Search results for: general data protection regulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30952

Search results for: general data protection regulation

23302 The Use of Artificial Intelligence to Curb Corruption in Brazil

Authors: Camila Penido Gomes

Abstract:

Over the past decade, an emerging body of research has been pointing to artificial intelligence´s great potential to improve the use of open data, increase transparency and curb corruption in the public sector. Nonetheless, studies on this subject are scant and usually lack evidence to validate AI-based technologies´ effectiveness in addressing corruption, especially in developing countries. Aiming to fill this void in the literature, this paper sets out to examine how AI has been deployed by civil society to improve the use of open data and prevent congresspeople from misusing public resources in Brazil. Building on the current debates and carrying out a systematic literature review and extensive document analyses, this research reveals that AI should not be deployed as one silver bullet to fight corruption. Instead, this technology is more powerful when adopted by a multidisciplinary team as a civic tool in conjunction with other strategies. This study makes considerable contributions, bringing to the forefront discussion a more accurate understanding of the factors that play a decisive role in the successful implementation of AI-based technologies in anti-corruption efforts.

Keywords: artificial intelligence, civil society organization, corruption, open data, transparency

Procedia PDF Downloads 205
23301 Performance Study of Classification Algorithms for Consumer Online Shopping Attitudes and Behavior Using Data Mining

Authors: Rana Alaa El-Deen Ahmed, M. Elemam Shehab, Shereen Morsy, Nermeen Mekawie

Abstract:

With the growing popularity and acceptance of e-commerce platforms, users face an ever increasing burden in actually choosing the right product from the large number of online offers. Thus, techniques for personalization and shopping guides are needed by users. For a pleasant and successful shopping experience, users need to know easily which products to buy with high confidence. Since selling a wide variety of products has become easier due to the popularity of online stores, online retailers are able to sell more products than a physical store. The disadvantage is that the customers might not find products they need. In this research the customer will be able to find the products he is searching for, because recommender systems are used in some ecommerce web sites. Recommender system learns from the information about customers and products and provides appropriate personalized recommendations to customers to find the needed product. In this paper eleven classification algorithms are comparatively tested to find the best classifier fit for consumer online shopping attitudes and behavior in the experimented dataset. The WEKA knowledge analysis tool, which is an open source data mining workbench software used in comparing conventional classifiers to get the best classifier was used in this research. In this research by using the data mining tool (WEKA) with the experimented classifiers the results show that decision table and filtered classifier gives the highest accuracy and the lowest accuracy classification via clustering and simple cart.

Keywords: classification, data mining, machine learning, online shopping, WEKA

Procedia PDF Downloads 352
23300 Personality, Coping, Quality of Life, and Distress in Persons with Hearing Loss: A Cross-Sectional Study of Patients Referred to an Audiological Service

Authors: Oyvind Nordvik, Peder O. L. Heggdal, Jonas Brannstrom, Flemming Vassbotn, Anne Kari Aarstad, Hans Jorgen Aarstad

Abstract:

Background: Hearing Loss (HL) is a condition that may affect people in all stages of life, but the prevalence increases with age, mostly because of age-related HL, generally referred to as presbyacusis. As human speech is related to relatively high frequencies, even a limited hearing loss at high frequencies may cause impaired speech intelligibility. Being diagnosed with, treated for and living with a chronic condition such as HL, must for many be a disabling and stressful condition that put ones coping resources to test. Stress is a natural part of life and most people will experience stressful events or periods. Chronic diseases, such as HL, are risk factor for distress in individuals, causing anxiety and lowered mood. How an individual cope with HL may be closely connected to the level of distress he or she is experiencing and to personality, which can be defined as those characteristics of a person that account for consistent patterns of feelings, thinking, and behavior. Thus, as to distress in life, such as illness or disease, available coping strategies may be more important than the challenge itself. The same line of arguments applies to level of experienced health-related quality of life (HRQoL). Aim: The aim of this study was to investigate the relationship between distress, HRQoL, reported hearing loss, personality and coping in patients with HL. Method: 158 adult (aged 18-78 years) patients with HL, referred for hearing aid (HA) fitting at Haukeland University Hospital in western Norway, participated in the study. Both first-time users, as well as patients referred for HA renewals were included. First-time users had been pre-examined by an ENT-specialist. The questionnaires were answered before the actual HA fitting procedure. The pure-tone average (PTA; frequencies 0.5, 1, 2, and 4 kHz) was determined for each ear. The Eysenck personality inventory, neuroticism and lie scales, the Theoretically Originated Measure of the Cognitive Activation Theory of Stress (TOMCATS) measuring active coping, hopelessness and helplessness, as well as distress (General Health Questionnaire (GHQ) - 12 items) and the EORTC Quality of Life Questionnaire general part were answered. In addition, we used a revised and shortened version of the Abbreviated Profile of Hearing Aid Benefit (APHAB) as a measure of patient-reported hearing loss. Results: Significant correlations were determined between APHAB (weak), HRQoL scores (strong), distress scores (strong) on the one side and personality and choice of coping scores on the other side. As measured by stepwise regression analyses, the distress and HRQoL scores were scored secondary to the obtained personality and coping scores. The APHAB scores were as determined by regression analyses scored secondary to PTA (best ear), level of neuroticism and lie score. Conclusion: We found that reported employed coping style, distress/HRQoL and personality are closely connected to each other in this patient group. Patient-reported HL was associated to hearing level and personality. There is need for further investigations on these questions, and how these associations may influence the clinical context.

Keywords: coping, distress, hearing loss, personality

Procedia PDF Downloads 145
23299 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 161
23298 MASCOT: Design and Development of an Interactive Self-Evaluation Tool for Students’ Thinking Complexity

Authors: Xin Gao, Jun Wu

Abstract:

'In Dialogue with Humanity’ and ‘In Dialogue with Nature’ are two compulsory General Education Foundation (GEF) courses for all undergraduates at the Chinese University of Hong Kong (CUHK). These courses aim to enrich students’ intellectual pursuits and enhance their thinking capabilities through classic readings. To better understand and evaluate students’ thinking habits and abilities, GEF introduced Narrative Qualitative Analysis (NQA) in 2014 and has continued the study since then. Through the NQA study, a two-way evaluation scheme has been developed, including both student self-evaluation and teacher evaluation. This study will first introduce the theoretical background and research framework of the NQA study and then focus on student self-evaluation. An interactive online application, MASCOT, has been developed to facilitate students’ self-evaluation of their own thinking complexity. In this presentation, the design and development of MASCOT will be explained, and the main results will be reported when applying it in classroom teaching. An obvious discrepancy has been observed between students’ self-evaluations and teachers’ evaluations.

Keywords: narrative qualitative analysis, thinking complexity, student self-evaluation, interactive online application

Procedia PDF Downloads 48
23297 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing

Authors: Alona Faktor

Abstract:

In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.

Keywords: cognitive science, attentin, deep learning, generalization

Procedia PDF Downloads 198
23296 Emergence of Information Centric Networking and Web Content Mining: A Future Efficient Internet Architecture

Authors: Sajjad Akbar, Rabia Bashir

Abstract:

With the growth of the number of users, the Internet usage has evolved. Due to its key design principle, there is an incredible expansion in its size. This tremendous growth of the Internet has brought new applications (mobile video and cloud computing) as well as new user’s requirements i.e. content distribution environment, mobility, ubiquity, security and trust etc. The users are more interested in contents rather than their communicating peer nodes. The current Internet architecture is a host-centric networking approach, which is not suitable for the specific type of applications. With the growing use of multiple interactive applications, the host centric approach is considered to be less efficient as it depends on the physical location, for this, Information Centric Networking (ICN) is considered as the potential future Internet architecture. It is an approach that introduces uniquely named data as a core Internet principle. It uses the receiver oriented approach rather than sender oriented. It introduces the naming base information system at the network layer. Although ICN is considered as future Internet architecture but there are lot of criticism on it which mainly concerns that how ICN will manage the most relevant content. For this Web Content Mining(WCM) approaches can help in appropriate data management of ICN. To address this issue, this paper contributes by (i) discussing multiple ICN approaches (ii) analyzing different Web Content Mining approaches (iii) creating a new Internet architecture by merging ICN and WCM to solve the data management issues of ICN. From ICN, Content-Centric Networking (CCN) is selected for the new architecture, whereas, Agent-based approach from Web Content Mining is selected to find most appropriate data.

Keywords: agent based web content mining, content centric networking, information centric networking

Procedia PDF Downloads 475
23295 A CPS Based Design of Industrial Ecosystems

Authors: Maryam Shayan

Abstract:

Chemical Process Simulation (CPS) software has been generally utilized by chemical (process) designers to outline, test, advance, and coordinate process plants. It is relied upon that modern scientists to bring these same critical thinking advantages to the outline and operation of industrial ecosystems can utilize CPS. This paper gives modern environment researchers and experts with a prologue to CPS and a review of compound designing configuration standards. The paper highlights late research demonstrating that CPS can be utilized to model modern industrial ecosystems, and talks about the advantages of utilizing CPS to address a portion of the specialized difficulties confronting organizations partaking in an industrial ecosystem. CPS can be utilized to (i) quantitatively assess and analyze the potential ecological and monetary advantages of material and vitality linkages; (ii) unravel general plan, retrofit, or operational issues; (iii) help to distinguish complex and frequently irrational arrangements; and (iv) assess imagine a scenario in which situations. CPS ought to be a valuable expansion to the mechanical environment tool stash.

Keywords: chemical process simulation (CPS), process plants, industrial ecosystems, compound designing

Procedia PDF Downloads 280
23294 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 21
23293 A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera

Authors: Vangelis Drosos, Dimitrios Tsoukalos, Dimitrios Tsolis

Abstract:

We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution.

Keywords: voxel, octree, computer vision, XR, floating origin

Procedia PDF Downloads 133
23292 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution

Authors: Masomeh Jamshid Nejad

Abstract:

Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.

Keywords: statistics, excel-based instruction, data visualization, pedagogy

Procedia PDF Downloads 53
23291 Public Perceptions of Solar Energy in South-West Nigeria

Authors: Kugbeme Isumonah

Abstract:

The Nigerian State has continued to battle huge power supply challenges. Erratic supply, low voltage, and billing issues characterize its power sector. Solar power is increasingly being advocated for as a potential to Nigeria’s energy crisis. This study investigates how the Nigerian public perceives solar power. It employs the use of an open-ended online survey eliciting responses from participants resident in two of South-West Nigeria’s largest cities (Lagos and Ibadan). The study found that general attitudes towards solar power are positive, and the energy source is viewed with great optimism within the context of solutions to Nigeria’s energy issues. It also found no significant variation in public perceptions of solar power along demographic lines. Further, it found that finance represents the biggest barrier to broader solar power adoption. The results of this study provide evidence for policy formulation geared towards addressing finance difficulties that currently impede expansion of solar power use in Nigeria.

Keywords: public perceptions, solar energy, Nigeria, attitudes

Procedia PDF Downloads 107
23290 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 350
23289 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 118
23288 Hypoglycemic Coma in Elderly Patients with Diabetes mellitus

Authors: D. Furuya, H. Ryujin, S. Takahira, Y. Sekine, Y. Oya, K. Sonoda, H. Ogawa, Y. Nomura, R. Maruyama, H. Kim, T. Kudo, A. Nakano, T. Saruta, S. Sugita, M. Nemoto, N. Tanahashi

Abstract:

Purpose: To study the clinical characteristics of hypoglycemic coma in adult patients with type 1 or type 2 diabetes mellitus (DM). Methods: Participants in this retrospective study comprised 91 patients (54 men, 37 women; mean age ± standard deviation, 71.5 ± 12.6 years; range, 42-97 years) brought to our emergency department by ambulance with disturbance of consciousness in the 7 years from April 2007 to March 2014. Patients with hypoglycemia caused by alcoholic ketoacidosis, nutrition disorder, malignancies and psychological disorder were excluded. Results: Patients with type 1 (8 of 91) or type 2 DM (83 of 91) were analyzed. Mean blood sugar level was 31.6 ± 10.4 in all patients. A sulfonylurea (SU) was more commonly used in elderly (>75 years old; n=44)(70.5%) than in younger patients (36.2%, p < 0.05). Cases showing prolonged unconsciousness (range, 1 hour to 21 days; n=30) included many (p < 0.05) patients with dementia (13.3%; 0.5% without dementia) and fewer (p < 0.05) patients with type 1 DM (0%; 13.1% in type 2 DM). Specialists for DM (n=33) used SU less often (24.2%) than general physicians (69.0%, p < 0.05). Conclusion: In cases of hypoglycemic coma, SU was frequently used in elderly patients with DM.

Keywords: hypoglycemic coma, Diabetes mellitus, unconsciousness, elderly patients

Procedia PDF Downloads 490
23287 Preparation of Regional Input-Output Table for Fars Province in 2011: GRIT1Method

Authors: Maryam Akbarzadeh, F. Esmaeilzadeh, A. Poostvar, M. Manuchehri

Abstract:

Preparation of regional input-output tables requires statistical methods combined with high costs and too much time. Obtained estimates by non-statistical methods have low confidence coefficient. Therefore, integrated methods for this purpose are suggested by recent input–output studies. In this study, first GRIT method is introduced as an appropriate integrated method for preparation of input-output table of Fars province. Next, input-output table is prepared for Fars province using this method. Therefore, this study is based on input-output table of national economy in 2001. Necessary modifications performed in the field of changes at level of prices and differences of regional trade compared with other areas at national level. Moreover, up to date statistics and information and technical experts view on the various economic sectors along with input-output table 33 was used in 2011 followed by investigation of general structure of the province economy based on the amounts of added value obtained from this table.

Keywords: grit, input-output, table, regional

Procedia PDF Downloads 260
23286 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar

Abstract:

Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 174
23285 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 432
23284 The Mass Attenuation Coefficients, Effective Atomic Cross Sections, Effective Atomic Numbers and Electron Densities of Some Halides

Authors: Shivalinge Gowda

Abstract:

The total mass attenuation coefficients m/r, of some halides such as, NaCl, KCl, CuCl, NaBr, KBr, RbCl, AgCl, NaI, KI, AgBr, CsI, HgCl2, CdI2 and HgI2 were determined at photon energies 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The mass attenuation coefficients and the effective atomic cross sections are found to be in good agreement with the XCOM values. From these mass attenuation coefficients, the effective atomic cross sections sa, of the compounds were determined. These effective atomic cross section sa data so obtained are then used to compute the effective atomic numbers Zeff. For this, the interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed by using the logarithmic regression analysis of the data measured by the authors and reported earlier for the above said energies along with XCOM data for standard energies. The best-fit coefficients in the photon energy range of 250 to 350 keV, 350 to 500 keV, 500 to 700 keV, 700 to 1000 keV and 1000 to 1500 keV by a piecewise interpolation method were then used to find the Zeff of the compounds with respect to the effective atomic cross section sa from the relation obtained by piece wise interpolation method. Using these Zeff values, the electron densities Nel of halides were also determined. The present Zeff and Nel values of halides are found to be in good agreement with the values calculated from XCOM data and other available published values.

Keywords: mass attenuation coefficient, atomic cross-section, effective atomic number, electron density

Procedia PDF Downloads 377
23283 Waste Water Treatment and Emerging Waste Water Contaminants in Developing Countries

Authors: Opata Obinna Johnpaul

Abstract:

Wastewater is one of the day-to–day concerns of humans and the environment, in general, due to its importance to the environment. This is because of the presence of various contaminants that are involved in waste water. Wastewater treatment can be defined as the proportion of wastewater that is treated, in order to reduce pollutants before being discharged to the environment, by the level of treatment. This work discusses wastewater treatment, its contaminants, as well as the technologies, involved.The major focus is to analyze Okomu Oil Palm Company Plc, their effluent treatment facility. Okomu Oil Palm Company is based in Nigeria, which is one of the developing countries of the world. Okomu Oil Palm Company uses aquatic treatment technology for their effluent treatment and applies the physio-chemical level of advanced chemical treatment of wastewater treatment process. This work will discuss the outcome of the laboratory sample taken on the 30th January, 2015 and analyzed between 30th January- 4th February 2015.

Keywords: wastewater treatment, contaminants, physio-chemical process, Okomu oil palm

Procedia PDF Downloads 358
23282 The Performance of Natural Light by Roof Systems in Cultural Buildings

Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo

Abstract:

This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.

Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting

Procedia PDF Downloads 210
23281 Developing a Culturally Acceptable End of Life Survey (the VOICES-ESRD/Thai Questionnaire) for Evaluation Health Services Provision of Older Persons with End-Stage Renal Disease (ESRD) in Thailand

Authors: W. Pungchompoo, A. Richardson, L. Brindle

Abstract:

Background: The developing of a culturally acceptable end of life survey (the VOICES-ESRD/Thai questionnaire) is an essential instrument for evaluation health services provision of older persons with ESRD in Thailand. The focus of the questionnaire was on symptoms, symptom control and the health care needs of older people with ESRD who are managed without dialysis. Objective: The objective of this study was to develop and adapt VOICES to make it suitable for use in a population survey in Thailand. Methods: The mixed methods exploratory sequential design was focussed on modifying an instrument. Data collection: A cognitive interviewing technique was implemented, using two cycles of data collection with a sample of 10 bereaved carers and a prototype of the Thai VOICES questionnaire. Qualitative study was used to modify the developing a culturally acceptable end of life survey (the VOICES-ESRD/Thai questionnaire). Data analysis: The data were analysed by using content analysis. Results: The revisions to the prototype questionnaire were made. The results were used to adapt the VOICES questionnaire for use in a population-based survey with older ESRD patients in Thailand. Conclusions: A culturally specific questionnaire was generated during this second phase and issues with questionnaire design were rectified.

Keywords: VOICES-ESRD/Thai questionnaire, cognitive interviewing, end of life survey, health services provision, older persons with ESRD

Procedia PDF Downloads 286
23280 Improving Recovery Reuse and Irrigation Scheme Efficiency – North Gaza Emergency Sewage Treatment Project as Case Study

Authors: Yaser S. Kishawi, Sadi R. Ali

Abstract:

Part of Palestine, Gaza Strip (365 km2 and 1.8 million inhabitants) is considered a semi-arid zone relies solely on the Coastal Aquifer. The coastal aquifer is only source of water with only 5-10% suitable for human use. This barely cover the domestic and agricultural needs of Gaza Strip. Palestinian Water Authority Strategy is finding non-conventional water resource from treated wastewater to cover agricultural requirements and serve the population. A new WWTP project is to replace the old-overloaded Biet Lahia WWTP. The project consists of three parts; phase A (pressure line & infiltration basins - IBs), phase B (a new WWTP) and phase C (Recovery and Reuse Scheme – RRS – to capture the spreading plume). Currently, only phase A is functioning. Nearly 23 Mm3 of partially treated wastewater were infiltrated into the aquifer. Phase B and phase C witnessed many delays and this forced a reassessment of the RRS original design. An Environmental Management Plan was conducted from Jul 2013 to Jun 2014 on 13 existing monitoring wells surrounding the project location. This is to measure the efficiency of the SAT system and the spread of the contamination plume with relation to the efficiency of the proposed RRS. Along with the proposed location of the 27 recovery wells as part of the proposed RRS. The results of monitored wells were assessed compared with PWA baseline data. This was put into a groundwater model to simulate the plume to propose the best suitable solution to the delays. The redesign mainly manipulated the pumping rate of wells, proposed locations and functioning schedules (including wells groupings). The proposed simulations were examined using visual MODFLOW V4.2 to simulate the results. The results of monitored wells were assessed based on the location of the monitoring wells related to the proposed recovery wells locations (200m, 500m and 750m away from the IBs). Near the 500m line (the first row of proposed recovery wells), an increase of nitrate (from 30 to 70mg/L) compare to a decrease in Chloride (1500 to below 900mg/L) was found during the monitoring period which indicated an expansion of plume to this distance. On this rate with the required time to construct the recovery scheme, keeping the original design the RRS will fail to capture the plume. Based on that many simulations were conducted leading into three main scenarios. The scenarios manipulated the starting dates, the pumping rate and the locations of recovery wells. A simulation of plume expansion and path-lines were extracted from the model monitoring how to prevent the expansion towards the nearby municipal wells. It was concluded that the location is the most important factor in determining the RRS efficiency. Scenario III was adopted and showed an effective results even with a reduced pumping rates. This scenario proposed adding two additional recovery wells in a location beyond the 750m line to compensate the delays and effectively capture the plume. A continuous monitoring program for current and future monitoring wells should be in place to support the proposed scenario and ensure maximum protection.

Keywords: soil aquifer treatment, recovery and reuse scheme, infiltration basins, north gaza

Procedia PDF Downloads 313
23279 Political will in Fighting Corruption in Vietnam

Authors: Anh Dao Vu, Bill Ryan

Abstract:

The Vietnamese government struggles to grapple with the problem of rampant corruption, one of the most challenging difficulties the country faces. According to Transparency International’s Corruption Perceptions Index (CPI) 2014, Vietnam ranks 119 out of 175 countries. The CPI gives Vietnam a score of 31 on a scale from 0 to 100, where 0 indicates ‘highly corrupt’ and 100 represents ‘very clean’. Corruption eats into the national GDP of Vietnam, causing a loss of 3% to 4% of GDP per annum. In general, the Vietnamese people’s trust in their government to wage an effective fight against corruption, especially in the public sector, has been greatly eroded in recent years. Some substantial public demonstrations persuaded the government to implement strong anti-corruption measures. However, so far those measures have not been particularly successful. One of the main reasons for this shortcoming is that neither the Communist Party of Vietnam nor the government has demonstrated sufficiently strong ‘political will’ in fighting corruption. There remains a large gap between rhetoric and reality. This paper will examine the reasons why insufficient ‘political will’ is displayed in the ostensible fight against public sector corruption, and how certain anti-corruption strategies will both strengthen levels of political commitment to the fight against corruption while enhancing the effectiveness of that essential national endeavor.

Keywords: corruption, political will, Vietnam, anti-corruption

Procedia PDF Downloads 327
23278 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 446
23277 Antioxidant Activity and Hepatoprotective Potential of Genista quadriflora Munby against Paracetamol-Induced Liver Injury

Authors: Nacera Baali, Zahia Belloum, Souad Ameddah, Fadila Benayache, Samir Benayache, Chantal Wrutniak-Cabello

Abstract:

Allurement of herbs as health beneficial foods and as a source material for the development of new drugs, has led to greater furtherance in the study of herbal medicines during recent years. In the present study, in vitro antioxidant, free radical scavenging capacity, and hepatoprotective activity of butanolic extract from Genista quadriflora Munby (G.quadriflora) were evaluated using established in vitro models such as DPPH radical and hydrogen peroxide radical scavenging activities and antilipidperoxidation ability. Interestingly, the extract showed considerable in vitro antioxidant and free radical scavenging activities in a dose-dependent manner when compared to the standard antioxidant which verified the presence of antioxidant compound in extract tested. The hepatoprotective potential of G.quadriflora extract was also evaluated in male Wistar rats against paracetamol (APAP) induced liver damage. Therapy of G.quadriflora showed the liver protective effect on biochemical and histopathological alterations. Moreover, histological studies also supported the biochemical finding, that is, the maximum improvement in the histoarchitecture of the liver. Results revealed that G.quadriflora extract could protect the liver against APAP-induced oxidative damage by possibly increasing the antioxidant protection mechanism in rats. These findings are of great importance in view of the availability of the plant and its observed possible diverse applications in medicine and nutrition.

Keywords: genista quadriflora munby, antioxidant, liver, paracetamol, oxidative stress

Procedia PDF Downloads 473
23276 Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji, Adeyemi Adedokun

Abstract:

Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections.

Keywords: intersections, traffic conflict, traffic safety, street audit, accidents predictions

Procedia PDF Downloads 233
23275 Protective Effects of Urtica dioica Seed Extract in Aflatoxicosis: Histopathological and Biochemical Findings

Authors: Ahmet Uyar, Zabit Yener, Abdulahad Dogan

Abstract:

(1). The ameliorative potential and antioxidant capacity of an extract of Urtica dioica seeds (UDS) were investigated using histopathological changes in liver and kidney of broiler, measuring serum marker enzymes, antioxidant defence systems and lipid peroxidation (malondialdehyde (MDA)) content in various tissues of broilers exposed to aflatoxin (AF). (2). A total of 32 broilers were divided randomly into 4 groups: control, UDS extract-treated, AF-treated and AF+UDS extract-treated. Broilers in control and UDS extract-treated groups were fed on a diet without AF. The AF-treated group and AF+UDS extract-treated groups were treated with an estimated 1 mg total AF/kg feed. The AF+UDS extract groups received in addition 30 ml UDS extract/kg diet for 21 days. (3). The AF-treated group had significantly decreased body weight gain when compared to the other groups. (4). Biochemical analysis showed a small increase in the concentrations of serum aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase and lactate dehydrogenase in the AF-treated group compared to that of the control group, whereas concentrations of these enzymes were decreased in the AF+UDS group compared to that of the AF-treated group. (5). Administration of supplementary UDS extract helped restore the AF-induced increase in MDA and reduced the antioxidant system towards normality, particularly in the liver, brain, kidney and heart. Hepatorenal protection by UDS extracts was further supported by the almost normal histology in AF +UDS extract-treated group as compared to the degenerative changes in the AF-treated broilers. (6). It was concluded that UDS extract has a protective hepatorenal effect in broilers affected by aflatoxicosis, probably acting by promoting the antioxidative defence systems.

Keywords: aflatoxicosis, biochemistry, broiler, histopathology, Urtica dioica seed extract

Procedia PDF Downloads 341
23274 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
23273 The Theme 'Leyli and Majnun', the Ancient Legend of the East in the Cognominal Symphonic Poem of Great Composer Gara Garayev on Specific and Non–Specific Content

Authors: Vusala Amirbayova

Abstract:

The science of modern musicology, based on the achievements of a number of neighboring science fields, has more deeply penetrated into the sphere of artistic content of the art of music and developed a new scientific methodology, methods and approaches for a comprehensive study of the problem. In this regard, a new theory developed by the famous Russian musician-scientist, professor V. Kholopova – the specific and non – specific content of music – draws the attention with its different philosophical foundation and covering historical periods of the art of composing. The scientist related her theory to the art of European composer’s creativity, and did not include musical professionalism and especially, folklore creativity existing in other continent in her circle of interest. The researcher made an effort to explain triad (the world of ideas, emotions and subjects) which is included in the general content of music in the example of composers’ works belonging to different periods and cultures. In this respect, the artistic content of works has been deeply and comprehensively analyzed new philosophical basis. The theme ‘Leyli and Majnun’ was developed by many poets as one of the ancient legends of the East, and each artist was able to give a unique artistic interpretation of the work. This literary source was successfully developed in cognominal opera of great U. Hajibeyli in Azerbaijani music and its embodiment with symphonic means required great skill and courage from Gara Garayev. Unlike opera, as there is the opportunity to show the plot of ‘Leyli and Majnun’ in the symphonic poem, the composer achieved to reflect the main purpose of its idea convincingly with pure musical means, and created a great work with tragic spirit having a great emotional impact. Though the artistic content and form of ‘Leyli and Majnun’ symphonic poem have been sufficiently analyzed by music theorists until now, in our opinion, it is for the first time that the work is considered from the point of specific music content. Therefore, we will make an effort to penetrate into a specific layer of its artistic content after firstly reviewing the poem with traditional methods in the general plan. The use of both national fret – intonations and the system of major – minor by G. Garayev is based on well-tempered root. The composer, widely using national fret – intonations and model harmonic means on this ground, achieved to express the spirit and content of the poem. It perfectly embodies the grandeur and immortality of divine love, and the struggle of powerful human personality with the forces of despotism. Gara Garayev said about this work: “My most sublime goal and desire is to explain the literary issue that love endures to all obstacles and overcomes even death”. The music of ‘Leyli and Majnun’ symphonic poem is rich with deep desires and sharp contradictions. G.Garayev reflected these wonderful ideas about the power of music in his book ‘Articles, schools and sayings’: “Music is the decoration of life and a powerful source of inspiration”.

Keywords: content, music, symphonic, theory

Procedia PDF Downloads 268