to 0.30Qd, the pressure fluctuation amplitude increases by 86.9%. With the increase of leakage, the flow structure in the impeller becomes more complex, and the 8-shaped stall vortex is no longer stable. On the basis of the 8-shaped stall vortex, new vortex nuclei are constantly generated and fused with the original vortex nuclei under large leakage. The upstream and downstream vortex structures of the 8-shaped stall vortex have different degrees of swimming in the flow passage, and the downstream vortex swimming is more obvious. The results show that the proposed numerical approach could capture the detail vortex characteristics, and the incoming flow conditions have significant effects on the stall vortex in centrifugal pumps.Keywords: centrifugal pump, rotating stall, numerical simulation, flow condition, vortex frequency
Procedia PDF Downloads 1374807 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace
Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel
Abstract:
In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.Keywords: fuel cell, modelling, real time emulation, testing
Procedia PDF Downloads 3364806 Computerized Adaptive Testing for Ipsative Tests with Multidimensional Pairwise-Comparison Items
Authors: Wen-Chung Wang, Xue-Lan Qiu
Abstract:
Ipsative tests have been widely used in vocational and career counseling (e.g., the Jackson Vocational Interest Survey). Pairwise-comparison items are a typical item format of ipsative tests. When the two statements in a pairwise-comparison item measure two different constructs, the item is referred to as a multidimensional pairwise-comparison (MPC) item. A typical MPC item would be: Which activity do you prefer? (A) playing with young children, or (B) working with tools and machines. These two statements aim at the constructs of social interest and investigative interest, respectively. Recently, new item response theory (IRT) models for ipsative tests with MPC items have been developed. Among them, the Rasch ipsative model (RIM) deserves special attention because it has good measurement properties, in which the log-odds of preferring statement A to statement B are defined as a competition between two parts: the sum of a person’s latent trait to which statement A is measuring and statement A’s utility, and the sum of a person’s latent trait to which statement B is measuring and statement B’s utility. The RIM has been extended to polytomous responses, such as preferring statement A strongly, preferring statement A, preferring statement B, and preferring statement B strongly. To promote the new initiatives, in this study we developed computerized adaptive testing algorithms for MFC items and evaluated their performance using simulations and two real tests. Both the RIM and its polytomous extension are multidimensional, which calls for multidimensional computerized adaptive testing (MCAT). A particular issue in MCAT for MPC items is the within-person statement exposure (WPSE); that is, a respondent may keep seeing the same statement (e.g., my life is empty) for many times, which is certainly annoying. In this study, we implemented two methods to control the WPSE rate. In the first control method, items would be frozen when their statements had been administered more than a prespecified times. In the second control method, a random component was added to control the contribution of the information at different stages of MCAT. The second control method was found to outperform the first control method in our simulation studies. In addition, we investigated four item selection methods: (a) random selection (as a baseline), (b) maximum Fisher information method without WPSE control, (c) maximum Fisher information method with the first control method, and (d) maximum Fisher information method with the second control method. These four methods were applied to two real tests: one was a work survey with dichotomous MPC items and the other is a career interests survey with polytomous MPC items. There were three dependent variables: the bias and root mean square error across person measures, and measurement efficiency which was defined as the number of items needed to achieve the same degree of test reliability. Both applications indicated that the proposed MCAT algorithms were successful and there was no loss in measurement proficiency when the control methods were implemented, and among the four methods, the last method performed the best.Keywords: computerized adaptive testing, ipsative tests, item response theory, pairwise comparison
Procedia PDF Downloads 2464805 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor
Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar
Abstract:
Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.Keywords: hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption
Procedia PDF Downloads 113