Search results for: electro-optical devices
1703 Band Structure Computation of GaMnAs Using the Multiband k.p Theory
Authors: Khadijah B. Alziyadi, Khawlh A. Alzubaidi, Amor M. Alsayari
Abstract:
Recently, GaMnAs diluted magnetic semiconductors(DMSs) have received considerable attention because they combine semiconductor and magnetic properties. GaMnAs has been used as a model DMS and as a test bed for many concepts and functionalities of spintronic devices. In this paper, a theoretical study on the band structure ofGaMnAswill be presented. The model that we used in this study is the 8-band k.p methodwherespin-orbit interaction, spin splitting, and strain are considered. The band structure of GaMnAs will be calculated in different directions in the reciprocal space. The effect of manganese content on the GaMnAs band structure will be discussed. Also, the influence of strain, which varied continuously from tensile to compressive, on the different bands will be studied.Keywords: band structure, diluted magnetic semiconductor, k.p method, strain
Procedia PDF Downloads 1511702 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip
Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar
Abstract:
Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation
Procedia PDF Downloads 1861701 Influence of Initial Stress and Corrugation on Rayleigh-Type Wave in Piezomagnetic Half-Space
Authors: Abhinav Singhal, Sanjeev A. Sahu
Abstract:
Propagation of Rayleigh-type surface waves in an initially stressed piezomagnetic half- space with irregular boundary is investigated. The materials are assumed to be transversely isotropic crystals. The dispersion relations have been derived for electrically open and short cases. Effect of initial stress and corrugation have been shown graphically. It is also found that piezomagnetic material properties have an important effect on wave propagation. The result is relevant to the analysis and design of various acoustic surface wave devices constructed from piezomagnetic materials.Keywords: corrugation, frequency equation, piezomagnetic, rayleigh-type wave
Procedia PDF Downloads 2651700 Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide
Authors: S. Bentata, W. Benstaali, A. Abbad, H. A. Bentounes, B. Bouadjemi
Abstract:
The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic.Keywords: spin-up, spin-down, magnetic properties, transition metal, composite materials
Procedia PDF Downloads 2731699 Human Tracking across Heterogeneous Systems Based on Mobile Agent Technologies
Authors: Tappei Yotsumoto, Atsushi Nomura, Kozo Tanigawa, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara
Abstract:
In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.Keywords: human tracking system, mobile agent, monitoring, heterogeneous systems
Procedia PDF Downloads 5361698 Concept of Automation in Management of Electric Power Systems
Authors: Richard Joseph, Nerey Mvungi
Abstract:
An electric power system includes a generating, a transmission, a distribution and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.Keywords: automation, distribution subsystem, generating subsystem, PSS/E, TANESCO, transmission subsystem
Procedia PDF Downloads 6741697 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation
Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne
Abstract:
In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network
Procedia PDF Downloads 1451696 People Abandoning Mobile Social Games: Using Candy Crush Saga as an Example
Authors: Pei-Shan Wei, Szu-Ying Lee, Hsi-Peng Lu, Jen-Chuen Tzou, Chien-I Weng
Abstract:
Mobile social games recently become extremely popular, spawning a whole new entertainment culture. However, mobile game players are fickle, quickly and easily picking up and abandoning games. This pilot study seeks to identify factors that influence users to discontinue playing mobile social games. We identified three sacrifices which can prompt users to abandon games: monetary sacrifice, time sacrifice and privacy sacrifice. The results showed that monetary sacrifice has a greater impact than the other two factors in causing players to discontinue usage intention.Keywords: abandon, mobile devices, mobile social games, perceived sacrifice
Procedia PDF Downloads 4951695 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D
Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui
Abstract:
During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D
Procedia PDF Downloads 5181694 Harvesting of Kinetic Energy of the Raindrops
Authors: K. C. R.Perera, V. P. C Dassanayake, B. M. Hapuwatte, B. G. Smapath
Abstract:
This paper presents a methodology to harvest the kinetic energy of the raindrops using piezoelectric devices. In the study 1m×1m PVDF (Polyvinylidene fluoride) piezoelectric membrane, which is fixed by the four edges, is considered for the numerical simulation on deformation of the membrane due to the impact of the raindrops. Then according to the drop size of the rain, the simulation is performed classifying the rainfall types into three categories as light stratiform rain, moderate stratiform rain and heavy thundershower. The impact force of the raindrop is dependent on the terminal velocity of the raindrop, which is a function of raindrop diameter. The results were then analyzed to calculate the harvestable energy from the deformation of the piezoelectric membrane.Keywords: raindrop, piezoelectricity, deformation, terminal velocity
Procedia PDF Downloads 3231693 Development of Configuration Software of Space Environment Simulator Control System Based on Linux
Authors: Zhan Haiyang, Zhang Lei, Ning Juan
Abstract:
This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named “Scan PRI” is put forward. This algorithm is much more optimizable and efficient compared with "Scan in sequence" in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal.Keywords: Linux OS, configuration software, OPC Server driver, MYSQL database
Procedia PDF Downloads 2881692 An Experiment of Three-Dimensional Point Clouds Using GoPro
Authors: Jong-Hwa Kim, Mu-Wook Pyeon, Yang-dam Eo, Ill-Woong Jang
Abstract:
Construction of geo-spatial information recently tends to develop as multi-dimensional geo-spatial information. People constructing spatial information is also expanding its area to the general public from some experts. As well as, studies are in progress using a variety of devices, with the aim of near real-time update. In this paper, getting the stereo images using GoPro device used widely also to the general public as well as experts. And correcting the distortion of the images, then by using SIFT, DLT, is acquired the point clouds. It presented a possibility that on the basis of this experiment, using a video device that is readily available in real life, to create a real-time digital map.Keywords: GoPro, SIFT, DLT, point clouds
Procedia PDF Downloads 4691691 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows
Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman
Abstract:
The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer
Procedia PDF Downloads 1261690 Three Phase PWM Inverter for Low Rating Energy Efficient Systems
Authors: Nelson Lujara
Abstract:
The paper presents a practical three-phase PWM inverter suitable for low voltage, low rating energy efficient systems. The work in the paper is conducted with the view to establishing the significance of the loss contribution from the PWM inverter in the determination of the complete losses of a photovoltaic (PV) array-powered induction motor drive water pumping system. Losses investigated include; conduction and switching loss of the devices and gate drive losses. It is found that the PWM inverter operates at a reasonable variable efficiency that does not fall below 92% depending on the load. The results between the simulated and experimental results for the system with or without a maximum power tracker (MPT) compares very well, within an acceptable range of 2% margin.Keywords: energy, inverter, losses, photovoltaic
Procedia PDF Downloads 6401689 Control of Oxide and Silicon Loss during Exposure of Silicon Waveguide
Authors: Gu Zhonghua
Abstract:
Control method of bulk silicon dioxide etching process to approach then expose silicon waveguide has been developed. It has been demonstrated by silicon waveguide of photonics devices. It is also able to generalize other applications. Use plasma dry etching to etch bulk silicon dioxide and approach oxide-silicon interface accurately, then use dilute HF wet etching to etch silicon dioxide residue layer to expose the silicon waveguide as soft landing. Plasma dry etch macro loading effect and endpoint technology was used to determine dry etch time accurately with a low wafer expose ratio.Keywords: waveguide, etch, control, silicon loss
Procedia PDF Downloads 4141688 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer
Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah
Abstract:
In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.Keywords: perovskite, mesoscopic, hysteresis, toluene air
Procedia PDF Downloads 1701687 Security of Internet of Things: Challenges, Requirements and Future Directions
Authors: Amjad F. Alharbi, Bashayer A. Alotaibi, Fahd S. Alotaibi
Abstract:
The emergence of Internet of Things (IoT) technology provides capabilities for a huge number of smart devices, services and people to be communicate with each other for exchanging data and information over existing network. While as IoT is progressing, it provides many opportunities for new ways of communications as well it introduces many security and privacy threats and challenges which need to be considered for the future of IoT development. In this survey paper, an IoT security issues as threats and current challenges are summarized. The security architecture for IoT are presented from four main layers. Based on these layers, the IoT security requirements are presented to insure security in the whole system. Furthermore, some researches initiatives related to IoT security are discussed as well as the future direction for IoT security are highlighted.Keywords: Internet of Things (IoT), IoT security challenges, IoT security requirements, IoT security architecture
Procedia PDF Downloads 3741686 Digimesh Wireless Sensor Network-Based Real-Time Monitoring of ECG Signal
Authors: Sahraoui Halima, Dahani Ameur, Tigrine Abedelkader
Abstract:
DigiMesh technology represents a pioneering advancement in wireless networking, offering cost-effective and energy-efficient capabilities. Its inherent simplicity and adaptability facilitate the seamless transfer of data between network nodes, extending the range and ensuring robust connectivity through autonomous self-healing mechanisms. In light of these advantages, this study introduces a medical platform harnessed with DigiMesh wireless network technology characterized by low power consumption, immunity to interference, and user-friendly operation. The primary application of this platform is the real-time, long-distance monitoring of Electrocardiogram (ECG) signals, with the added capacity for simultaneous monitoring of ECG signals from multiple patients. The experimental setup comprises key components such as Raspberry Pi, E-Health Sensor Shield, and Xbee DigiMesh modules. The platform is composed of multiple ECG acquisition devices labeled as Sensor Node 1 and Sensor Node 2, with a Raspberry Pi serving as the central hub (Sink Node). Two communication approaches are proposed: Single-hop and multi-hop. In the Single-hop approach, ECG signals are directly transmitted from a sensor node to the sink node through the XBee3 DigiMesh RF Module, establishing peer-to-peer connections. This approach was tested in the first experiment to assess the feasibility of deploying wireless sensor networks (WSN). In the multi-hop approach, two sensor nodes communicate with the server (Sink Node) in a star configuration. This setup was tested in the second experiment. The primary objective of this research is to evaluate the performance of both Single-hop and multi-hop approaches in diverse scenarios, including open areas and obstructed environments. Experimental results indicate the DigiMesh network's effectiveness in Single-hop mode, with reliable communication over distances of approximately 300 meters in open areas. In the multi-hop configuration, the network demonstrated robust performance across approximately three floors, even in the presence of obstacles, without the need for additional router devices. This study offers valuable insights into the capabilities of DigiMesh wireless technology for real-time ECG monitoring in healthcare applications, demonstrating its potential for use in diverse medical scenarios.Keywords: DigiMesh protocol, ECG signal, real-time monitoring, medical platform
Procedia PDF Downloads 791685 Reflection Phase Tuning of Graphene Plasmons by Substrate Design
Authors: Xiaojie Jiang, Wei Cai, Yinxiao Xiang, Ni Zhang, Mengxin Ren, Xinzheng Zhang, Jingjun Xu
Abstract:
Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides another way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides a new way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Keywords: graphene plasmons, reflection phase tuning, plasmon mode tuning, Fabry-Perot cavity
Procedia PDF Downloads 1511684 Method Comprising One to One Web Based Real Time Communications
Authors: Lata Kiran Dey, Rajendra Kumar, Biren Karmakar
Abstract:
Web Real Time Communications is a collection of standards, protocols, which provides real-time communications capabilities between web browsers and devices. This paper outlines the design and further implementation of web real-time communications on secure web applications having audio and video call capabilities. This proposed application may put up a system that will be able to work over both desktops as well as the mobile browser. Though, WebRTC also gives a set of JavaScript standard RTC APIs, which primarily works over the real-time communication framework. This helps to build a suitable communication application, which enables the audio, video, and message transfer in between the today’s modern browsers having WebRTC support.Keywords: WebRTC, SIP, RTC, JavaScript, SRTP, secure web sockets, browser
Procedia PDF Downloads 1481683 A Named Data Networking Stack for Contiki-NG-OS
Authors: Sedat Bilgili, Alper K. Demir
Abstract:
The current Internet has become the dominant use with continuing growth in the home, medical, health, smart cities and industrial automation applications. Internet of Things (IoT) is an emerging technology to enable such applications in our lives. Moreover, Named Data Networking (NDN) is also emerging as a Future Internet architecture where it fits the communication needs of IoT networks. The aim of this study is to provide an NDN protocol stack implementation running on the Contiki operating system (OS). Contiki OS is an OS that is developed for constrained IoT devices. In this study, an NDN protocol stack that can work on top of IEEE 802.15.4 link and physical layers have been developed and presented.Keywords: internet of things (IoT), named-data, named data networking (NDN), operating system
Procedia PDF Downloads 1701682 COVID-19 Teaches Probability Risk Assessment
Authors: Sean Sloan
Abstract:
Probability Risk Assessments (PRA) can be a difficult concept for students to grasp. So in searching for different ways to describe PRA to relate it to their lives; COVID-19 came up. The parallels are amazing. Soon students began analyzing acceptable risk with the virus. This helped them to quantify just how dangerous is dangerous. The original lesson was dismissed and for the remainder of the period, the probability of risk, and the lethality of risk became the topic. Spreading events such as a COVID carrier on an airline became analogous to single fault casualties such as a Tsunami. Odds of spreading became odds of backup-diesel-generator failure – like with Fukashima Daiichi. Fatalities of the disease became expected fatalities due to radiation spread. Quantification from this discussion took it from hyperbole and emotion into one where we could rationally base guidelines. It has been one of the most effective educational devices observed.Keywords: COVID, education, probability, risk
Procedia PDF Downloads 1521681 Electronic Waste Analysis And Characterization Study: Management Input For Highly Urbanized Cities
Authors: Jilbert Novelero, Oliver Mariano
Abstract:
In a world where technological evolution and competition to create innovative products are at its peak, problems on Electronic Waste (E-Waste) are now becoming a global concern. E-waste is said to be any electrical or electronic devices that have reached the terminal of its useful life. The major issue are the volume and the raw materials used in crafting E-waste which is non-biodegradable and contains hazardous substances that are toxic to human health and the environment. The objective of this study is to gather baseline data in terms of the composition of E-waste in the solid waste stream and to determine the top 5 E-waste categories in a highly urbanized city. Recommendations in managing these wastes for its reduction were provided which may serve as a guide for acceptance and implementation in the locality. Pasig City was the chosen beneficiary of the research output and through the collaboration of the City Government of Pasig and its Solid Waste Management Office (SWMO); the researcher successfully conducted the Electronic Waste Analysis and Characterization Study (E-WACS) to achieve the objectives. E-WACS that was conducted on April 2019 showed that E-waste ranked 4th which comprises the 10.39% of the overall solid waste volume. Out of 345, 127.24kg which is the total daily domestic waste generation in the city, E-waste covers 35,858.72kg. Moreover, an average of 40 grams was determined to be the E-waste generation per person per day. The top 5 E-waste categories were then classified after the analysis. The category which ranked first is the office and telecommunications equipment that contained the 63.18% of the total generated E-waste. Second in ranking was the household appliances category with 21.13% composition. Third was the lighting devices category with 8.17%. Fourth on ranking was the consumer electronics and batteries category which was composed of 5.97% and fifth was the wires and cables category where it comprised the 1.41% of the average generated E-waste samples. One of the recommendations provided in this research is the implementation of the Pasig City Waste Advantage Card. The card can be used as a privilege card and earned points can be converted to avail of and enjoy services such as haircut, massage, dental services, medical check-up, and etc. Another recommendation raised is for the LGU to encourage a communication or dialogue with the technology and electronics manufacturers and distributors and international and local companies to plan the retrieval and disposal of the E-wastes in accordance with the Extended Producer Responsibility (EPR) policy where producers are given significant responsibilities for the treatment and disposal of post-consumer products.Keywords: E-waste, E-WACS, E-waste characterization, electronic waste, electronic waste analysis
Procedia PDF Downloads 1181680 Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers
Authors: So-Jeong Kim, Nak-Kwan Chung, Jintae Kim, Juyoung Yun
Abstract:
The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates.Keywords: efficiency enhancement, nanoplate, OLED, surface plasmon resonance
Procedia PDF Downloads 3421679 Tele-Monitoring and Logging of Patient Health Parameters Using Zigbee
Authors: Kirubasankar, Sanjeevkumar, Aravindh Nagappan
Abstract:
This paper addresses a system for monitoring patients using biomedical sensors and displaying it in a remote place. The main challenges in present health monitoring devices are lack of remote monitoring and logging for future evaluation. Typical instruments used for health parameter measurement provide basic information regarding health status. This paper identifies a set of design principles to address these challenges. This system includes continuous measurement of health parameters such as Heart rate, electrocardiogram, SpO2 level and Body temperature. The accumulated sensor data is relayed to a processing device using a transceiver and viewed by the implementation of cloud services.Keywords: bio-medical sensors, monitoring, logging, cloud service
Procedia PDF Downloads 5201678 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration
Authors: Damtew Samson Zerihun
Abstract:
This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller
Procedia PDF Downloads 3691677 The Effect of Water Droplets Size in Fire Fighting Systems
Authors: Tassadit Tabouche
Abstract:
Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.Keywords: droplets, water spray, water droplets size, 3D
Procedia PDF Downloads 5341676 Predictive Maintenance Based on Oil Analysis Applicable to Transportation Fleets
Authors: Israel Ibarra Solis, Juan Carlos Rodriguez Sierra, Ma. del Carmen Salazar Hernandez, Isis Rodriguez Sanchez, David Perez Guerrero
Abstract:
At the present paper we try to explain the analysis techniques use for the lubricating oil in a maintenance period of a city bus (Mercedes Benz Boxer 40), which is call ‘R-24 route’, line Coecillo Centro SA de CV in Leon Guanajuato, to estimate the optimal time for the oil change. Using devices such as the rotational viscometer and the atomic absorption spectrometer, they can detect the incipient form when the oil loses its lubricating properties and, therefore, cannot protect the mechanical components of diesel engines such these trucks. Timely detection of lost property in the oil, it allows us taking preventive plan maintenance for the fleet.Keywords: atomic absorption spectrometry, maintenance, predictive velocity rate, lubricating oils
Procedia PDF Downloads 5681675 Evaluation of Cardiac Rhythm Patterns after Open Surgical Maze-Procedures from Three Years' Experiences in a Single Heart Center
Authors: J. Yan, B. Pieper, B. Bucsky, H. H. Sievers, B. Nasseri, S. A. Mohamed
Abstract:
In order to optimize the efficacy of medications, the regular follow-up with long-term continuous monitoring of heart rhythmic patterns has been facilitated since clinical introduction of cardiac implantable electronic monitoring devices (CIMD). Extensive analysis of rhythmic circadian properties is capable to disclose the distributions of arrhythmic events, which may support appropriate medication according rate-/rhythm-control strategy and minimize consequent afflictions. 348 patients (69 ± 0.5ys, male 61.8%) with predisposed atrial fibrillation (AF), undergoing primary ablating therapies combined to coronary or valve operations and secondary implantation of CIMDs, were involved and divided into 3 groups such as PAAF (paroxysmal AF) (n=99, male 68.7%), PEAF (persistent AF) (n=94, male 62.8%), and LSPEAF (long-standing persistent AF) (n=155, male 56.8%). All patients participated in three-year ambulant follow-up (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation recurrence were assessed using cardiac monitor devices, whereby attacks frequencies and their circadian patterns were systemically analyzed. Anticoagulants and regular anti-arrhythmic medications were evaluated and the last were listed in terms of anti-rate and anti-rhythm regimens. Patients in the PEAF-group showed the least AF-burden after surgical ablating procedures compared to both of the other subtypes (p < 0.05). The AF-recurrences predominantly performed such attacks’ property as shorter than one hour, namely within 10 minutes (p < 0.05), regardless of AF-subtypes. Concerning circadian distribution of the recurrence attacks, frequent AF-attacks were mostly recorded in the morning in the PAAF-group (p < 0.05), while the patients with predisposed PEAF complained less attack-induced discomforts in the latter half of the night and the ones with LSPEAF only if they were not physically active after primary surgical ablations. Different AF-subtypes presented distinct therapeutic efficacies after appropriate surgical ablating procedures and recurrence properties in sense of circadian distribution. An optimization of medical regimen and drug dosages to maintain the therapeutic success needs more attention to detailed assessment of the long-term follow-up. Rate-control strategy plays a much more important role than rhythm-control in the ongoing follow-up examinations.Keywords: atrial fibrillation, CIMD, MAZE, rate-control, rhythm-control, rhythm patterns
Procedia PDF Downloads 1561674 On the Resilience of Operational Technology Devices in Penetration Tests
Authors: Marko Schuba, Florian Kessels, Niklas Reitz
Abstract:
Operational technology (OT) controls physical processes in critical infrastructures and economically important industries. With the convergence of OT with classical information technology (IT), rising cybercrime worldwide and the increasingly difficult geopolitical situation, the risks of OT infrastructures being attacked are growing. Classical penetration testing, in which testers take on the role of an attacker, has so far found little acceptance in the OT sector - the risk that a penetration test could do more harm than good seems too great. This paper examines the resilience of various OT systems using typical penetration test tools. It is shown that such a test certainly involves risks, but is also feasible in OT if a cautious approach is taken. Therefore, OT penetration testing should be considered as a tool to improve the cyber security of critical infrastructures.Keywords: penetration testing, OT, ICS, OT security
Procedia PDF Downloads 14