Search results for: physicochemical properties of banana starch
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9498

Search results for: physicochemical properties of banana starch

1908 The Influense of Alternative Farming Systems on Physical Parameters of the Soil

Authors: L. Masilionyte, S. Maiksteniene

Abstract:

Alternative farming systems are used to cultivate high quality food products and retain the viability and fertility of soil. The field experiments of different farming systems were conducted at Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2013. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In different farming systems, farmyard manure, straw and green manure catch crops used for fertilization both in the soil low in humus and in the soil moderate in humus. In the 0–20 cm depth layer, it had a more significant effect on soil moisture than on other physical soil properties. In the agricultural systems, in which catch crops had been grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil moderate in humus content, compared with the soil low in humus, bulk density was by 1.4 % lower, and porosity by 1.8 % higher. The research findings create a possibility to make improvements in alternative cropping systems by choosing organic fertilizers and catch crops’ combinations that have the sustainable effect on soil and that maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote a development of organic agriculture.

Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming

Procedia PDF Downloads 404
1907 Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic

Authors: J. Pazourek, K. Šmejkal, P. Kollár, J. Rajchard, J. Šinko, Z. Balounová, E. Vlková, H. Salmonová

Abstract:

Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.

Keywords: cyanobacteria, fresh water resources, Pectinatella magnifica invasion, toxicity monitoring

Procedia PDF Downloads 239
1906 Screening of Lactobacilli and Bifidobacteria from Bangladeshi Indigenous Poultry for Their Potential Use as Probiotics

Authors: K. B. M. Islam, Syeeda Shiraj-Um-Mahmuda, Afroj Jahan, A. A. Bhuiyan

Abstract:

In Bangladesh, the use of imported probiotics in poultry is gradually being increased. But surprisingly, no probiotic bacteria have been isolated yet in Bangladesh despite the existence of scavenging native poultry as potential source that is seemingly more resistant to GIT infection as well as other diseases. Therefore, the study was undertaken to isolate, identify and characterize the potential probiotic Lactobacillus and Bifidobacteria strains from Bangladeshi indigenous poultry, and to evaluate their suitability to use in poultry industry. Crop and cecal samples from 61 healthy indigenous birds were used to isolate potential probiotics strains following conventional cultural methods. A total of 216 isolates were identified following physical, biochemical and molecular methods that belonged to the genus Lactobacillus and Bifidobacteria. An auto-aggregation test was performed for 180 and 136 isolated lactobacilli and bifidobacteria strains, respectively. Twelve lactobacilli isolates and 7 bifidobacteria isolates were selected because of their convenient aggregation. In vitro tests including antibacterial activity, resistance to low pH, hemolytic activities etc. were performed for evaluation of probiotic potential of each strain. Under the in vitro conditions and with respects to the probiotic traits, three lactobacilli; LS16, LS45, LS133 and two bifidobacteria, BS21 and BS90 were found to be potential probiotic strains. Thus, they are proposed to be evaluated for their in vivo probiotic properties. If the proposed strains are found suitable as the probiotics to be used in commercial poultry industry, it is expected that the local probiotics would be more beneficial and would save the huge amount of money that Bangladesh spends every year for the importation of such materials from abroad.

Keywords: Bangladeshi poultry, gut microbiota, lactic acid bacteria, scavenging chicken, GIT health

Procedia PDF Downloads 303
1905 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash

Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo

Abstract:

Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.

Keywords: composite, fly ash, full-scale, high volume

Procedia PDF Downloads 218
1904 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia

Authors: Kheireddine El-Boubbou

Abstract:

Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.

Keywords: magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy

Procedia PDF Downloads 230
1903 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment

Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad

Abstract:

Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.

Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation

Procedia PDF Downloads 62
1902 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.

Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate

Procedia PDF Downloads 155
1901 High Temperature Deformation Behavior of Al0.2CoCrFeNiMo0.5 High Entropy alloy

Authors: Yasam Palguna, Rajesh Korla

Abstract:

The efficiency of thermally operated systems can be improved by increasing the operating temperature, thereby decreasing the fuel consumption and carbon footprint. Hence, there is a continuous need for replacing the existing materials with new alloys with higher temperature working capabilities. During the last decade, multi principal element alloys, commonly known as high entropy alloys are getting more attention because of their superior high temperature strength along with good high temperature corrosion and oxidation resistance, The present work focused on the microstructure and high temperature tensile behavior of Al0.2CoCrFeNiMo0.5 high entropy alloy (HEA). Wrought Al0.2CoCrFeNiMo0.5 high entropy alloy, produced by vacuum induction melting followed by thermomechanical processing, is tested in the temperature range of 200 to 900oC. It is exhibiting very good resistance to softening with increasing temperature up to 700oC, and thereafter there is a rapid decrease in the strength, especially beyond 800oC, which may be due to simultaneous occurrence of recrystallization and precipitate coarsening. Further, it is exhibiting superplastic kind of behavior with a uniform elongation of ~ 275 % at 900 oC temperature and 1 x 10-3 s-1 strain rate, which may be due to the presence of fine stable equi-axed grains. Strain rate sensitivity of 0.3 was observed, suggesting that solute drag dislocation glide might be the active mechanism during superplastic kind of deformation. Post deformation microstructure suggesting that cavitation at the sigma phase-matrix interface is the failure mechanism during high temperature deformation. Finally, high temperature properties of the present alloy will be compared with the contemporary high temperature materials such as ferritic, austenitic steels, and superalloys.

Keywords: high entropy alloy, high temperature deformation, super plasticity, post-deformation microstructures

Procedia PDF Downloads 165
1900 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions

Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh

Abstract:

Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.

Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency

Procedia PDF Downloads 206
1899 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material

Authors: Muhammad Zahid

Abstract:

The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.

Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material

Procedia PDF Downloads 149
1898 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers

Authors: H. Asadi, H. Naderan Tahan

Abstract:

The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.

Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics

Procedia PDF Downloads 290
1897 Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock

Authors: Hyeonseok Yoo, Kiseok Oh, Jinsub Choi

Abstract:

Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer.

Keywords: doping, potential shock, single step anodization, titanium oxide nanotubes

Procedia PDF Downloads 460
1896 Rhizome-Soaking with Plant-Derived Smoke-Water (Pdsw) And Karrikinolide Boosts the Essential-Oil Yield, Active Constituents and Leaf Physiological Parameters of Mentha Arvensis L

Authors: Sarika Singh, Moin Uddin, M. Masroor A. Khan, Aman Sobia Chishti, Sangram Singh, Urooj Hassan Bhatt

Abstract:

Mentha arvensis L. (Japanese mint) is a perennial plant carrying medicinal, aromatic, antiseptic, and anaesthetic properties. Plant-derived smoke-water (PDSW) plays a significant role in seed germination, seedling growth, and other physiological attributes. To ascertain the effect of PDSW and karrikinolide on Mentha arvensis L., a rhizome-soaking experiment was conducted on Mentha arvensis. Prior to planting, mint rhizomes were soaked for 24 hours with aqueous solutions of various concentrations of PDSW (1:125v/v, 1:250 v/v, 1:500 v/v, and 1:1000 v/v), karrikinolide (10-6M, 10⁻⁷M, 10⁻⁸M, and 10⁻⁹M) using double distilled water as control treatment. Rhizome soaking with 1:500 v/v concentration of PDSW and 10⁻⁸M concentration of KAR1 increased the growth attributes, including plant height, fresh weight, dry, leaf area, and leaf yield per plant of Mentha arvensis. Leaf physiological-parameters, viz. chlorophyll fluorescence, PSII activity, and total chlorophyll and carotenoid content, were also increased as a result of the application of this treatment PDSW (1:500 v/v) and KAR1 (10⁻⁸M). In addition, treatment with 1:500 v/v and 10⁻⁸M significantly increased the essential oil yield and active constituents of Mentha arvensis compared to the control. Results indicated that PDSW, being a cheap source of karrikins, might be successfully used to augment mint essential oil production.

Keywords: active constituents, essential oil, medicinal plant, mentha arvensis L

Procedia PDF Downloads 90
1895 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent

Authors: Vatsal M. Patel, Navin B. Patel

Abstract:

The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.

Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave

Procedia PDF Downloads 162
1894 Preparation of Conductive Composite Fiber by the Reduction of Silver Particles onto Hydrolyzed Polyacrylonitrile Fiber

Authors: Z. Okay, M. Kalkan Erdoğan, M. Şahin, M. Saçak

Abstract:

Polyacrylonitrile (PAN) is one of the most common and cheap fiber-forming polymers because of its high strength and high abrasion resistance properties. The result of alkaline hydrolysis of PAN fiber could be formed the products with conjugated sequences of –C=N–, acrylamide, sodium acrylate, and amidine. In this study, PAN fiber was hydrolyzed in a solution of sodium hydroxide, and this hydrolyzed PAN (HPAN) fiber was used to prepare conductive composite fiber by silver particles. The electrically conductive PAN fiber has the usage potential to produce variety of materials such as antistatic materials, life jackets and static charge reducing products. We monitored the change in the weight loss values of the PAN fiber with hydrolysis time. It was observed that a 60 % of weight loss was obtained in the fiber weight after 7h hydrolysis under the investigated conditions, but the fiber lost its fibrous structure. The hydrolysis time of 5h was found to be suitable in terms of preserving its fibrous structure. The change in the conductivity values of the composite with the preparation conditions such as hydrolysis time, silver ion concentration was studied. PAN fibers with different degrees of hydrolysis were treated with aqueous solutions containing different concentrations of silver ions by continuous stirring at 20 oC for 30 min, and the composite having the maximum conductivity of 2 S/cm could be prepared. The antibacterial property of the conductive HPAN fibers participated silver was also investigated. While the hydrolysis of the PAN fiber was characterized with FTIR and SEM techniques, the silver reduction process of the HPAN fiber was investigated with SEM and TGA-DTA techniques. The SEM micrographs showed that the surface of HPAN fiber was rougher and much more corroded than that of the PAN fiber. Composite, Conducting polymer, Fiber, Polyacrylonitrile.

Keywords: composite, conducting polymer, fiber, polyacrylonitrile

Procedia PDF Downloads 478
1893 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 329
1892 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid

Authors: Houda Jalali, Hassan Abbassi

Abstract:

In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.

Keywords: entropy generation, heat transfer, nanofluid, natural convection

Procedia PDF Downloads 278
1891 Overview Studies of High Strength Self-Consolidating Concrete

Authors: Raya Harkouss, Bilal Hamad

Abstract:

Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology. At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete. A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure. The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.

Keywords: self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams

Procedia PDF Downloads 255
1890 Comparative Study of Stability of Crude and Purified Red Pigments of Pokeberry (Phytolacca Americana L.) Fruits

Authors: Nani Mchedlishvili, Nino Omiadze, Marine Abutidze, Jose Neptuno Rodriguez-Lopez, Tinatin Sadunishvili, Nikoloz Pruidze, Giorgi Kvesitadze

Abstract:

Recently, there is an increased interest in the development of food natural colorants as alternatives to synthetic dyes because of both legislative action and consumer concern. Betalains are widely used in the food industry as an alternative of synthetic colorants. The interest of betalains are caused not only by their coloring effect but also by their beneficial properties. The aim of the work was to study of stability of crude and purified red pigments of pokeberry (Phytolacca america L.). The pokeberry fruit juice was filtrated and concentrated by rotary vacuum evaporator up to 25% and the concentrated juice was passed through the Sepadex-25(fine) column (20×1.1 cm). From the column the pigment elution rate was 18 ml/hr. 1.5ml fractions of pigment were collected. In the fractions the coloring substances were determined using CuS04 x 7 H2O as a standard. From the Sephadex G-25 column only one fraction of the betalain red pigment was eluted with the absorption maximum at 538 nm. The degree of pigment purification was 1.6 and pigment yield from the column was 15 %. It was shown that thermostability of pokeberry fruit red pigment was significantly decreased after the purification. For example, during incubation at 100C for 10 min crude pigment retained 98 % of its color while under the same conditions only 72% of the color of purified pigment was retained. The purified pigment was found to be characterized by less storage stability too. The storage of the initial crude juice and the pigment fraction obtained after the gelfiltration for 10 days at 4°C showed the lost of color by 29 and 74 % respectively. From the results obtained, it can be concluded that during the gelfiltration the pokeberry fruit red pigment gets separated from such substances that cause its stabilization in the crude juice.

Keywords: betalains, gelfiltration, pokeberry fruit, stability

Procedia PDF Downloads 289
1889 Cytotoxicity and Androgenic Potential of Antifungal Drug Substances on MDA-KB2 Cells

Authors: Benchouala Amira, Bojic Clement, Poupin Pascal, Cossu Leguille-carole

Abstract:

The objective of this study is to evaluate in vitro the cytotoxic and androgenic potential of several antifungal molecules (amphotericin B, econazole, ketoconazole and miconazole) on MDA-Kb2 cell lines. This biological model is an effective tool for the detection of endocrine disruptors because it responds well to the main agonist of the androgen receptor (testosterone) and also to an antagonist: flutamide. The cytotoxicity of each chemical compound tested was measured using an MTT assay (tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which measures the activity of the reductase function of mitochondrial succinate dehydrogenase enzymes of cultured cells. This complementary cytotoxicity test is essential to ensure that the effects of reduction in luminescence intensity observed during androgenic tests are only attributable to the anti-androgenic action of the compounds tested and not to their possible cytotoxic properties. Tests of the androgenic activity of antifungals show that these compounds do not have the capacity to induce transcription of the luciferase gene. These compounds do not exert an androgenic effect on MDA-Kb2 cells in culture for the environmental concentrations tested. The addition of flutamide for the same tested concentrations of antifungal molecules reduces the luminescence induced by amphotericin B, econazole and miconazole, which is explained by a strong interaction of these molecules with flutamide which may have a greater toxic effect than when tested alone. The cytotoxicity test shows that econazole and ketoconazole can cause cell death at certain concentrations tested. This cell mortality is perhaps induced by a direct or indirect action on deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or proteins necessary for cell division.

Keywords: cytotoxicity, androgenic potential, antifungals, MDA-Kb2

Procedia PDF Downloads 51
1888 The Effect of Chitosan and Mycorrhization on Some Growth-Physiological Indices of Salvia leriifolia Benth.

Authors: Marzieh Fotovvat, Farzaneh Najafi, Ramazan Ali Khavari-Nejad, Daryush Talei, Farhad Rejali

Abstract:

Salvia leriifolia Benth. is one of the valuable and perennial medicinal plants of the Lamiaceae family, geographically growing in the south and tropical regions of Khorassan and Semnan provinces in Iran. In recent years, several medicinal properties such as antimicrobial, antifungal, anti-diabetic, analgesic, and anti-inflammatory effects have been reported from this plant. The use of elicitors such as chitosan and Arbuscular mycorrhizal fungi (AMF) symbiosis are the main methods for increasing the production of secondary metabolites, growth, and physiological factors in plants. The main aim of this study was to investigate the effects of foliar spraying applications by chitosan and/or the contribution of AMF (Glomus interaradices) on some growth factors and chlorophyll content of S. leriifolia under glasshouse conditions. The sterilized seeds were germinated by placing them into a cocopeat. After one month, seedlings that were in the 2-4 leaf stage were transferred to plastic pots (garden soil and pumice at 2:1) with or without mycorrhizal fungi. Chitosan (0, 50, 100, 200, and 400 mg L-1) was sprayed four times in the fourth month of the vegetative period. The results showed that fresh leaf weight, fresh root weight, root height, and chlorophyll content could change in the plant treated with chitosan and AMF symbiosis. So that the highest chlorophyll content and fresh weight of roots and leaves were observed in the interaction of chitosan and G. interaradices. In general, by optimizing the chitosan concentration and the use of appropriate AMF symbiosis, it is possible to improve the growth and quality of the medicinal plant S. leriifolia.

Keywords: chitosan, chlorophyll, growth factors, mycorrhiza

Procedia PDF Downloads 83
1887 Nanocomposites Based Micro/Nano Electro-Mechanical Systems for Energy Harvesters and Photodetectors

Authors: Radhamanohar Aepuru, R. V. Mangalaraja

Abstract:

Flexible electronic devices have drawn potential interest and provide significant new insights to develop energy conversion and storage devices such as photodetectors and nanogenerators. Recently, self-powered electronic systems have captivated huge attention for next generation MEMS/NEMS devices that can operate independently by generating built-in field without any need of external bias voltage and have wide variety of applications in telecommunication, imaging, environmental and defence sectors. The basic physical process involved in these devices are charge generation, separation, and charge flow across the electrodes. Many inorganic nanostructures have been exploring to fabricate various optoelectronic and electromechanical devices. However, the interaction of nanostructures and their excited charge carrier dynamics, photoinduced charge separation, and fast carrier mobility are yet to be studied. The proposed research is to address one such area and to realize the self-powered electronic devices. In the present work, nanocomposites of inorganic nanostructures based on ZnO, metal halide perovskites; and polyvinylidene fluoride (PVDF) based nanocomposites are realized for photodetectors and nanogenerators. The characterization of the inorganic nanostructures is carried out through steady state optical absorption and luminescence spectroscopies as well as X-ray diffraction and high-resolution transmission electron microscopy (TEM) studies. The detailed carrier dynamics is investigated using various spectroscopic techniques. The developed composite nanostructures exhibit significant optical and electrical properties, which have wide potential applications in various MEMS/NEMS devices such as photodetectors and nanogenerators.

Keywords: dielectrics, nanocomposites, nanogenerators, photodetectors

Procedia PDF Downloads 130
1886 Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology

Authors: Fariba Tadayon, Nika Gharahgolooyan, Ateke Tadayon, Mostafa Jafarian

Abstract:

Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes.

Keywords: β-carotene, carotenoids, citrus peel, ostrich oil, response surface methodology, ultrasound-assisted extraction

Procedia PDF Downloads 316
1885 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan

Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani

Abstract:

Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.

Keywords: gypsum, soil loss, splash erosion, Afghanistan

Procedia PDF Downloads 133
1884 Nanoparticulated (U,Gd)O2 Characterization

Authors: A. Fernandez Zuvich, I. Gana Watkins, H. Zolotucho, H. Troiani, A. Caneiro, M. Prado, A. L. Soldati

Abstract:

The study of actinide nanoparticles (NPs) has attracted the attention of the scientific community not only because the lack of information about their ecotoxicological effects but also because the use of NPs could open a new way in the production of nuclear energy. Indeed, it was recently demonstrated that UO2 NPs sintered pellets exhibit closed porosity with improved fission gas retention and radiation-tolerance , ameliorated mechanical properties, and less detriment of the thermal conductivity upon use, making them an interesting option for new nuclear fuels. In this work, we used a combination of diffraction and microscopy tools to characterize the morphology, the crystalline structure and the composition of UO2 nanoparticles doped with 10%wt Gd2O3. The particles were synthesized by a modified sol-gel method at low temperatures. X-ray Diffraction (XRD) studies determined the presence of a unique phase with the cubic structure and Fm3m spatial group, supporting that Gd atoms substitute U atoms in the fluorite structure of UO2. In addition, Field Emission Gun Scanning (FEG-SEM) and Transmission (FEG-TEM) Electron Microscopy images revealed the presence of micrometric agglomerates of nanoparticles, with rounded morphology and an average crystallite size < 50 nm. Energy Dispersive Spectroscopy (EDS) coupled to TEM determined the presence of Gd in all the analyzed crystallites. Besides, FEG-SEM-EDS showed a homogeneous concentration distribution at the micrometer scale indicating that the small size of the crystallites compensates the variation in composition by averaging a large number of crystallites. These techniques, as combined tools resulted thus essential to find out details of morphology and composition distribution at the sub-micrometer scale, and set a standard for developing and analyzing nanoparticulated nuclear fuels.

Keywords: actinide nanoparticles, burnable poison, nuclear fuel, sol-gel

Procedia PDF Downloads 333
1883 Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation

Authors: Asmaa M. Fahim

Abstract:

In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation.

Keywords: synthesis, green chemistry, antitumor activity, DFT study

Procedia PDF Downloads 83
1882 Effect of Li-excess on Electrochemical Performance of Ni-rich LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂ Cathode Materials for Li-ion Batteries

Authors: Eyob Belew Abebe

Abstract:

Nickel-rich layered oxide cathode materials having a Ni content of ≥ 90% have great potential for use in next-generation lithium-ion batteries (LIBs), due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of Li-excess on the precursors using a solid-state method to obtain sintered Li1+x(Ni0.9Co0.05Mn0.05)1–xO2 (denoted as L1+x-NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x-NCM cathode having a Li-excess of 4% exhibited a discharge capacity of ca. 216.17 mAh g–1 at 2.7–4.3 V, 0.1C and retained 95.7% of its initial discharge capacity (ca. 181.39 mAh g–1) after 100 cycles of 1C charge/discharge which is the best performance as compared with stoichiometric Li1+x(Ni0.9Co0.05Mn0.05)1-xO2 (i.e. x=0, Li:TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mAh g–1 at a rate of 10C, led to the 4% Li-excess optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in-situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li-excess in the Ni-rich NCM90 cathode material: (i). decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii). increased the crystallinity, and (iii). accelerated Li+ ion transport by widening the Li-slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li-excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li-excess are potential candidates for use in next-generation Li-ion batteries.

Keywords: LiNi₀.₉Co₀.₀₉Mn₀.₀₉O₂, li-excess, cation mixing, structure change, cycle stability, electrochemical properties

Procedia PDF Downloads 176
1881 Performance Investigation of Silica Gel Fluidized Bed

Authors: Sih-Li Chen, Chih-Hao Chen, Chi-Tong Chan

Abstract:

Poor ventilation and high carbon dioxide (CO2) concentrations lead to the formation of sick buildings. This problem cannot simply be resolved by introducing fresh air from outdoor environments because this creates extra loads on indoor air-conditioning systems. Desiccants are widely used in air conditioning systems in tropical and subtropical regions with high humidity to reduce the latent heat load from fresh air. Desiccants are usually used as a packed-bed type, which is low cost, to combine with air-conditioning systems. Nevertheless, the pressure drop of a packed bed is too high, and the heat of adsorption caused by the adsorption process lets the temperature of the outlet air increase, bringing about an extra heat load, so the high pressure drop and the increased temperature of the outlet air are energy consumption sources needing to be resolved. For this reason, the gas-solid fluidised beds that have high heat and mass transfer rates, uniform properties and low pressure drops are very suitable for use in air-conditioning systems.This study experimentally investigates the performance of silica gel fluidized bed device which applying to an air conditioning system. In the experiments, commercial silica gel particles were filled in the two beds and to form a fixed packed bed and a fluidized bed. The results indicated that compared to the fixed packed bed device, the total adsorption and desorption by amounts of fluidized bed for 40 minutes increased 20.6% and 19.9% respectively when the bed height was 10 cm and superficial velocity was set to 2 m/s. In addition, under this condition, the pressure drop and outlet air temperature raise were reduced by 36.0% and 30.0%. Given the above results, application of the silica gel fluidized bed to air conditioning systems has great energy-saving potential.

Keywords: fluidized bed, packed bed, silica gel, adsorption, desorption, pressure drop

Procedia PDF Downloads 537
1880 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases

Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher

Abstract:

Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.

Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases

Procedia PDF Downloads 242
1879 The Synthesis, Structure and Catalytic Activity of Iron(II) Complex with New N2O2 Donor Schiff Base Ligand

Authors: Neslihan Beyazit, Sahin Bayraktar, Cahit Demetgul

Abstract:

Transition metal ions have an important role in biochemistry and biomimetic systems and may provide the basis of models for active sites of biological targets. The presence of copper(II), iron(II) and zinc(II) is crucial in many biological processes. Tetradentate N2O2 donor Schiff base ligands are well known to form stable transition metal complexes and these complexes have also applications in clinical and analytical fields. In this study, we present salient structural features and the details of cathecholase activity of Fe(II) complex of a new Schiff Base ligand. A new asymmetrical N2O2 donor Schiff base ligand and its Fe(II) complex were synthesized by condensation of 4-nitro-1,2 phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one and by using an appropriate Fe(II) salt, respectively. Schiff base ligand and its metal complex were characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and magnetic susceptibility. In order to determine the kinetics parameters of catechol oxidase-like activity of Schiff base Fe(II) complex, the oxidation of the 3,5-di-tert-butylcatechol (3,5-DTBC) was measured at 25°C by monitoring the increase of the absorption band at 390-400 nm of the product 3,5-di-tert-butylcatequinone (3,5-DTBQ). The compatibility of catalytic reaction with Michaelis-Menten kinetics also investigated by the method of initial rates by monitoring the growth of the 390–400 nm band of 3,5-DTBQ as a function of time. Kinetic studies showed that Fe(II) complex of the new N2O2 donor Schiff base ligand was capable of acting as a model compound for simulating the catecholase properties of type-3 copper proteins.

Keywords: catecholase activity, Michaelis-Menten kinetics, Schiff base, transition metals

Procedia PDF Downloads 395