Search results for: dye pollution
1099 Some Characteristics and Identification of Fungi Contaminated by Alkomos Cement Factory
Authors: Abdulmajeed Bashir Mlitan, Ethan Hack
Abstract:
Soil samples were collected from and around Alkomos cement factory, Alkomos town, Libya. Soil physiochemical properties were determined. In addition, olive leaves were scanned for their fungal content. This work can conclude that the results obtained for the examined physiochemical characteristics of soil in the area studied prove that cement dust from the Alkomos cement factory in Libya has had a significant impact on the soil. The affected soil properties are pH and total calcium content. These characteristics were found to be higher than those in similar soils from the same area. The increment of soil pH in the same area may be a result of precipitation of cement dust over the years. Different responses were found in each season and each site. For instance, the dominance of fungi of soil and leaves was lowest at 100 m from the factory and the evenness and diversity increased at this site compared to the control area and 250 m from the factory.Keywords: pollution, soil microbial, alkomos, Libya
Procedia PDF Downloads 6141098 Assessment of Groundwater Potential Sampled in Hand Dug Wells and Boreholes in Ado-Ekiti, Southwestern Nigeria
Authors: A. J. Olatunji, Adebolu Temitope Johnson
Abstract:
Groundwater samples were collected randomly from hand-dug wells and boreholes in parts of the Ado Ekiti metropolis and were subjected to quality assessment and characterization. Physicochemical analyses, which include the in-situ parameters (pH units, Turbidity, and Electrical Conductivity) and laboratory analysis of selected ionic concentrations, were carried out following standard methods. Hydrochemistry of the present study revealed relative mean concentrations of cations in the order Ca2+ > Na+ > Mg2+ > Cu2+> Fe > Mn2+ and that of anions: Cl- > NO3- > SO42- > F - respectively considering World Health Organisation Standard (WHO) range of values for potable water. The result shows that values of certain parameters (Total Dissolved Solid (TDS), Manganese, Calcium, Magnesium, Fluoride, and Sulphate) were below the Highest Desirable Level of the Standards, while values of some other parameters (pH Units, Electrical Conductivity, Turbidity, Alkalinity, Sodium, Copper, Chloride, and Total Hardness) were within the range of figures between Highest Desirable Level (HDL) and Maximum Permissible Level (MPL) of World Health Organization (WHO) drinking water Standards. The reduction in the mean concentration value of Total Dissolved Solids (TDS) of most borehole samples follows the fact that water had been allowed to settle in the overhead tanks before usage; we discussed and brainstormed in the course of sampling and agreed to take a sample that way because that represents what the people consume, it also shows an indication while there was slightly concentration increase of these soluble ions in hand-dug wells samples than borehole samples only with the exception of borehole sample seven BH7 because BH7 uses the mono-pumping system. These in-situ parameters and ionic concentrations were further displayed and or represented on bar charts along with the WHO standards for better pictorial clarifications. Deductions from field observation indices revealed the imprints of natural weathering, ion-exchange processes, and anthropogenic activities influencing groundwater quality. A strong degree of association was found to exist between sodium and chlorine ions in both hand-dug well and borehole groundwater samples through the use of Pearson’s correlation coefficient; this association can further be supported by the chemistry of the parent bedrock associated with the study area because the chemistry of groundwater is a replica of its host rock. The correlation of those two ions must have begun from the period of mountain building, indicating an identical source from which they were released to the groundwater. Moreover, considering the comparison of ionic species concentrations of all samples with the (WHO) standards, there were no anomalous increases or decreases in the laboratory analysis results; this simply reveals an insignificant state of pollution of the groundwater. The study and its sampling techniques were not set to target the likely area and extent of groundwater pollution but its portability. It could be said that the samples were safe for human consumption.Keywords: groundwater, physicochemical, parameters ionic, concentrations, WHO standards
Procedia PDF Downloads 391097 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel
Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin
Abstract:
Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.Keywords: activated carbon, adsorption, chemical activation, microwave, pomegranate peel
Procedia PDF Downloads 5471096 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic
Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani
Abstract:
Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter
Procedia PDF Downloads 3721095 Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer
Authors: Xing Feng, Yuanbin Li
Abstract:
Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform.Keywords: curved plane oil skimmer, flow channel, CFD, VOF
Procedia PDF Downloads 2951094 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr
Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah
Abstract:
The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.Keywords: photometer, electrode, electrolysis, swimming pool chlorination
Procedia PDF Downloads 3491093 Transforming Ganges to be a Living River through Waste Water Management
Authors: P. M. Natarajan, Shambhu Kallolikar, S. Ganesh
Abstract:
By size and volume of water, Ganges River basin is the biggest among the fourteen major river basins in India. By Hindu’s faith, it is the main ‘holy river’ in this nation. But, of late, the pollution load, both domestic and industrial sources are deteriorating the surface and groundwater as well as land resources and hence the environment of the Ganges River basin is under threat. Seeing this scenario, the Indian government began to reclaim this river by two Ganges Action Plans I and II since 1986 by spending Rs. 2,747.52 crores ($457.92 million). But the result was no improvement in the water quality of the river and groundwater and environment even after almost three decades of reclamation, and hence now the New Indian Government is taking extra care to rejuvenate this river and allotted Rs. 2,037 cores ($339.50 million) in 2014 and Rs. 20,000 crores ($3,333.33 million) in 2015. The reasons for the poor water quality and stinking environment even after three decades of reclamation of the river are either no treatment/partial treatment of the sewage. Hence, now the authors are suggesting a tertiary level treatment standard of sewages of all sources and origins of the Ganges River basin and recycling the entire treated water for nondomestic uses. At 20million litres per day (MLD) capacity of each sewage treatment plant (STP), this basin needs about 2020 plants to treat the entire sewage load. Cost of the STPs is Rs. 3,43,400 million ($5,723.33 million) and the annual maintenance cost is Rs. 15,352 million ($255.87 million). The advantages of the proposed exercise are: we can produce a volume of 1,769.52 million m3 of biogas. Since biogas is energy, can be used as a fuel, for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat. It is possible to generate about 3,539.04 million kilowatt electricity per annum from the biogas generated in the process of wastewater treatment in Ganges basin. The income generation from electricity works out to Rs 10,617.12million ($176.95million). This power can be used to bridge the supply and demand gap of energy in the power hungry villages where 300million people are without electricity in India even today, and to run these STPs as well. The 664.18 million tonnes of sludge generated by the treatment plants per annum can be used in agriculture as manure with suitable amendments. By arresting the pollution load the 187.42 cubic kilometer (km3) of groundwater potential of the Ganges River basin could be protected from deterioration. Since we can recycle the sewage for non-domestic purposes, about 14.75km3 of fresh water per annum can be conserved for future use. The total value of the water saving per annum is Rs.22,11,916million ($36,865.27million) and each citizen of Ganges River basin can save Rs. 4,423.83/ ($73.73) per annum and Rs. 12.12 ($0.202) per day by recycling the treated water for nondomestic uses. Further the environment of this basin could be kept clean by arresting the foul smell as well as the 3% of greenhouse gages emission from the stinking waterways and land. These are the ways to reclaim the waterways of Ganges River basin from deterioration.Keywords: Holy Ganges River, lifeline of India, wastewater treatment and management, making Ganges permanently holy
Procedia PDF Downloads 2851092 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 791091 Promotion of Renewable Marines Energies in Morocco: Perspectives and Strategies
Authors: Nachtane Mourad, Tarfaoui Mostapha, Saifaoui Dennoun, El Moumen Ahmed
Abstract:
The current energy policy recommends the subject of energy efficiency and to phase out fossil energy as a master question for the prospective years. The kingdom requires restructuring its power equipment by improving the percentage of renewable energy supply and optimizing power systems and storage. Developing energy efficiency, therefore, obliges as a consubstantial objection to reducing energy consumption. The objective of this work is to show the energy transition in Morocco towards renewable energies, in particular, to show the great potential of renewable marine energies in Morocco, This goes back to the advantages of cost and non-pollution in addition to that of the independence of fossil energies. Bearing in mind the necessity of the balance of the Moroccan energy mix, hydraulic and thermal power plants have also been installed which will be added to the power stations already established as a prospect for a balanced network that is flexible to fluctuate demand.Keywords: renewable marine energy, energy transition, efficiency energy, renewable energy
Procedia PDF Downloads 2861090 Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar
Authors: Amira Touil, Achouak Arfaoui, Ibtissem Mannaii
Abstract:
The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption.Keywords: pollution, biochar, nitrate, adsorption
Procedia PDF Downloads 951089 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 3451088 Pipeline Construction in Oil and Gas Fields as per Kuwait Oil Company Procedures
Authors: Jasem Al-Safran
Abstract:
Nowadays Oil and Gas industry considered as one of the biggest industries around the world although it caused a lot of pollution to the world and it caused many damages to the mankind and the other creatures around the globe it still one of the biggest industries, it create millions of careers around the globe which reduced the poorness level and make the mankind life’s much more comfortable you may compare the humans life before the exploration of the oil and after the oil industries development. Construction project’s consist of 3 major sections also we call them EPC projects the first section is the detailed engineering, the second section is the procurements section and finally is the Construction section, each section required a specialized work force with a different skills in order to handle the work load for example in the oil sector and depending on the nature of the project and the project size the Construction team required mechanical engineer, civil engineer, electrical engineer and instrumentation engineer, also a work site supervisor for each disciplines also a huge number of labors, technicians and many equipment’s.Keywords: Construction, EPC, Project, Work force
Procedia PDF Downloads 1061087 Studying the Function of Green Belt around the Metropolises
Authors: Soroush Mokallaei
Abstract:
Since ancient times, urbanization engineers have always thought of creating green spaces along with urbanization. Athens and Rome have attempted to construct public gardens around streets and palaces. Since then developing green space has become a part of urban civilization. In medieval ages, all Western cities had palaces and houses with internal gardens. In different sources green belt is defined as a green band of trees and bushes around the cities which has multiple functions. It is said that green belts are not only around the mountains, cities, and rivers but also around houses, subways, and highways. Constructing green belt around cities has different advantages such as: protecting cities against pollution, purifying air, screening dust, being a place for recreation, buffer zone of city internal lands, confronting the phenomenon of heat island, increasing agricultural products, helping to prevent illegal city development, confronting deforestation, preventing flood and increasing subterranean water resources.Keywords: environment, garden cities, green belt, metropolises
Procedia PDF Downloads 3281086 Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation
Authors: K. Ighilahriz, M. Taleb Ahmed, R. Maachi
Abstract:
Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.Keywords: electrooxidation, leaching, leaden sludge, oil industry
Procedia PDF Downloads 2281085 Harnessing Sunlight for Clean Water: Scalable Approach for Silver-Loaded Titanium Dioxide Nanoparticles
Authors: Satam Alotibi, Muhammad J. Al-Zahrani, Fahd K. Al-Naqidan, Turki S. Hussein, Moteb Alotaibi, Mohammed Alyami, Mahdy M. Elmahdy, Abdellah Kaiba, Fatehia S. Alhakami, Talal F. Qahtan
Abstract:
Water pollution is a critical global challenge that demands scalable and effective solutions for water decontamination. In this captivating research, we unveil a groundbreaking strategy for harnessing solar energy to synthesize silver (Ag) clusters on stable titanium dioxide (TiO₂) nanoparticles dispersed in water, without the need for traditional stabilization agents. These Ag-loaded TiO₂ nanoparticles exhibit exceptional photocatalytic activity, surpassing that of pristine TiO₂ nanoparticles, offering a promising solution for highly efficient water decontamination under sunlight irradiation. To the best knowledge, we have developed a unique method to stabilize TiO₂ P25 nanoparticles in water without the use of stabilization agents. This breakthrough allows us to create an ideal platform for the solar-driven synthesis of Ag clusters. Under sunlight irradiation, the stable dispersion of TiO₂ P25 nanoparticles acts as a highly efficient photocatalyst, generating electron-hole pairs. The photogenerated electrons effectively reduce silver ions derived from a silver precursor, resulting in the formation of Ag clusters. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit remarkable photocatalytic activity for water decontamination under sunlight irradiation. Acting as active sites, these Ag clusters facilitate the generation of reactive oxygen species (ROS) upon exposure to sunlight. These ROS play a pivotal role in rapidly degrading organic pollutants, enabling efficient water decontamination. To confirm the success of our approach, we characterized the synthesized Ag-loaded TiO₂ P25 nanoparticles using cutting-edge analytical techniques, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and spectroscopic methods. These characterizations unequivocally confirm the successful synthesis of Ag clusters on stable TiO₂ P25 nanoparticles without traditional stabilization agents. Comparative studies were conducted to evaluate the superior photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles compared to pristine TiO₂ P25 nanoparticles. The Ag clusters loaded on TiO₂ P25 nanoparticles exhibit significantly enhanced photocatalytic activity, benefiting from the synergistic effect between the Ag clusters and TiO₂ nanoparticles, which promotes ROS generation for efficient water decontamination. Our scalable strategy for synthesizing Ag clusters on stable TiO₂ P25 nanoparticles without stabilization agents presents a game-changing solution for highly efficient water decontamination under sunlight irradiation. The use of commercially available TiO₂ P25 nanoparticles streamlines the synthesis process and enables practical scalability. The outstanding photocatalytic performance of Ag-loaded TiO₂ P25 nanoparticles opens up new avenues for their application in large-scale water treatment and remediation processes, addressing the urgent need for sustainable water decontamination solutions.Keywords: water pollution, solar energy, silver clusters, TiO₂ nanoparticles, photocatalytic activity
Procedia PDF Downloads 691084 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage
Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao
Abstract:
Particles exhausted from cars have an adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.Keywords: dispersion, idling conditions, particle concentration, residential underground garage
Procedia PDF Downloads 5501083 Quantitative Analysis Of Traffic Dynamics And Violation Patterns Triggered By Cruise Ship Tourism In Victoria, British Columbia
Authors: Muhammad Qasim, Laura Minet
Abstract:
Victoria (BC), Canada, is a major cruise ship destination, attracting over 600,000 tourists annually. Residents of the James Bay neighborhood, home to the Ogden Point cruise terminal, have expressed concerns about the impacts of cruise ship activity on local traffic, air pollution, and safety compliance. This study evaluates the effects of cruise ship-induced traffic in James Bay, focusing on traffic flow intensification, density surges, changes in traffic mix, and speeding violations. To achieve these objectives, traffic data was collected in James Bay during two key periods: May, before the peak cruise season, and August, during full cruise operations. Three Miovision cameras captured the vehicular traffic mix at strategic entry points, while nine traffic counters monitored traffic distribution and speeding violations across the network. Traffic data indicated an average volume of 308 vehicles per hour during peak cruise times in May, compared to 116 vehicles per hour when no ships were in port. Preliminary analyses revealed a significant intensification of traffic flow during cruise ship "hoteling hours," with a volume increase of approximately 10% per cruise ship arrival. A notable 86% surge in taxi presence was observed on days with three cruise ships in port, indicating a substantial shift in traffic composition, particularly near the cruise terminal. The number of tourist buses escalated from zero in May to 32 in August, significantly altering traffic dynamics within the neighborhood. The period between 8 pm and 11 pm saw the most significant increases in traffic volume, especially when three ships were docked. Higher vehicle volumes were associated with a rise in speed violations, although this pattern was inconsistent across all areas. Speeding violations were more frequent on roads with lower traffic density, while roads with higher traffic density experienced fewer violations, due to reduced opportunities for speeding in congested conditions. PTV VISUM software was utilized for fuzzy distribution analysis and to visualize traffic distribution across the study area, including an assessment of the Level of Service on major roads during periods before and during the cruise ship season. This analysis identified the areas most affected by cruise ship-induced traffic, providing a detailed understanding of the impact on specific parts of the transportation network. These findings underscore the significant influence of cruise ship activity on traffic dynamics in Victoria, BC, particularly during peak periods when multiple ships are in port. The study highlights the need for targeted traffic management strategies to mitigate the adverse effects of increased traffic flow, changes in traffic mix, and speed violations, thereby enhancing road safety in the James Bay neighborhood. Further research will focus on detailed emissions estimation to fully understand the environmental impacts of cruise ship activity in Victoria.Keywords: cruise ship tourism, air quality, traffic violations, transport dynamics, pollution
Procedia PDF Downloads 221082 Temperature Susceptibility for Optimal Biogas Production
Authors: Ujjal Chattaraj, Pbharat Saikumar, Thinley Dorji
Abstract:
Earth is going to be a planet where no further life can sustain if people continue to pollute the environment. We need energy and fuels everyday for heating and lighting purposes in our life. It’s high time we know this problem and take measures at-least to reduce pollution and take alternative measures for everyday livelihood. Biogas is one of them. It is very essential to define and control the parameters for optimization of biogas production. Biogas plants can be made of different size, but it is very vital to make a biogas which will be cost effective, with greater efficiency (more production) and biogas plants that will sustain for a longer period of time for usage. In this research, experiments were carried out only on cow dung and Chicken manure depending on the substrates people out there (Bhutan) used. The experiment was done within 25 days and was tested for different temperatures and found out which produce more amount. Moreover, it was also statistically tested for their dependency and non-dependency which gave clear idea more on their production.Keywords: digester, mesophilic temperature, organic manure, statistical analysis, thermophilic temperature, t-test
Procedia PDF Downloads 2021081 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran
Authors: Sahar Elkaee Behjati
Abstract:
Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.Keywords: dust, leaves, uptake total carbon, Tehran, tree species
Procedia PDF Downloads 1391080 Determination of Heavy Metal Concentration in Soil from Flood Affected Area
Authors: Nor Sayzwani Sukri, Siti Hajar Ya’acob, Musfiroh Jani, Farah Khaliz Kedri, Noor Syuhadah Subki, Zulhazman Hamzah
Abstract:
In mid-December 2014, the biggest flood event occurred in East Coast of Peninsular Malaysia especially at Dabong area, Kelantan. As a consequent of flood disaster, the heavy metals concentration in soil may changes and become harmful to the environment due to the pollution that deposited in soil. This study was carried out to determine the heavy metal concentration from flood affected area. Sample have been collected and analysed by using Atomic Absorption Spectroscopy (AAS). Lead (Pb), Cadmium (Cd), Mercury (Hg), and Arsenic (As) were chosen for the heavy metals concentration. The result indicated that the heavy metal concentration did not exceed the limit. In-situ parameters also were carried out, were the results showed the range of soil pH (6.5-6.8), temperature (25°C – 26.5°C), and moisture content (1-2), respectively. The results from this study can be used as a base data to improve the soil quality and for consideration of future land use activities.Keywords: flood, soil, heavy metal, AAS
Procedia PDF Downloads 4211079 Enhanced Phytoremediation Using Endophytic Microbes
Authors: Raymond Oriebe Anyasi, Harrison Atagana
Abstract:
The use of a plant in the detoxification of several toxin is been known to be enhanced by various microbial endophytes which have been reported to be contained in plants growing in any contaminated soil. Plants in their natural state are mostly colonized by endophytes which in the process forms symbiotic associations with the host plants. These benefits that the endophytes offer to the plants include amongst others to: Enhance plants growth through the production of various phytohormones; increase in the resistance of environmental stresses; produce important bioactive metabolites; help in the fixing of nitrogen in the plants organelles; help in the metal translocation and accumulation in plants; assist in the production of enzymes involves the degradation of organic contaminants. Therefore recognizing these natural processes of the microbes will enable the understanding of the effective mechanism for enhanced phytoremediation. The aim of this study was to survey the progressiveness in the study involving endophyte-assisted phytoremediation of contaminants; highlighting various pollutants, the plants used, the endophytes studied as well as the type of interaction between the plants and the microbes so as to proffer a better future prospect for the technology.Keywords: phytoremediation, endophytes, microbes, pollution, environmental management, plants
Procedia PDF Downloads 3461078 Effects of the Type of Soil on the Efficiency of a Bioremediation Dispositive by Using Bacterium Hydrocarbonoclastes
Authors: Amel Bouderhem, Aminata Ould El Hadj Khelil, Amina N. Djrarbaoui, Aroussi Aroussi
Abstract:
The present work aims to find the influence of the nature of the soil on the effectiveness of the biodegradation of hydrocarbons by a mixture of bacterial strains hydrocarbonoclastes. Processes of bioaugmentation and biostimulation trial are applied to samples of soils polluted voluntarily by the crude oil. For the evaluation of the biodegradation of hydrocarbons, the bacterial load, the pH and organic carbon total are followed in the different experimental batches. He bacterial load of the sandy soil varies among the witnesses of 45,2 .108 CFU/ml at the beginning of the experimentation to 214,07.108 CFU/ml at the end of the experiment. Of the soil silty-clay varies between 103,31 .108 CFU/ml and 614,86.108 CFU/ml . It was found a strong increase in the bacterial biomass during the processing of all samples. This increase is more important in the samples of sand bioaugmente or biomass increased from 63.16 .108 CFU/ml to 309.68 .108 CFU/ml than in soil samples silty clay- bioaugmente whose content in bacteria evolved of 73,01 .108 CFU/ml to 631.80 . 108CFU/mlKeywords: pollution, hydrocarbons, bioremediation, bacteria hydrocarbonoclastes, ground, texture
Procedia PDF Downloads 4731077 Biofilm Is Facilitator for Microplastic Ingestion in Green Mussel Perna Viridis
Authors: Yixuan Wang, A. C. Y. Wong, J. M. Y. Chiu, S. G. Cheung
Abstract:
After being released into the ocean, microplastics (MPs) are quickly colonized by microbes. The biofilm that forms on MPs alters their characteristics and perplexes users, including filter-feeders, some of whom choose to eat MPs that have biofilm. It has been proposed that filter feeders like mussels and other bivalves could serve as bioindicators of MP pollution. Mussels are considered selective feeders with particle sorting capability. Two sizes (27-32 µm and 90-106 µm), shapes (microspheres and microfibers), and types (polyethylene, polystyrene and polyester) of MPs were available for the green mussel, Perna viridis, at three concentrations (100 P/ml, 1000 P/ml and 10,000 P/ml). These MPs were incubated in the sea for 0, 3 or 14 days for biofilm development. The presence of the biofilm significantly affected the ingestion of MPs, and the mussels preferred MPs with biofilm, with a higher preference observed for biofilm with a longer incubation period. Additionally, the ingestion rate varied with the interaction between the concentration, size and form of MPs. The findings are discussed in relation to the possibility that mussels serve as MP bioindicators.Keywords: marine miroplastics, biofilm, bioindicator, green mussel perna viridis
Procedia PDF Downloads 601076 Precise Electrochemical Metal Recovery from Emerging Waste Streams
Authors: Wei Jin
Abstract:
Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability.Keywords: electrochemistry, metal recovery, waste steams, nanomaterials
Procedia PDF Downloads 91075 Impact of Anthropogenic Climate Change on Hail in Eastern Georgia
Authors: MIkheil Pipia, Nazibrola Beglarashvili
Abstract:
Modern anthropogenic changes in climate can affect the microphysical and electrical properties of clouds, such as the conditions that cause intense hail and lightning. At the same time, the effect of the impact largely depends on the physical-geographical conditions and the ecological situation. It should be noted that the growth of anthropogenic pollution in the atmosphere has a significant impact on the dynamics of hail processes. For the statistical analysis of the number of hail days against the background of modern climate change, the average number of hail days at the stations according to decades was used, which allows to weaken short-term fluctuations and reveal long-term changes. In order to determine the dynamics of hail days in Eastern Georgia, the observation data of some meteorological stations from 1951-2000 were analyzed. In total, the data of 41 meteorological stations of Eastern Georgia about hail for the period of 1961-2018 have been processed.Keywords: climate, meteorology phenomena, anthropocenic influence, hail
Procedia PDF Downloads 751074 Effects of PAHs on Blood Thyroidal Hormones of Liza klunzingeri in the Northern Part of Hormuz Strait (Persian Gulf)
Authors: Fateme Afkhami, Mohsen Ehsanpour, Maryam Ehsanpour, Majid Afkhami
Abstract:
This study was conducted to determine the effects of polycyclic aromatic hydrocarbons (PAHs) on thyroidal hormones of Liza klunzingeri and to monitor marine pollution from northern part of Hormuz strait (Persian Gulf). Results showed the highest total PAHs levels (268.56 µg/kg) were in the fish samples and the lowest are obtained from water samples (3.12 µg/kg). Also, highest of PAHs levels in fish, sediment and water were found in St3. There was a positive correlation between T3 and T4, with PAHs results. T4 had a significant positive correlation (P<0.05).Keywords: PAHs, thyroidal hormones, Liza klunzingeri, Hormuz Strait, Persian Gulf
Procedia PDF Downloads 7031073 Composite Behavior of Precast Concrete Coping with Internal Connector and Precast Girder
Authors: Junki Min, Heeyoung Lee, Wonseok Chung
Abstract:
Traditional marine concrete structures are difficult to construct and may cause environmental pollution. This study presents new concrete bridge system in the marine. The main feature of the proposed bridge is that precast girders and precast coping are applied to facilitate assembly and to improve constructability. In addition, the moment of the girder is reduced by continuation the joint. In this study, a full-scale joint specimen with a span of 7.0 m was fabricated and tested to evaluate the composite behavior of the joint. A finite element model was also developed and compared against the experimental results. All members of the test specimen behaved stably up to the design load. It was found that the precast joint of the proposed bridge showed the composite behavior efficiently before the failure.Keywords: finite element analysis, full-scale test, coping, joint performance, marine structure, precast
Procedia PDF Downloads 2051072 Poor Medical Waste Management (MWM) Practices and Its Risks to Human Health and the Environment
Authors: Babanyara Y. Y., Ibrahim D. B., Garba T., Bogoro A. G., Abubakar, M. Y.
Abstract:
Medical care is vital for our life, health, and well-being. However, the waste generated from medical activities can be hazardous, toxic, and even lethal because of their high potential for diseases transmission. The hazardous and toxic parts of waste from healthcare establishments comprising infectious, medical, and radioactive material as well as sharps constitute a grave risks to mankind and the environment, if these are not properly treated/disposed or are allowed to be mixed with other municipal waste. In Nigeria, practical information on this aspect is inadequate and research on the public health implications of poor management of medical wastes is few and limited in scope. Findings drawn from Literature particularly in the third world countries highlights financial problems, lack of awareness of risks involved in MWM, lack of appropriate legislation and lack of specialized MWM staff. The paper recommends how MWM practices can be improved in medical facilities.Keywords: environmental pollution, infectious, management, medical waste, public health
Procedia PDF Downloads 3091071 Analysis of the Aquifer Vulnerability of a Miopliocene Arid Area Using Drastic and SI Models
Abstract:
Many methods in the groundwater vulnerability have been developed in the world (methods like PRAST, DRIST, APRON/ARAA, PRASTCHIM, GOD). In this study, our choice dealt with two recent complementary methods using category mapping of index with weighting criteria (Point County Systems Model MSCP) namely the standard DRASTIC method and SI (Susceptibility Index). At present, these two methods are the most used for the mapping of the intrinsic vulnerability of groundwater. Two classes of groundwater vulnerability in the Biskra sandy aquifer were identified by the DRASTIC method (average and high) and the SI method (very high and high). Integrated analysis has revealed that the high class is predominant for the DRASTIC method whereas for that of SI the preponderance is for the very high class. Furthermore, we notice that the method SI estimates better the vulnerability for the pollution in nitrates, with a rate of 85 % between the concentrations in nitrates of groundwater and the various established classes of vulnerability, against 75 % for the DRASTIC method. By including the land use parameter, the SI method produced more realistic results.Keywords: DRASTIC, SI, GIS, Biskra sandy aquifer, Algeria
Procedia PDF Downloads 4871070 Mixed Treatment (Physical-Chemical and Biological) of Ouled Fayet Landfill Leachates
Authors: O. Balamane-Zizi, L. M. Rouidi, A. Boukhrissa, N. Daas, H. Ait-amar
Abstract:
The objective of this study was to test the possibility of a mixed treatment (physical-chemical and biological) of Ouled Fayet leachates which date of 10 years and has a large fraction of hard COD that can be reduced by coagulation-flocculation. Previous batch tests showed the possibility of applying the physical-chemical and biological treatments separately; the removal efficiencies obtained in this case were not interesting. We propose, therefore, to test the possibility of a combined treatment, in order to improve the quality of the leachates. Estimation of the treatment’s effectiveness was done by analysis of some pollution parameters such as COD, suspended solids, and heavy metals (particularly iron and nickel). The main results obtained after the combination of treatments, show reduction rate of about 63% for COD, 73% for suspended solids and 80% for iron and nickel. We also noted an improvement in the turbidity of treated leachates.Keywords: landfill leachates, COD, physical-chemical treatment, biological treatment
Procedia PDF Downloads 471