Search results for: automatic fare collection
3051 Improved Pitch Detection Using Fourier Approximation Method
Authors: Balachandra Kumaraswamy, P. G. Poonacha
Abstract:
Automatic Music Information Retrieval has been one of the challenging topics of research for a few decades now with several interesting approaches reported in the literature. In this paper we have developed a pitch extraction method based on a finite Fourier series approximation to the given window of samples. We then estimate pitch as the fundamental period of the finite Fourier series approximation to the given window of samples. This method uses analysis of the strength of harmonics present in the signal to reduce octave as well as harmonic errors. The performance of our method is compared with three best known methods for pitch extraction, namely, Yin, Windowed Special Normalization of the Auto-Correlation Function and Harmonic Product Spectrum methods of pitch extraction. Our study with artificially created signals as well as music files show that Fourier Approximation method gives much better estimate of pitch with less octave and harmonic errors.Keywords: pitch, fourier series, yin, normalization of the auto- correlation function, harmonic product, mean square error
Procedia PDF Downloads 4123050 Gender Justice and Feminist Self-Management Practices in the Solidarity Economy: A Quantitative Analysis of the Factors that Impact Enterprises Formed by Women in Brazil
Authors: Maria de Nazaré Moraes Soares, Silvia Maria Dias Pedro Rebouças, José Carlos Lázaro
Abstract:
The Solidarity Economy (SE) acts in the re-articulation of the economic field to the other spheres of social action. The significant participation of women in SE resulted in the formation of a national network of self-managed enterprises in Brazil: The Solidarity and Feminist Economy Network (SFEN). The objective of the research is to identify factors of gender justice and feminist self-management practices that adhere to the reality of women in SE enterprises. The conceptual apparatus related to feminist studies in this research covers Nancy Fraser approaches on gender justice, and Patricia Yancey Martin approaches on feminist management practices, and authors of postcolonial feminism such as Mohanty and Maria Lugones, who lead the discussion to peripheral contexts, a necessary perspective when observing the women’s movement in SE. The research has a quantitative nature in the phases of data collection and analysis. The data collection was performed through two data sources: the database mapped in Brazil in 2010-2013 by the National Information System in Solidary Economy and 150 questionnaires with women from 16 enterprises in SFEN, in a state of Brazilian northeast. The data were analyzed using the multivariate statistical technique of Factor Analysis. The results show that the factors that define gender justice and feminist self-management practices in SE are interrelated in several levels, proving statistically the intersectional condition of the issue of women. The evidence from the quantitative analysis allowed us to understand the dimensions of gender justice and feminist management practices intersectionality; in this sense, the non-distribution of domestic work interferes in non-representation of women in public spaces, especially in peripheral contexts. The study contributes with important reflections to the studies of this area and can be complemented in the future with a qualitative research that approaches the perspective of women in the context of the SE self-management paradigm.Keywords: feminist management practices, gender justice, self-management, solidarity economy
Procedia PDF Downloads 1293049 Automatic Diagnosis of Electrical Equipment Using Infrared Thermography
Authors: Y. Laib Dit Leksir, S. Bouhouche
Abstract:
Analysis and processing of data bases resulting from infrared thermal measurements made on the electrical installation requires the development of new tools in order to obtain correct and additional information to the visual inspections. Consequently, the methods based on the capture of infrared digital images show a great potential and are employed increasingly in various fields. Although, there is an enormous need for the development of effective techniques to analyse these data base in order to extract relevant information relating to the state of the equipments. Our goal consists in introducing recent techniques of modeling based on new methods, image and signal processing to develop mathematical models in this field. The aim of this work is to capture the anomalies existing in electrical equipments during an inspection of some machines using A40 Flir camera. After, we use binarisation techniques in order to select the region of interest and we make comparison between these methods of thermal images obtained to choose the best one.Keywords: infrared thermography, defect detection, troubleshooting, electrical equipment
Procedia PDF Downloads 4763048 Influence of Emotional Intelligence on Educational Supervision and Leadership Style in Saudi Arabia
Authors: Jawaher Bakheet Almudarra
Abstract:
An Educational Supervisor assists teachers to develop their competence and skills in teaching, solving educational problems, and to improve the teaching methods to suit the educational process. They evaluate their teachers and write reports based on their assessments. In 1957, the Saudi Ministry of Education instituted Educational Supervision to facilitate effective management of schools, however, there have been concerns that the Educational Supervision has not been effective in executing its mandate. Studies depicted that Educational supervision has not been effective because it has been marred by poor and autocratic leadership practices such as stringent inspection, commanding and judging. Therefore, there is need to consider some of the ways in which school outcomes can be enhanced through the improvement of Educational supervision practices. Emotional intelligence is a relatively new concept that can be integrated into the Saudi education system that is yet to be examined in-depth and embraced particularly in the realm of educational leadership. Its recognition and adoption may improve leadership practices among Educational supervisors. This study employed a qualitative interpretive approach that will focus on decoding, describing and interpreting the connection between emotional intelligence and leadership. The study also took into account the social constructions that include consciousness, language and shared meanings. The data collection took place in the Office of Educational Supervisors in Riyadh and involved 4 Educational supervisors and 20 teachers from both genders- male and female. The data collection process encompasses three methods namely; qualitative emotional intelligence self-assessment questionnaires, reflective semi-structured interviews, and open workshops. The questionnaires would explore whether the Educational supervisors understand the meaning of emotional intelligence and its significance in enhancing the quality of education system in Saudi Arabia. Subsequently, reflective semi-structured interviews were carried out with the Educational supervisors to explore the connection between their leadership styles and the way they conceptualise their emotionality. The open workshops will include discussions on emotional aspects of Educational supervisors’ practices and how Educational supervisors make use of the emotional intelligence discourse in their leadership and supervisory relationships.Keywords: directors of educational supervision, emotional intelligence, educational leadership, education management
Procedia PDF Downloads 4293047 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2243046 Merging of Results in Distributed Information Retrieval Systems
Authors: Larbi Guezouli, Imane Azzouz
Abstract:
This work is located in the domain of distributed information retrieval ‘DIR’. A simplified view of the DIR requires a multi-search in a set of collections, which forces the system to analyze results found in these collections, and merge results back before sending them to the user in a single list. Our work is to find a fusion method based on the relevance score of each result received from collections and the relevance of the local search engine of each collection.Keywords: information retrieval, distributed IR systems, merging results, datamining
Procedia PDF Downloads 3363045 Towards Intercultural Competence in EFL Textbook: the Case of ‘New Prospects’
Authors: Kamilia Mebarki
Abstract:
The promotion of intercultural competence plays an important role in foreign language education. The outcome of intercultural educationalists‟ studies was the adoption of intercultural language learning and a modified version of the Communicative Competence that encompasses an intercultural component enabling language learners to communicate successfully interculturally. Intercultural Competencehas an even more central role in teaching English as a foreign language (EFL) since efforts are critical to preparing learners for intercultural communisation in our global world. In these efforts, EFL learning materials are a crucial stimulus for developing learners’ intercultural competence. There has been a continuous interest in the analysis of EFL textbooks by researcher all over the world. One specific area that has received prominent attention in recent years is a focus on how the cultural content of EFL materials promote intercultural competence. In the Algerian context, research on the locally produced EFL textbooks tend to focus on investigating the linguistic and communicative competence. The cultural content of the materials has not yet been systematically researched. Therefore, this study contributes to filling this gap by evaluating the locally published EFL textbook ‘New Prospects’ used at the high school level as well as investigating teachers’ views and attitudes on the cultural content of ‘New Prospects’ alongside two others locally produced EFL textbooks ‘Getting Through’ and ‘At the Crossroad’ used at high school level. To estimate the textbook’s potential of developing intercultural competence, mixed methods, a combination of quantitative and qualitative data collection, was used in the material evaluation analysed via content analysis and in the survey questionnaire and interview with teachers.Data collection and analysis were supported by the frameworks developed by the researcher for analysing the textbook, questionnaire, and interview. Indeed, based on the literature, three frameworks/ models are developed in this study to analyse, on one hand, the cultural contexts and themes discussed in the material that play an important role in fostering learners’ intercultural awareness. On the other hand, to evaluate the promotion of developing intercultural competence.Keywords: intercultural communication, intercultural communicative competence, intercultural competence, EFL materials
Procedia PDF Downloads 973044 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016
Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi
Abstract:
This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.Keywords: big health data, data subject rights, GDPR, pandemic
Procedia PDF Downloads 1293043 A User-Side Analysis of the Public-Private Partnership: The Case of the New Bundang Subway Line in South Korea
Authors: Saiful Islam, Deuk Jong Bae
Abstract:
The purpose of this study is to examine citizen satisfaction and competitiveness of a Public Private Partnership project. The study focuses on PPP in the transport sector and investigates the New Bundang Subway Line (NBL) in South Korea as the object of a case study. Most PPP studies are dominated by the study of public and private sector interests, which are classified in to three major areas comprising of policy, finance, and management. This study will explore the user perspective by assessing customer satisfaction upon NBL cost and service quality, also the competitiveness of NBL compared to other alternative transport modes which serve the Jeongja – Gangnam trip or vice versa. The regular Bundang Subway Line, New Bundang Subway Line, bus and private vehicle are selected as the alternative transport modes. The study analysed customer satisfaction of NBL and citizen’s preference of alternative transport modes based on a survey in Bundang district, South Korea. Respondents were residents and employees who live or work in Bundang city, and were divided into the following areas Pangyo, Jeongjae – Sunae, Migeun – Ori – Jukjeon, and Imae – Yatap – Songnam. The survey was conducted in January 2015 for two weeks, and 753 responses were gathered. By applying the Hedonic Utility approach, the factors which affect the frequency of using NBL were found to be overall customer satisfaction, convenience of access, and the socio economic demographic of the individual. In addition, by applying the Analytic Hierarchy Process (AHP) method, criteria factors influencing the decision to select alternative transport modes were identified. Those factors, along with the author judgement of alternative transport modes, and their associated criteria and sub-criteria produced a priority list of user preferences regarding their alternative transport mode options. The study found that overall the regular Bundang Subway Line (BL), which was built and operated under a conventional procurement method was selected as the most preferable transport mode due to its cost competitiveness. However, on the sub-criteria level analysis, the NBL has competitiveness on service quality, particularly on journey time. By conducting a sensitivity analysis, the NBL can become the first choice of transport by increasing the NBL’s degree of weight associated with cost by 0,05. This means the NBL would need to reduce either it’s fare cost or transfer fee, or combine those two cost components to reduce the total of the current cost by 25%. In addition, the competitiveness of NBL also could be obtained by increasing NBL convenience through escalating access convenience such as constructing an additional station or providing more access modes. Although these convenience improvements would require a few extra minutes of journey time, the user found this to be acceptable. The findings and policy suggestions can contribute to the next phase of NBL development, showing that consideration should be given to the citizen’s voice. The case study results also contribute to the literature of PPP projects specifically from a user side perspective.Keywords: public private partnership, customer satisfaction, public transport, new Bundang subway line
Procedia PDF Downloads 3513042 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT
Procedia PDF Downloads 2763041 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies
Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan
Abstract:
The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping
Procedia PDF Downloads 983040 Bridging the Gap between Problem and Solution Space with Domain-Driven Design
Authors: Anil Kumar, Lavisha Gupta
Abstract:
Domain-driven design (DDD) is a pivotal methodology in software development, emphasizing the understanding and modeling of core business domains to create effective solutions. This paper explores the significance of DDD in aligning software architecture with real-world domains, with a focus on its application within Siemens. We delve into the challenges faced by development teams in understanding domains and propose DDD as a solution to bridge the gap between problem and solution spaces. Key concepts of DDD, such as Ubiquitous Language, Bounded Contexts, Entities, Value Objects, and Aggregates, are discussed, along with their practical implications in software development. Through a real project example in the automatic generation of hardware and software plant engineering, we illustrate how DDD principles can transform complex domains into coherent and adaptable software solutions, echoing Siemens' commitment to excellence and innovation.Keywords: domain-driven design, software architecture, ubiquitous language, bounded contexts, entities, value objects, aggregates
Procedia PDF Downloads 353039 Design of Real Time Early Response Systems for Natural Disaster Management Based on Automation and Control Technologies
Authors: C. Pacheco, A. Cipriano
Abstract:
A new concept of response system is proposed for filling the gap that exists in reducing vulnerability during immediate response to natural disasters. Real Time Early Response Systems (RTERSs) incorporate real time information as feedback data for closing control loop and for generating real time situation assessment. A review of the state of the art works that fit the concept of RTERS is presented, and it is found that they are mainly focused on manmade disasters. At the same time, in response phase of natural disaster management many works are involved in creating early warning systems, but just few efforts have been put on deciding what to do once an alarm is activated. In this context a RTERS arises as a useful tool for supporting people in their decision making process during natural disasters after an event is detected, and also as an innovative context for applying well-known automation technologies and automatic control concepts and tools.Keywords: disaster management, emergency response system, natural disasters, real time
Procedia PDF Downloads 4423038 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.Keywords: feature generation, feature learning, genetic algorithm, music information retrieval
Procedia PDF Downloads 4343037 Morphological Analysis of Manipuri Language: Wahei-Neinarol
Authors: Y. Bablu Singh, B. S. Purkayashtha, Chungkham Yashawanta Singh
Abstract:
Morphological analysis forms the basic foundation in NLP applications including syntax parsing Machine Translation (MT), Information Retrieval (IR) and automatic indexing in all languages. It is the field of the linguistics; it can provide valuable information for computer based linguistics task such as lemmatization and studies of internal structure of the words. Computational Morphology is the application of morphological rules in the field of computational linguistics, and it is the emerging area in AI, which studies the structure of words, which are formed by combining smaller units of linguistics information, called morphemes: the building blocks of words. Morphological analysis provides about semantic and syntactic role in a sentence. It analyzes the Manipuri word forms and produces several grammatical information associated with the words. The Morphological Analyzer for Manipuri has been tested on 3500 Manipuri words in Shakti Standard format (SSF) using Meitei Mayek as source; thereby an accuracy of 80% has been obtained on a manual check.Keywords: morphological analysis, machine translation, computational morphology, information retrieval, SSF
Procedia PDF Downloads 3263036 Community Involvement and Willingness To Pay for Municipal Solid Waste Management Activities in Rapid Urbanized Region: A Case Study of Mnadani and Madukani Wards-Dodoma Urban
Authors: Isabela Thomas Mkude
Abstract:
This research was done to assess how the community is involved in waste management activities and their willingness to pay for services. Mnadani and Madukani are among the old wards in Dodoma urban. These two areas are similar and face numerous environmental problems, poor solid waste management practices being among them. People realize problems because they live with them daily but the study advice that the only way to stay off problems is to find appropriate measures. The findings recognized some problems that led to poor community involvement solid waste management the study areas. Lack of community education on how to deal with solid wastes, poor responsibility of ward leaders in issues concerning the environment and in active participation of communities in environmental meeting are among other major problems found during the research. The research also revealed that there is low willingness to pay for waste collection among communities and financial problems that make environmental committee inactive; that leading to a poor disposal and unavailable collection facilities in urban area. Although the municipal improves disposal activities by increasing amount of waste to be disposed off by 11% in three years, the amount of waste that collected is also increasing by 41% each day. It is advised that some corrective measures need to be put in place so that the communities are well involved in managing solid wastes as the best way to attain achievement in keeping the urban free from solid waste. Environmental education dissemination to the communities is needed so that they become responsible and dedicated citizen on the environment. There should be some incentives from government to the wards local government and CBOs so that they can practically implement solid waste management programs and to attract formation of more groups and motivate the present groups. Capacity building programs to the ward leaders need to be given priority so that leaders are well organized and able to plan, coordinate and cooperate with various governmental institutions, and NGOs responsible for development and environmental management.Keywords: solid waste, waste management, public involvement, rapid urbanized region
Procedia PDF Downloads 3513035 Automatic API Regression Analyzer and Executor
Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty
Abstract:
As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.Keywords: automation impact regression, java doc, executor, analyzer, layers
Procedia PDF Downloads 4883034 Knowledge Representation and Inconsistency Reasoning of Class Diagram Maintenance in Big Data
Authors: Chi-Lun Liu
Abstract:
Requirements modeling and analysis are important in successful information systems' maintenance. Unified Modeling Language (UML) class diagrams are useful standards for modeling information systems. To our best knowledge, there is a lack of a systems development methodology described by the organism metaphor. The core concept of this metaphor is adaptation. Using the knowledge representation and reasoning approach and ontologies to adopt new requirements are emergent in recent years. This paper proposes an organic methodology which is based on constructivism theory. This methodology is a knowledge representation and reasoning approach to analyze new requirements in the class diagrams maintenance. The process and rules in the proposed methodology automatically analyze inconsistencies in the class diagram. In the big data era, developing an automatic tool based on the proposed methodology to analyze large amounts of class diagram data is an important research topic in the future.Keywords: knowledge representation, reasoning, ontology, class diagram, software engineering
Procedia PDF Downloads 2413033 Impacts of Community Forest on Forest Resources Management and Livelihood Improvement of Local People in Nepal
Authors: Samipraj Mishra
Abstract:
Despite the successful implementation of community forestry program, a number of pros and cons have been raised on Terai community forestry in the case of lowland locally called Terai region of Nepal, which is climatically belongs to tropical humid and possessed high quality forests in terms of ecology and economy. The study aims to investigate the local pricing strategy of forest products and its impacts on equitable forest benefit sharing, collection of community fund and carrying out livelihood improvement activities. The study was carried out on six community forests revealed that local people have substantially benefited from the community forests. However, being the region is heterogeneous by socio-economic conditions and forest resources have higher economical potential, the decision of low pricing strategy made by the local people have created inequality problems while sharing the forest benefits, and poorly contributed to community fund collection and consequently carrying out limited activities of livelihood improvement. The paper argued that the decision of low pricing strategy of forest products is counter-productive to promote the equitable benefit sharing in the areas of heterogeneous socio-economic conditions with high value forests. The low pricing strategy has been increasing accessibility of better off households at higher rate than poor; as such households always have higher affording capacity. It is also defective to increase the community fund and carry out activities of livelihood improvement effectively. The study concluded that unilateral decentralized forest policy and decision-making autonomy to the local people seems questionable unless their decision-making capacities are enriched sufficiently. Therefore, it is recommended that empowerment of decision-making capacity of local people and their respective institutions together with policy and program formulation are prerequisite for efficient and equitable community forest management and its long-term sustainability.Keywords: community forest, livelihood, socio-economy, pricing system, Nepal
Procedia PDF Downloads 2723032 Machine Learning Automatic Detection on Twitter Cyberbullying
Authors: Raghad A. Altowairgi
Abstract:
With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost
Procedia PDF Downloads 1303031 Rapid Design Approach for Electric Long-Range Drones
Authors: Adrian Sauer, Lorenz Einberger, Florian Hilpert
Abstract:
The advancements and technical innovations in the field of electric unmanned aviation over the past years opened the third dimension in areas like surveillance, logistics, and mobility for a wide range of private and commercial users. Researchers and companies are faced with the task of integrating their technology into airborne platforms. Especially start-ups and researchers require unmanned aerial vehicles (UAV), which can be quickly developed for specific use cases without spending significant time and money. This paper shows a design approach for the rapid development of a lightweight automatic separate-lift-thrust (SLT) electric vertical take-off and landing (eVTOL) UAV prototype, which is able to fulfill basic transportation as well as surveillance missions. The design approach does not require expensive or time-consuming design loop software. Thereby developers can easily understand, adapt, and adjust the presented method for their own project. The approach is mainly focused on crucial design aspects such as aerofoil, tuning, and powertrain.Keywords: aerofoil, drones, rapid prototyping, powertrain
Procedia PDF Downloads 713030 Perfomance of PAPR Reduction in OFDM System for Wireless Communications
Authors: Alcardo Alex Barakabitze, Saddam Aziz, Muhammad Zubair
Abstract:
The Orthogonal Frequency Division Multiplexing (OFDM) is a special form of multicarrier transmission that splits the total transmission bandwidth into a number of orthogonal and non-overlapping subcarriers and transmit the collection of bits called symbols in parallel using these subcarriers. In this paper, we explore the Peak to Average Power Reduction (PAPR) problem in OFDM systems. We provide the performance analysis of CCDF and BER through MATLAB simulations.Keywords: bit error ratio (BER), OFDM, peak to average power reduction (PAPR), sub-carriers
Procedia PDF Downloads 5423029 ViraPart: A Text Refinement Framework for Automatic Speech Recognition and Natural Language Processing Tasks in Persian
Authors: Narges Farokhshad, Milad Molazadeh, Saman Jamalabbasi, Hamed Babaei Giglou, Saeed Bibak
Abstract:
The Persian language is an inflectional subject-object-verb language. This fact makes Persian a more uncertain language. However, using techniques such as Zero-Width Non-Joiner (ZWNJ) recognition, punctuation restoration, and Persian Ezafe construction will lead us to a more understandable and precise language. In most of the works in Persian, these techniques are addressed individually. Despite that, we believe that for text refinement in Persian, all of these tasks are necessary. In this work, we proposed a ViraPart framework that uses embedded ParsBERT in its core for text clarifications. First, used the BERT variant for Persian followed by a classifier layer for classification procedures. Next, we combined models outputs to output cleartext. In the end, the proposed model for ZWNJ recognition, punctuation restoration, and Persian Ezafe construction performs the averaged F1 macro scores of 96.90%, 92.13%, and 98.50%, respectively. Experimental results show that our proposed approach is very effective in text refinement for the Persian language.Keywords: Persian Ezafe, punctuation, ZWNJ, NLP, ParsBERT, transformers
Procedia PDF Downloads 2153028 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1613027 Using Wearable Technology to Monitor Workers’ Stress for Construction Safety: A Conceptual Framework
Authors: Namhun Lee, Seong Jin Kim
Abstract:
The construction industry represents one of the largest industries in the United States, yet it continues to face several occupational health and safety challenges. Many workers on construction sites are suffering from extended exposure to stressful situations such as poor and hazardous work environments and task complexity. Stress can be commonly defined as a feeling of emotional or physical tension, which can easily impact construction safety and result in a higher rate of job-related injuries in the construction industry. Physiological signals transmitted from wearable biosensors can be used to detect excessive stress. Therefore, workers’ stress should be detected and mitigated to prevent any type of serious incident or accident proactively. By doing this, construction productivity, as well as job satisfaction, would also be improved in the construction industry. To establish a foundation in this field of research, a conceptual framework for using wearable technology for construction safety has been developed for continuous and automatic monitoring of worker’s stress. The conceptual framework will serve as a foothold in future studies on the application of wearable technology for construction safety.Keywords: construction safety, occupational stress, stress monitoring, wearable biosensors
Procedia PDF Downloads 1613026 Digital Twin for University Campus: Workflow, Applications and Benefits
Authors: Frederico Fialho Teixeira, Islam Mashaly, Maryam Shafiei, Jurij Karlovsek
Abstract:
The ubiquity of data gathering and smart technologies, advancements in virtual technologies, and the development of the internet of things (IoT) have created urgent demands for the development of frameworks and efficient workflows for data collection, visualisation, and analysis. Digital twin, in different scales of the city into the building, allows for bringing together data from different sources to generate fundamental and illuminating insights for the management of current facilities and the lifecycle of amenities as well as improvement of the performance of current and future designs. Over the past two decades, there has been growing interest in the topic of digital twin and their applications in city and building scales. Most such studies look at the urban environment through a homogeneous or generalist lens and lack specificity in particular characteristics or identities, which define an urban university campus. Bridging this knowledge gap, this paper offers a framework for developing a digital twin for a university campus that, with some modifications, could provide insights for any large-scale digital twin settings like towns and cities. It showcases how currently unused data could be purposefully combined, interpolated and visualised for producing analysis-ready data (such as flood or energy simulations or functional and occupancy maps), highlighting the potential applications of such a framework for campus planning and policymaking. The research integrates campus-level data layers into one spatial information repository and casts light on critical data clusters for the digital twin at the campus level. The paper also seeks to raise insightful and directive questions on how digital twin for campus can be extrapolated to city-scale digital twin. The outcomes of the paper, thus, inform future projects for the development of large-scale digital twin as well as urban and architectural researchers on potential applications of digital twin in future design, management, and sustainable planning, to predict problems, calculate risks, decrease management costs, and improve performance.Keywords: digital twin, smart campus, framework, data collection, point cloud
Procedia PDF Downloads 683025 Application of Transportation Models for Analysing Future Intercity and Intracity Travel Patterns in Kuwait
Authors: Srikanth Pandurangi, Basheer Mohammed, Nezar Al Sayegh
Abstract:
In order to meet the increasing demand for housing care for Kuwaiti citizens, the government authorities in Kuwait are undertaking a series of projects in the form of new large cities, outside the current urban area. Al Mutlaa City located to the north-west of the Kuwait Metropolitan Area is one such project out of the 15 planned new cities. The city accommodates a wide variety of residential developments, employment opportunities, commercial, recreational, health care and institutional uses. This paper examines the application of comprehensive transportation demand modeling works undertaken in VISUM platform to understand the future intracity and intercity travel distribution patterns in Kuwait. The scope of models developed varied in levels of detail: strategic model update, sub-area models representing future demand of Al Mutlaa City, sub-area models built to estimate the demand in the residential neighborhoods of the city. This paper aims at offering model update framework that facilitates easy integration between sub-area models and strategic national models for unified traffic forecasts. This paper presents the transportation demand modeling results utilized in informing the planning of multi-modal transportation system for Al Mutlaa City. This paper also presents the household survey data collection efforts undertaken using GPS devices (first time in Kuwait) and notebook computer based digital survey forms for interviewing representative sample of citizens and residents. The survey results formed the basis of estimating trip generation rates and trip distribution coefficients used in the strategic base year model calibration and validation process.Keywords: innovative methods in transportation data collection, integrated public transportation system, traffic forecasts, transportation modeling, travel behavior
Procedia PDF Downloads 2223024 Early Requirement Engineering for Design of Learner Centric Dynamic LMS
Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta
Abstract:
We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling
Procedia PDF Downloads 5003023 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 813022 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India
Authors: Anupama Singh, Papia Raj
Abstract:
Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.Keywords: municipal solid waste, Patna, public health, sustainable recycling
Procedia PDF Downloads 323