Search results for: natural features
8549 The Effect of Fly Ash and Natural Pozzolans on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars
Authors: M.S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH. In addition to that, commonly used supplementary cementitious materials (natural pozzolan and fly ash) were also added. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, natural pozzolans has been shown to have a highly positive influence on the film quality. Fly ash also increases the protective qualities of the passive film.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 4448548 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 1428547 Effect of the Nature of the Precursor on the Performance of Cu-Mn Catalysts for CO and VOCs Oxidation
Authors: Elitsa Kolentsova, Dimitar Dimitrov, Krasimir Ivanov
Abstract:
The catalytic oxidation of methanol to formaldehyde is an important industrial process in which the waste gas in addition to CO contains methanol and dimethyl ether (DME). Evaluation of the possibility of removing the harmful components from the exhaust gasses needs a more complex investigation. Our previous work indicates that supported Cu-Mn oxide catalysts are promising for effective deep oxidation of these compounds. This work relates to the catalyst, comprising copper-manganese spinel, coated on carrier γ-Al₂O₃. The effect of preparation conditions on the active component composition and activity behavior of the catalysts is discussed. Different organometallic compounds on the base of four natural amino acids (Glycine, Alanine, Valine, Leucine) as precursors were used for the preparation of catalysts with Cu/Mn molar ratio 1:5. X-Ray and TEM analysis were performed on the catalyst’s bulk, and surface composition and the specific surface area was determined by BET method. The results obtained show that the activity of the catalysts increase up to 40% although there are some specific features, depending on the nature of the amino acid and the oxidized compound.Keywords: Cu-Mn/γ-Al₂O₃, CO and VOCs oxidation, heterogeneous catalysis, amino acids
Procedia PDF Downloads 2408546 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)
Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar
Abstract:
Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus
Procedia PDF Downloads 638545 Investigation into the Possibility of Using Recycled Polyethelene to Replace Natural Rubber in the Production of Different Products
Authors: Otokiti Mojeed Jimoh
Abstract:
This work investigates the possibility of using recycled polyethylene LDPE as a base polymer in production of different products (shoe sole, foot mat, and many more) using carbon black as a filler to improve its mechanical properties, like hardness, tensile stress properties and elongation at break properties, from the result so far gotten there is a possibility that there is an increase in the mechanical properties of the sample compare to natural rubber sample.Keywords: recycled polyethylene, base polymer, hardness, stress properties
Procedia PDF Downloads 4178544 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 1088543 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 6638542 Exploring Relationship between Attention and Consciousness
Authors: Aarushi Agarwal, Tara Singh, Anju Lata Singh, Trayambak Tiwari, Indramani Lal Singh
Abstract:
The existing interdependent relationship between attention and consciousness has been put to debate since long. To testify the nature, dual-task paradigm has been used to simultaneously manipulate awareness and attention. With central discrimination task which is attentional demanding, participants also perform simple discrimination task in the periphery in near absence of attention. Individual-based analysis of performance accuracy in single and dual condition showed and above chance level performance i.e. more than 80%. In order to widen the understanding of extent of discrimination carried in near absence of attention, natural image and its geometric equivalent shape were presented in the periphery; synthetic objects accounted to lower level of performance than natural objects in dual condition. The gaze plot and heatmap indicate that peripheral performance do not necessarily involve saccade every time, verifying the discrimination in the periphery was in near absence of attention. Thus our studies show an interdependent nature of attention and awareness.Keywords: attention, awareness, dual task paradigm, natural and geometric images
Procedia PDF Downloads 5188541 Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)
Authors: Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir, Mammass Driss
Abstract:
In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition.Keywords: recognition, handwriting, Arabic text, HMMs, embedded training
Procedia PDF Downloads 3548540 Extraction of Colorant and Dyeing of Gamma Irradiated Viscose Using Cordyline terminalis Leaves Extract
Authors: Urvah-Til-Vusqa, Unsa Noreen, Ayesha Hussain, Abdul Hafeez, Rafia Asghar, Sidrat Nasir
Abstract:
Natural dyes offer an alternative better application in textiles than synthetic ones. The present study will be aimed to employ natural dye extracted from Cordyline terminalis plant and its application into viscose under the influence of gamma radiations. The colorant extraction will be done by boiling dracaena leaves powder in aqueous, alkaline and ethyl acetate mediums. Both dye powder and fabric will be treated with different doses (5-20 kGy) of gamma radiations. The antioxidant, antimicrobial and hemolytic activities of the extracts will also be determined. Different tests of fabric characterization (before and after radiations treatment) will be employed. Dyeing variables just as time, temperature and M: L will be applied for optimization. Standard methods for ISO to evaluate color fastness to light, washing and rubbing will be employed for improvement of color strength 1.5-15.5% of Al, Fe, Cr, and Cu as mordants will be employed through pre, post and meta mordanting. Color depth % & L*, a*, b* and L*, C*, h values will be recorded using spectra flash SF650.Keywords: natural dyes, gamma radiations, Cordyline terminalis, ecofriendly dyes
Procedia PDF Downloads 5958539 Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece
Authors: C. Alexandridou, G. N. Angelopoulos, F. A. Coutelieris
Abstract:
Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity.Keywords: chemical and physical characterization, compressive strength, mineralogical analysis, recycled concrete aggregates, waste management
Procedia PDF Downloads 2348538 Cigarette Smoke Detection Based on YOLOV3
Abstract:
In order to satisfy the real-time and accurate requirements of cigarette smoke detection in complex scenes, a cigarette smoke detection technology based on the combination of deep learning and color features was proposed. Firstly, based on the color features of cigarette smoke, the suspicious cigarette smoke area in the image is extracted. Secondly, combined with the efficiency of cigarette smoke detection and the problem of network overfitting, a network model for cigarette smoke detection was designed according to YOLOV3 algorithm to reduce the false detection rate. The experimental results show that the method is feasible and effective, and the accuracy of cigarette smoke detection is up to 99.13%, which satisfies the requirements of real-time cigarette smoke detection in complex scenes.Keywords: deep learning, computer vision, cigarette smoke detection, YOLOV3, color feature extraction
Procedia PDF Downloads 878537 Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and Cloud Computing, we mostly rely on the Machine and Natural Language Processing capabilities of AI, and Energy Efficient Hardware and Software Devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and sustaining the depletion of natural resources. The core pillars of sustainability are economic, environmental, and social, which is also informally referred to as the 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core Sustainability Model in the Enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand, there is also a growing concern in many industries on how to reduce carbon emissions and conserve natural resources while adopting sustainability in corporate business models and policies. In our paper, we would like to discuss the driving forces such as Climate changes, Natural Disasters, Pandemic, Disruptive Technologies, Corporate Policies, Scaled Business Models and Emerging social media and AI platforms that influence the 3 main pillars of Sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy-efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increasing recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (Shared IT services, Cloud computing, and Application Modernization) with the vision for a sustainable environment.Keywords: climate change, pandemic, disruptive technology, government policies, business model, machine learning and natural language processing, AI, social media platform, cloud computing, advanced monitoring, metering infrastructure
Procedia PDF Downloads 1118536 Natural Enemies of the Fall Armyworm (Spodoptera frugiperda, Smith) and Comparing Neem Aqueous Extracts against Its Larvae in Gurage Zone, Central Ethiopia
Authors: Abera Hailu Degaga, Emana Getu Degaga
Abstract:
Spodoptera frugiperda is an invasive insect pest that infests and feeds various crops, particularly affecting maize yields. However, nature has its own way of maintaining balance, and in this case, natural enemies play a crucial role in regulating the population of S. frugiperda. Locally available and easily prepared botanical sources, bio-pesticides, are also important. The objectives of the study were to investigate the natural enemies of S. frugiperda in the Gurage zone and to compare Neem aqueous extracts against its larvae in central Ethiopia. S. frugiperda larvae and egg masses were collected randomly from smallholder maize farms infested with pests between June and August 2023. Our findings revealed the existence of diverse types of parasitoids, predators, and entomopathogenic fungi associated with S. frugiperda. Notably, we documented three species of parasitoids, namely Exorista xanthaspis and Tachina spp. (Diptera: Tachinidae) and Charops annulipes (Hymenoptera: Ichneumonidae). All three species of parasitoids were recorded from Ethiopia for the first time. The overall parasitism rate was 5.3%, with individual rates ranging from 1.3 to 4%. Additionally, we identified ten species of predator insects from four different orders, including Hemiptera, Dermaptera, Coleoptera, and Mantodea, in the maize farms infested with S. frugiperda. Aqueous extract of Neem seed and leaf powder and green leaf exhibited similar mortality rates of S. frugiperda larvae at 72 hours even though there was a significant difference at 24 and 48 hours of the test. For effective management of S. frugiperda further research is necessary to fully exploit the potential of these natural enemies and additionally to use botanical source pesticides like Azadirachta indica.Keywords: bio-pesticide, natural enemy, parasitoids, predators, Tachinid flies
Procedia PDF Downloads 668535 A Clustering Algorithm for Massive Texts
Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen
Abstract:
Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process
Procedia PDF Downloads 4358534 DBN-Based Face Recognition System Using Light Field
Authors: Bing Gu
Abstract:
Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.Keywords: DBN, face recognition, light field, Lytro
Procedia PDF Downloads 4648533 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square specimens (0.6m x 0.6m with 40 mm). Experimental analysis is based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to perform the dynamic behavior of RC slabs.Keywords: natural frequencies, mode shapes, modal analysis, RC slabs
Procedia PDF Downloads 4088532 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.Keywords: computer-assisted instruction, language learning, natural language grammar models, HCI
Procedia PDF Downloads 5198531 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5138530 Leadership in Future Operational Environment
Authors: M. Şimşek
Abstract:
Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained.Keywords: future operational environment, leadership, leadership components
Procedia PDF Downloads 4348529 A Report of 5-Months-Old Baby with Balanced Chromosomal Rearrangements along with Phenotypic Abnormalities
Authors: Mohit Kumar, Beklashwar Salona, Shiv Murti, Mukesh Singh
Abstract:
We report here a case of five-months old male baby, born as second child of non-consanguineous parents with no considerable history of genetic abnormality which was referred to our cytogenetic laboratory for chromosomal analysis. Physical dysmorphic facial features including mongoloid face, cleft palate, simian crease, and developmental delay were observed. We present this case with unique balanced autosomal translocation of t(3;10)(p21;p13). The risk of phenotypic abnormalities based on de novo balanced translocation was estimated to be 7%. The association of balanced chromosomal rearrangement with Down syndrome features such as multiple congenital anomalies, facial dysmorphism and congenital heart anomalies are very rare in a 5-months old male child. Trisomy-21 is not uncommon in chromosomal abnormality with the birth defect and balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion (RSA). Two ml heparinized peripheral blood cells cultured in RPMI-1640 for 72 hours supplemented with 20% fetal bovine serum, phytohemagglutinin (PHA), and antibiotics were used for chromosomal analysis. A total 30 metaphases images were captured using Olympus-BX51 microscope and analyzed using Bio-view karyotyping software through GTG-banding (G bands by trypsin and Giemsa) according to International System for Human Cytogenetic Nomenclature 2016. The results showed balanced translocation between short arm of chromosome # 3 and short arm of chromosome # 10. The karyotype of the child was found to be 46,XY,t(3;10)(p21; p13). Chromosomal abnormalities are one of the major causes of birth defect in new born babies. Also, balanced translocations are frequently observed in patients with secondary infertility or recurrent spontaneous abortion. The index case presented with dysmorphic facial features and had a balanced translocation 46,XY,t(3;10)(p21;p13). This translocation with break points at (p21; p13) has not been reported in the literature in a child with facial dysmorphism. To the best of our knowledge, this is the first report of novel balanced translocation t(3;10) with break points in a child with dysmorphic features. We found balanced chromosomal translocation instead of any trisomy or unbalanced aberrations along with some phenotypic abnormalities. Therefore, we suggest that such novel balanced translocation with abnormal phenotype should be reported in order to enable the pathologist, pediatrician, and gynecologist to have a better insight into the intricacies of chromosomal abnormalities and their associated phenotypic features. We hypothesized that dysmorphic features as seen in this case may be the result of change in the pattern of genes located at the breakpoint area in balanced translocations or may be due to deletion or mutation of genes located on the p-arm of chromosome # 3 and p-arm of chromosome # 10.Keywords: balanced translocation, karyotyping, phenotypic abnormalities, facial dimorphisms
Procedia PDF Downloads 2088528 Developing a Modified Version of KIVA-3V, Enabling Gaseous Injections
Authors: Hossein Keshtkar, Ali Nasiri Toosi
Abstract:
With the growing concerns about gasoline environmental pollution and also the need for a more widely available fuel source, natural gas is finding its way to the automotive engines. But before this could happen industrially, simulations of natural gas direct injection need to take place to maximize and optimize power output. KIVA is one of the most powerful tools when it comes to engine simulation. Widely accepted by both researchers and the industry, KIVA an open-source code, offers great in-depth simulation and analyzation. KIVA can compute complex phenomena’s which can occur inside the chamber before, whilst and after ignition. One downside to KIVA, is its in-capability of simulating gaseous injections, making it useful for only liquidized fuel. In this study, we developed a numerical code, to enable the simulation of gaseous injection within the KIVA code. By introducing our code as a subroutine, we modified the original KIVA program. To ensure the correct application of gaseous fuel injection using our modified KIVA code, we simulated two different cases and compared them with their experimental data. We concluded our modified version of KIVA’s simulation results came in very close to those measured experimentally.Keywords: gaseous injections, KIVA, natural gas direct injection, numerical code, simulation
Procedia PDF Downloads 2868527 Natural Radioactivity in Foods Consumed in Turkey
Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt
Abstract:
This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.Keywords: foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey
Procedia PDF Downloads 4548526 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings
Authors: A. W. J. Wong, I. H. Ibrahim
Abstract:
Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.Keywords: buildings, CFD Simulations, natural ventilation, urban airflow
Procedia PDF Downloads 2218525 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality
Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye
Abstract:
When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.Keywords: word embeddings, k-mer embedding, dimensionality reduction
Procedia PDF Downloads 1378524 Damage Cost for Private Property by Extreme Wind over the past 10 Years in Korea
Authors: Gou-Moon Choi, Woo-Young Jung, Chan-Young Yune
Abstract:
Recently, the natural disaster has increased worldwide. In Korea, the damage to life and property caused by a typhoon, heavy rain, heavy snow, and an extreme wind also increases every year. Among natural disasters, the frequency and the strength of wind have increased because sea surface temperature has risen due to the increase of the average temperature of the Earth. In the case of extreme wind disaster, it is impossible to control or reduce the occurrence, and the recovery cost always exceeds the damage cost. Therefore, quantitative estimation of the damage cost for extreme wind needs to be established beforehand to install proactive countermeasures. In this study, the damage cost for private properties was analyzed based on the data for the past 10 years in Korea. The damage cost curve was also suggested for the metropolitan cities and provinces. The result shows the possibility for the regional application of the damage cost curve because the damage cost of the regional area is estimated based on the cost of cities and provinces.Keywords: damage cost, extreme wind, natural disaster, private property
Procedia PDF Downloads 3058523 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 2358522 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin
Authors: Vilem Paril, Dominika Tothova
Abstract:
This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches, to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.Keywords: cultural heritage, environmental economics, existence value, value theory
Procedia PDF Downloads 3218521 Phonological Variation in the Speech of Grade 1 Teachers in Select Public Elementary Schools in the Philippines
Authors: M. Leonora D. Guerrero
Abstract:
The study attempted to uncover the most and least frequent phonological variation evident in the speech patterns of grade 1 teachers in select public elementary schools in the Philippines. It also determined the lectal description of the participants based on Tayao’s consonant charts for American and Philippine English. Descriptive method was utilized. A total of 24 grade 1 teachers participated in the study. The instrument used was word list. Each column in the word list is represented by words with the target consonant phonemes: labiodental fricatives f/ and /v/ and lingua-alveolar fricative /z/. These phonemes were in the initial, medial, and final positions, respectively. Findings of the study revealed that the most frequent variation happened when the participants read words with /z/ in the final position while the least frequent variation happened when the participants read words with /z/ in the initial position. The study likewise proved that the grade 1 teachers exhibited the segmental features of both the mesolect and basilect. Based on these results, it is suggested that teachers of English in the Philippines must aspire to manifest the features of the mesolect, if not, the acrolect since it is expected of the academicians not to be displaying the phonological features of the acrolects since this variety is only used by the 'uneducated.' This is especially so with grade 1 teachers who are often mimicked by their students who classify their speech as the 'standard.'Keywords: consonant phonemes, lectal description, Philippine English, phonological variation
Procedia PDF Downloads 2138520 X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method
Authors: Raymond Dominic Uzoh
Abstract:
Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry.Keywords: natural rubber, fillers, starch, amylose, amylopectin, crosslink density
Procedia PDF Downloads 169