Search results for: distance learning education
5973 Determination of Burnout Levels and Associated Factors of Teachers Working During the COVID-19 Pandemic Period
Authors: Kemal Kehan, Emine Aktas Bajalan
Abstract:
This study was carried out to determine the burnout levels and related factors of teachers working in primary schools affiliated to the Turkish Republic of Northern Cyprus (TRNC) Ministry of National Education during the COVID-19 pandemic period. The research was conducted in descriptive cross-sectional design. The population of the research consists of 1071 teachers working in 93 primary schools in 6 central districts affiliated to the TRNC Ministry of National Education in the 2021-2022 academic year. When the sample size of the study was calculated by power analysis, it was determined that 202 teachers should be reached with 95% confidence (1-α), 95% test power (1-β) and d=0.5 effect size. Within the scope of the inclusion criteria of the research, the main sample of the study consisted of 300 teachers and the baist random sampling method was used. The data were collected using the Sociodemographic Data Form consisting of 34 questions, including the sociodemographic characteristics of the teachers and the 22-item Maslach Burnout Scale (MBS). The analysis of the data was carried out using descriptive and correlational analyzes in the SPSS 22 package program. In the study, it was determined that 65% of the teachers were women, 68% were married, 84% had a bachelor's degree, 70.33% had children, and 67.67% were dependents. Regarding how teachers evaluate the COVID-19 pandemic period; 90% of them said, “I am worried about my family's health and the risk of infection”, 80% of them, “I feel that my profession does not get the value it deserves”, 75.67% of them mentioned “My hopes for the future have started to wane”, 75.33% of them say “I am worried about my own health”. It was determined that they gave the answer of, “I am worried about the issue”. It was found that the teachers' MBS total score average was 48.63±8.01, the burnout level was moderate, and the average score they got from the sub-dimensions of the scale was also moderate. It has been found that there are negative correlations between the professional satisfaction scores of the teachers during and before the COVID-19 pandemic and the scores they received from the general and sub-dimensions of MBS. It was determined that there was a statistically significant difference (p<0.05) between the scores of teachers diagnosed with COVID-19 from the scale and its sub-dimensions. As a result, it is suggested that social activities should be increased and professional development and promotion opportunities should be offered in order to ensure that teachers are satisfied with their work areas, to reduce their burnout levels or to prevent them completely.Keywords: teachers, burnout, maslach burnout scale, pandemic, online education
Procedia PDF Downloads 655972 Cosmetic Recommendation Approach Using Machine Learning
Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake
Abstract:
The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.Keywords: content-based filtering, cosmetics, machine learning, recommendation system
Procedia PDF Downloads 1345971 Chatbots as Language Teaching Tools for L2 English Learners
Authors: Feiying Wu
Abstract:
Chatbots are computer programs that attempt to engage a human in a dialogue, which originated in the 1960s with MIT's Eliza. However, they have become widespread more recently as advances in language technology have produced chatbots with increasing linguistic quality and sophistication, leading to their potential to serve as a tool for Computer-Assisted Language Learning(CALL). The aim of this article is to assess the feasibility of using two chatbots, Mitsuku and CleverBot, as pedagogical tools for learning English as a second language by stimulating L2 learners with distinct English proficiencies. Speaking of the input of stimulated learners, they are measured by AntWordProfiler to match the user's expected vocabulary proficiency. Totally, there are four chat sessions as each chatbot will converse with both beginners and advanced learners. For evaluation, it focuses on chatbots' responses from a linguistic standpoint, encompassing vocabulary and sentence levels. The vocabulary level is determined by the vocabulary range and the reaction to misspelled words. Grammatical accuracy and responsiveness to poorly formed sentences are assessed for the sentence level. In addition, the assessment of this essay sets 25% lexical and grammatical incorrect input to determine chatbots' corrective ability towards different linguistic forms. Based on statistical evidence and illustration of examples, despite the small sample size, neither Mitsuku nor CleverBot is ideal as educational tools based on their performance through word range, grammatical accuracy, topic range, and corrective feedback for incorrect words and sentences, but rather as a conversational tool for beginners of L2 English.Keywords: chatbots, CALL, L2, corrective feedback
Procedia PDF Downloads 795970 Effects of the Supplementary for Understanding and Preventing Plagiarism on EFL Students’ Writing
Authors: Surichai Butcha, Dararat Khampusaen
Abstract:
As the Internet is recognized as a high potential and powerful educational tool to access sources of knowledge, plagiarism is an increasing unethical issue found in students’ writing. This paper is deriving from the 1st phase of an on-going study investigating the effects of the supplementary on citing sources on undergraduate students’ writing. The 40 participants were divided into 1 experimental group and 1 control group. Both groups were administered with a questionnaire on knowledge and an interview on attitude related to using sources in writing. Only the experimental group undertook the 4 lessons focusing on using outside sources and citing the original work (quoting, synthesizing, summarizing and paraphrasing) were delivered to them via e-learning tools throughout a semester. Participants were required to produce 4 writing tasks after each lesson. The results were concerned with types and factors on using outside sources in writing of Thai undergraduate EFL students from the survey. The interview results supported and clarified the survey result. In addition, the writing rubrics confirmed the types of plagiarism frequently occurred in students’ writing. The results revealed the types and factors on plagiarism including their perceptions on using the outside sources in their writing from the interview. The discussion shed the lights on cultural dimensions of plagiarism in student writing, roles of teachers, library, and university policy on the rate of plagiarism. Also, the findings promoted the awareness on ethics in writing and prevented the rate of potential unintentional plagiarism. Additionally, the results of this phase of study could lead to the appropriate contents to be considered for inclusion in the supplementary on using sources for writing for future research.Keywords: citing source, EFL writing, e-learning, Internet, plagiarism
Procedia PDF Downloads 1495969 A Computationally Intelligent Framework to Support Youth Mental Health in Australia
Authors: Nathaniel Carpenter
Abstract:
Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.Keywords: artificial intelligence, information systems, machine learning, youth mental health
Procedia PDF Downloads 1105968 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection
Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu
Abstract:
Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.Keywords: mucus, flow control, noise control, flow-induced noise
Procedia PDF Downloads 1455967 Automatic Content Curation of Visual Heritage
Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz
Abstract:
Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research
Procedia PDF Downloads 1845966 A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka
Authors: Imali T. Jayamanne, K. P. Asoka Ramanayake
Abstract:
Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model.Keywords: AFT model, first employment, proportional hazard, survey design, waiting time
Procedia PDF Downloads 3125965 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques
Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet
Abstract:
5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics
Procedia PDF Downloads 635964 Instructors Willingness, Self-Efficacy Beliefs, Attitudes and Knowledge about Provisions of Instructional Accommodations for Students with Disabilities: The Case Selected Universities in Ethiopia
Authors: Abdreheman Seid Abdella
Abstract:
This study examined instructors willingness, self-efficacy beliefs, attitudes and knowledge about provisions of instructional accommodations for students with disabilities in universities. Major concepts used in this study operationally defined and some models of disability were reviewed. Questionnaires were distributed to a total of 181 instructors from four universities and quantitative data was generated. Then to analyze the data, appropriate methods of data analysis were employed. The result indicated that on average instructors had positive willingness, strong self-efficacy beliefs and positive attitudes towards providing instructional accommodations. In addition, the result showed that the majority of participants had moderate level of knowledge about provision of instructional accommodations. Concerning the relationship between instructors background variables and dependent variables, the result revealed that location of university and awareness raising training about Inclusive Education showed statistically significant relationship with all dependent variables (willingness, self-efficacy beliefs, attitudes and knowledge). On the other hand, gender and college/faculty did not show a statistically significant relationship. In addition, it was found that among the inter-correlation of dependent variables, the correlation between attitudes and willingness to provide accommodations was the strongest. Furthermore, using multiple linear regression analysis, this study also indicated that predictor variables like self-efficacy beliefs, attitudes, knowledge and teaching methodology training made statistically significant contribution to predicting the criterion willingness. Predictor variables like willingness and attitudes made statistically significant contribution to predicting self-efficacy beliefs. Predictor variables like willingness, Special Needs Education course and self-efficacy beliefs made statistically significant contribution to predict attitudes. Predictor variables like Special Needs Education courses, the location of university and willingness made statistically significant contribution to predicting knowledge. Finally, using exploratory factor analysis, this study showed that there were four components or factors each that represent the underlying constructs of willingness and self-efficacy beliefs to provide instructional accommodations items, five components for attitudes towards providing accommodations items and three components represent the underlying constructs for knowledge about provisions of instructional accommodations items. Based on the findings, recommendations were made for improving the situation of instructional accommodations in Ethiopian universities.Keywords: willingness, self-efficacy belief, attitude, knowledge
Procedia PDF Downloads 2705963 Assessing In-Country Public Health Training Needs: Workforce Development to Meet Sustainable Development Goals
Authors: Leena Inamdar, David Allen, Sushma Acquilla, James Gore
Abstract:
Health systems globally are facing increasingly complex challenges. Emerging health threats, changing population demographics and increasing health inequalities, globalisation, economic constraints on government spending are some of the most critical ones. These challenges demand not only innovative funding and cross-sectoral approaches, but also require a multidisciplinary public health workforce equipped with skills and expertise to meet the future challenges of the Sustainable Development Goals (SDGs). We aim to outline an approach to assessing the feasibility of establishing a competency-based public health training at a country level. Although the SDGs provide an enabling impetus for change and promote positive developments, public health training and education still lag behind. Large gaps are apparent in both the numbers of trained professionals and the options for high quality training. Public health training in most Low-Middle Income Countries is still largely characterized by a traditional and limited public health focus. There is a pressing need to review and develop core and emerging competences for a well-equipped workforce fit for the future. This includes the important role of national Health and Human Resource Ministries in determining these competences. Public health has long been recognised as a multidisciplinary field, with need for professionals from a wider range of disciplines such as management, health promotion, health economics, law. Leadership and communication skills are also critical to achieve the successes in meeting public health outcomes. Such skills and competences need to be translated into competency-based training and education, to prepare current public health professionals with the skills required in today’s competitive job market. Integration of academic and service based public-health training, flexible accredited programmes to support existing mid-career professionals, continuous professional development need to be explored. In the current global climate of austerity and increasing demands on health systems, the need for stepping up public health training and education is more important than ever. By using a case study, we demonstrate the process of assessing the in-county capacity to establish a competency based public health training programme that will help to develop a stronger, more versatile and much needed public health workforce to meet the SDGs.Keywords: public health training, competency-based, assessment, SDGs
Procedia PDF Downloads 2015962 Longitudinal Changes in Body Composition in Subjects with Diabetes Who Received Low-Carbohydrate Diet Education: The Effect of Age and Sex
Authors: Hsueh-Ching Wu
Abstract:
Aims: This study investigated the longitudinal changes in BC were evaluated in patients with T2D who received carbohydrate-restricted diet education (CRDE), and the effects of age and sex on BC were analyzed. Design: This retrospective observational study was conducted between 2018 and 2021. A total of 6164 T2D patients were analyzed. Subjects with T2D who received CRDE (daily carbohydrate intake: 26-45%). A hierarchical linear model (HLM) was used to estimate the change amount and rate of change for the following variables in each group: body weight (BW), body mass index (BMI), body fat mass (BFM), percent body fat (PBF), appendicular skeletal muscle mass (ASM), and skeletal muscle index (SMI). Results: The BW, BMI, ASM, SMI and BFM of T2D patients who received CRDE for 3 years decreased with increasing age; PBF showed the opposite trend. The changes in BW, BMI, ASM, and SMI of patients older than 65 years were higher than those of patients younger than 65 years, and the annual rate of decline for males was higher than that for females. The annual change in BFM and PBF for both sexes changed from a downward trend before the age of 65 to a slow increase after the age of 65, and the slow increase rate for women was higher than that for men. Conclusion: Changes in body composition are associated with age and sex. BW and muscle tissue decrease with age, and attention must be paid to the rebound of adipose tissue after middle age. Patient or Public Contribution: The patient agreed to participate in a retrospective chart review during in the study period.Keywords: body weight, body composition, carbohydrate-restricted diet, nursing, type 2 diabetes
Procedia PDF Downloads 745961 The Effects of Teacher Efficacy, Instructional Leadership and Professional Learning Communities on Student Achievement in Literacy and Numeracy: A Look at Primary Schools within Sibu Division
Authors: Jarrod Sio Jyh Lih
Abstract:
This paper discusses the factors contributing to student achievement in literacy and numeracy in primary schools within Sibu division. The study involved 694 level 1 primary schoolteachers. Using descriptive statistics, the study observed high levels of practice for teacher efficacy, instructional leadership and professional learning communities (PLCs). The differences between gender, teaching experience and academic qualification were analyzed using the t-test and one-way analysis of variance (ANOVA). The study reported significant differences in respondent perceptions based on teaching experience vis-à-vis teacher efficacy. Here, the post hoc Tukey test revealed that efficaciousness grows with experience. A correlation test observed positive and significant correlations between all independent variables. Binary logistic regression was applied to predict the independent variables’ influence on student achievement. The findings revealed that a dimension of instructional leadership – ‘monitoring student progress’ - emerged as the best predictor of student achievement for literacy and numeracy. The result indicated the students were more than 4 times more likely to achieve the national key performance index for both literacy and numeracy when student progress was monitored. In conclusion, ‘monitoring student progress’ had a positive influence on students’ achievement for literacy and numeracy, hence making it a possible course of action for school heads. However, more comprehensive studies are needed to ascertain its consistency within the context of Malaysia.Keywords: efficacy, instructional, literacy, numeracy
Procedia PDF Downloads 2615960 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 425959 RS Based SCADA System for Longer Distance Powered Devices
Authors: Harkishen Singh, Gavin Mangeni
Abstract:
This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project.Keywords: SCADA, RS485, CC2540, labview, Si8900
Procedia PDF Downloads 3015958 Mixing Students: an Educational Experience with Future Industrial Designers and Mechanical Engineers
Authors: J. Lino Alves, L. Lopes
Abstract:
It is not new that industrial design projects are a result of cooperative work from different areas of knowledge. However, in the academic teaching of Industrial Design and Mechanical Engineering courses, it is not recurrent that those competences are mixed before the professional life arrives. This abstract intends to describe two semester experiences carried out by two professors - a mechanical engineer and an industrial designer - in the last two academic years, for which they created mixed teams of Industrial Design and Mechanical Engineering (UPorto University). The two experiences differ in several factors; the main one is related to the challenges of online education, a constraint that affected the second experience. In the first year, even before foreseeing the effects that the pandemic would reconfigure the education system, a partnership with the Education Service of Águas do Porto was established. The purpose of the exercise was the project development of a game that could be an interaction element oriented to potentiate a positive experience and as an educational contribution to the children. In the second year, already foreseeing that the teaching experience would be carried out online, it was decided to design an open briefing, which allowed the groups to choose among three themes: a hand scale game using additive manufacturing; a modular system for ventilated facade using a parametric design basis; or, a modular system for vertical gardens. In methodological terms, besides the weekly follow-up, with the simultaneous support of the two professors, a group self-evaluation was requested; and a form to be filled individually to evaluate other groups. One of the first conclusions is related to the briefing format. Industrial Design students seem comfortable working on an open briefing that allows them to draw the project on a conceptual basis created for that purpose; on the other hand, Mechanical Engineering students were uncomfortable and insecure in the initial phase due to the absence of concrete, closed "order." In other words, it is not recurrent for Mechanical Engineering students that the creative component is stimulated, seemingly leaving them reserved to the technical solution and execution, depriving them of the co-creation phase during the conceptual construction of the project's own brief. Another fact that was registered is related to the leadership positions in the groups, which alternated according to the state of development of the project: design students took the lead during the ideation/concept phase, while mechanical engineering ones took a greater lead during the intermediate development process, namely in the definition of constructive solutions, mass/volume calculations, manufacturing, and material resistance. Designers' competences were again more evident and assumed in the final phase, especially in communication skills, as well as in simulations in the context of use. However, at some moments, it was visible the capacity for quite balanced leadership between engineering and design, in a constant debate centered on the human factor of the project - evidenced in the final solution, in the compromise and balance between technical constraints, functionality, usability, and aesthetics.Keywords: education, industrial design, mechanical engineering, teaching ethodologies
Procedia PDF Downloads 1745957 An Explanatory Study into the Information-Seeking Behaviour of Egyptian Beggars
Authors: Essam Mansour
Abstract:
The key purpose of this study is to provide first-hand information about beggars in Egypt, especially from the perspective of their information seeking behaviour including their information needs. The researcher tries to investigate the information-seeking behaviour of Egyptian beggars with regard to their thoughts, perceptions, motivations, attitudes, habits, preferences as well as challenges that may impede their use of information. The research methods used were an adapted form of snowball sampling of a heterogeneous demographic group of participants in the beggary activity in Egypt. This sampling was used to select focus groups to explore a range of relevant issues. Data on the demographic characteristics of the Egyptian beggars showed that they tend to be men, mostly with no formal education, with an average age around 30s, labeled as low-income persons, mostly single and mostly Muslims. A large number of Egyptian beggars were seeking for information to meet their basic needs as well as their daily needs, although some of them were not able to identify their information needs clearly. The information-seeking behaviour profile of a very large number of Egyptian beggars indicated a preference for informal sources of information over formal ones to solve different problems and meet the challenges they face during their beggary activity depending on assistive devices, such as mobile phones. The high degree of illiteracy and the lack of awareness about the basic rights of information as well as information needs were the most important problems Egyptian beggars face during accessing information. The study recommended further research to be conducted about the role of the library in the education of beggars. It also recommended that beggars’ awareness about their information rights should be promoted through educational programs that help them value the role of information in their life.Keywords: user studies, information-seeking behaviour, information needs, information sources, beggars, Egypt
Procedia PDF Downloads 3195956 Technological Tool-Use as an Online Learner Strategy in a Synchronous Speaking Task
Authors: J. Knight, E. Barberà
Abstract:
Language learning strategies have been defined as thoughts and actions, consciously chosen and operationalized by language learners, to help them in carrying out a multiplicity of tasks from the very outset of learning to the most advanced levels of target language performance. While research in the field of Second Language Acquisition has focused on ‘good’ language learners, the effectiveness of strategy-use and orchestration by effective learners in face-to-face classrooms much less research has attended to learner strategies in online contexts, particular strategies in relation to technological tool use which can be part of a task design. In addition, much research on learner strategies and strategy use has been explored focusing on cognitive, attitudinal and metacognitive behaviour with less research focusing on the social aspect of strategies. This study focuses on how learners mediate with a technological tool designed to support synchronous spoken interaction and how this shape their spoken interaction in the opening of their talk. A case study approach is used incorporating notions from communities of practice theory to analyse and understand learner strategies of dyads carrying out a role play task. The study employs analysis of transcripts of spoken interaction in the openings of the talk along with log files of tool use. The study draws on results of previous studies pertaining to the same tool as a form of triangulation. Findings show how learners gain pre-task planning time through technological tool control. The strategies involving learners’ choices to enter and exit the tool shape their spoken interaction qualitatively, with some cases demonstrating long silences whilst others appearing to start the pedagogical task immediately. Who/what learners orientate to in the openings of the talk: an audience (i.e. the teacher), each other and/or screen-based signifiers in the opening moments of the talk also becomes a focus. The study highlights how tool use as a social practice should be considered a learning strategy in online contexts whereby different usages may be understood in the light of the more usual asynchronous social practices of the online community. The teachers’ role in the community is also problematised as the evaluator of the practices of that community. Results are pertinent for task design for synchronous speaking tasks. The use of community of practice theory supports an understanding of strategy use that involves both metacognition alongside social context revealing how tool-use strategies may need to be orally (socially) negotiated by learners and may also differ from an online language community.Keywords: learner strategy, tool use, community of practice, speaking task
Procedia PDF Downloads 3425955 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 2735954 Patient’s Knowledge and Use of Sublingual Glyceryl Trinitrate Therapy in Taiping Hospital, Malaysia
Authors: Wan Azuati Wan Omar, Selva Rani John Jasudass, Siti Rohaiza Md. Saad
Abstract:
Introduction & objective: The objectives of this study were to assess patient’s knowledge of appropriate sublingual glyceryl trinitrate (GTN) use as well as to investigate how patients commonly store and carry their sublingual GTN tablets. Methodology: This was a cross-sectional survey, using a validated researcher-administered questionnaire. The study involved cardiac patients receiving sublingual GTN attending the outpatient and inpatient departments of Taiping Hospital, a non-academic public care hospital. The minimum calculated sample size was 92, but 100 patients were conveniently sampled. Respondents were interviewed on 3 areas, including demographic data, knowledge and use of sublingual GTN. Eight items were used to calculate each subject’s knowledge score and six items were used to calculate use score. Results: Of the 96 patients who consented to participate, majority (96.9%) were well aware of the indication of sublingual GTN. With regards to the mechanism of action of sublingual GTN, 73 (76%) patients did not know how the medication works. Majority of the patients (66.7%) knew about the proper storage of the tablet. In relation to the maximum number of sublingual GTN tablets that can be taken during each angina episode, 36.5% did not know that up to 3 tablets of sublingual GTN can be taken during each episode of angina. Fifty four (56.2%) patients were not aware that they need to replace sublingual GTN every 8 weeks after receiving the tablets. Majority (69.8%) of the patients demonstrated lack of knowledge with regards to the use of sublingual GTN as prevention of chest pain. Conclusion: Overall, patients’ knowledge regarding the self administration of sublingual GTN is still inadequate. The findings support the need for more frequent reinforcement of patient education, especially in the areas of preventive use, storage and drug stability.Keywords: glyceryl trinitrate, knowledge, adherence, patient education
Procedia PDF Downloads 3985953 A Paradigm Model of Educational Policy Review Strategies to Develop Professional Schools
Authors: Farhad Shafiepour Motlagh, Narges Salehi
Abstract:
Purpose: The aim of the present study was a paradigm model of educational policy review strategies for the development of Professional schools in Iran. Research Methodology: The research method was based on Grounded theory. The statistical population included all articles of the ten years 2022-2010 and the method of sampling in a purposeful manner to the extent of theoretical saturation to 31 articles. For data analysis, open coding, axial coding and selective coding were used. Results: The results showed that causal conditions include social requirements (social expectations, educational justice, social justice); technology requirements (use of information and communication technology, use of new learning methods), educational requirements (development of educational territory, Development of educational tools and development of learning methods), contextual conditions including dual dimensions (motivational-psychological context, context of participation and cooperation), strategic conditions including (decentralization, delegation, organizational restructuring), intervention conditions (poor knowledge) Human resources, centralized system governance) and outcomes (school productivity, school professionalism, graduate entry into the labor market) were obtained. Conclusion: A review of educational policy is necessary to develop Iran's Professional schools, and this depends on decentralization, delegation, and, of course, empowerment of school principals.Keywords: school productivity, professional schools, educational policy, paradigm
Procedia PDF Downloads 2075952 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 225951 Analyzing the Impacts of Sustainable Tourism Development on Residents’ Well-Being Based on Stakeholder Perception: Evidence from a Coastal-Hinterland Region
Authors: Elham Falatoonitoosi, Vikki Schaffer, Don Kerr
Abstract:
Over-development for tourism and its consequences on residents’ well-being turn into a critical issue in tourism destinations. Learning about undesirable impacts of tourism has led many people to seek more sustainable and responsible tourism. The main objective of this research is to understand how and to what extent sustainable tourism development enhances locals’ well-being regarding stakeholder perception. The research was conducted in a coastal-hinterland tourism region through two sequential phases. At the first phase, a unique set of 19 sustainable tourism indicators resulted from a triplex model was used to examine the sustainability effects on the main factors of residents’ well-being including equity and living condition, life satisfaction, health condition, and education quality. The triplex model including i) systematic literature search, ii) convergent interviewing, and iii) DEMATEL aimed to develop sustainability indicators, specify them for a particular destination, and identify the dominant sustainability issues acting as key predictors in sustainable development. At the second phase, a hierarchical multiple regression was used to examine the relationship between sustainable development and local residents’ well-being. A number of 167 participants from five different groups of stakeholders perceived the importance level of each sustainability indicators regarding well-being factors on 5-point Likert scale. Results from the first phase indicated that sustainability training, government support, tourism sociocultural effects, tourism revenue, and climate change are the top dominant sustainability issues in the regional sustainable development. Results from the second phase showed that sustainable development considerably improves the overall residents’ well-being and has positive relationships with all well-being factors except life satisfaction. It explains that it was difficult for stakeholders to recognize a link between sustainable development and their overall life satisfaction and happiness. Among well-being’s factors, health condition was influenced the most by sustainability indicators that indicate stakeholders believed sustainability development can promote public health, health sector performance, quality of drinking water, and sanitation. For the future research, it is highly recommended to analysis the effects of sustainable tourism development on the other features of a tourism destination’s well-being including residents sociocultural empowerment, local economic growth, and attractiveness of the destination.Keywords: residents' well-being, stakeholder perception, sustainability indicators, sustainable tourism
Procedia PDF Downloads 2655950 Children and Migration in Ghana: Unveiling the Realities of Vulnerability and Social Exclusion
Authors: Thomas Yeboah
Abstract:
In contemporary times, the incessant movement of northern children especially girls to southern Ghana at the detriment of their education is worrisome. Due to the misplaced mindset of the migrants concerning southern Ghana, majority of them move without an idea of where to stay and what to do exposing them to hash conditions of living. Majority find menial work in cocoa farms, illegal mining and head porterage business. This study was conducted in the Kumasi Metropolis to ascertain the major causes of child migration from the northern part of Ghana to the south and their living conditions. Both qualitative and quantitative tools of data collection and analysis were employed. The purposive sampling technique was used to select 90 migrants below 18 years. Specifically, interviews, focus group discussions and questionnaires were used to elicit responses from the units of analysis. The study revealed that the major cause of child migration from northern Ghana to the south is poverty. It was evident that respondents were vulnerable to the new environment in which they lived. They are exposed to harsh environmental conditions; sexual, verbal and physical assault; and harassment from arm robbers. The paper recommends that policy decisions should be able to create an enabling environment for the labour force in the north to ameliorate the compelling effects poverty has on child migration. Efforts should also be made to create a proper psychological climate in the minds of the children regarding their destination areas through sensitization and education.Keywords: child migration, vulnerability, social exclusion, child labour, Ghana
Procedia PDF Downloads 4435949 Knowledge, Attitude, and Practice of Pre-exposure Prophylaxis on Human immunodeficiency virus Infection of Students at National University–Manila
Authors: Roel Guinto Jr, John Peter Dacanay, Edison Ramos
Abstract:
The Philippines now has the fastest-growing HIV epidemic in the entire Asia-Pacific region. According to the January 2023 HIV/AIDS Registry of the Philippines of the Department of Health (DOH), there were 86 newly reported HIV cases involving 19 years old and below. A cure for HIV is not yet readily available but effective preventive measures to prevent its transmission. Pre-Exposure Prophylaxis is a biomedical intervention for HIV infection in the form of a pill. Students play a significant role in identifying solutions to preventing the transmission of HIV Infection, making it critical to assess their Knowledge, Attitude, and Practice of Pre-Exposure Prophylaxis on HIV Infection. A study was conducted among 390 regular students from different college departments at National University – Manila. A structured questionnaire was used to collect data and other statistical tools were used to analyze data. The findings reveal that most students had no knowledge or idea about PreExposure Prophylaxis before being interviewed. It also shows that students have a positive attitude toward the practice of Pre-Exposure Prophylaxis. The study revealed that there is also a significant relationship between the Knowledge and the Socio-demographic profile of the respondents. Knowledge, Attitude, and Practices on PrEP of students were overall identified, and areas of improvement were also recognized. Sex Education and Sexual Health Awareness should be implemented to enhance students’ knowledge of practicing safe sex to help prevent HIV Transmission.Keywords: HIV, cure, biomedical intervention, pre-exposure prophylaxis, pill, knowledge, attitude, practice, sex education, sexual health awareness
Procedia PDF Downloads 615948 The Analysis of Internet and Social Media Behaviors of the Students in Vocational High School
Authors: Mehmet Balci, Sakir Tasdemir, Mustafa Altin, Ozlem Bozok
Abstract:
Our globalizing world has become almost a small village and everyone can access any information at any time. Everyone lets each other know who does whatever in which place. We can learn which social events occur in which place in the world. From the perspective of education, the course notes that a lecturer use in lessons in a university in any state of America can be examined by a student studying in a city of Africa or the Far East. This dizzying communication we have mentioned happened thanks to fast developments in computer technologies and in parallel with this, internet technology. While these developments in the world, has a very large young population and a rapidly evolving electronic communications infrastructure Turkey has been affected by this situation. Researches has shown that almost all young people in Turkey has an account in a social network. Especially becoming common of mobile devices causes data traffic in social networks to increase. In this study, has been surveyed on students in the different age groups and at the Selcuk University Vocational School of Technical Sciences Department of Computer Technology. Student’s opinions about the use of internet and social media has been gotten. Using the Internet and social media skills, purposes, operating frequency, access facilities and tools, social life and effects on vocational education etc. have been explored. Both internet and use of social media positive and negative effects on this department students results have been obtained by the obtained findings evaluating from various aspects. Relations and differences have been found out with statistic.Keywords: computer technologies, internet use, social network, higher vocational school
Procedia PDF Downloads 5425947 Expanding the World: Public and Global Health Experiences for Undergraduate Nursing Students
Authors: Kristen Erekson, Sarah Spendlove Caswell
Abstract:
Nurse educators have the challenge of training future nurses that will provide compassionate care to an increasingly diverse population of patients in a culturally sensitive way. One approach to this challenge is an immersive public and global health experience as part of the nursing program curriculum. Undergraduate nursing students at our institution are required to participate in a Public and Global Health course. They participate in a didactic preparatory course followed by a 3-to-4-week program in one of the following locations: The Czech Republic, Ecuador, Finland/Poland, Ghana, India, Spain, Taiwan, Tonga, an Honor Flight to Washington D.C. with Veterans, or in local (Utah) communities working with marginalized populations (including incarcerated individuals, refugees, etc.). The students are required to complete 84 clinical hours and 84 culture hours (which involve exposure to local history, art, architecture, customs, etc.). As Faculty, we feel strongly that these public and global health experiences help cultivate cultural awareness in our students and prepare nurses who are better prepared to serve a diverse population of patients throughout their careers. This presentation will highlight our experiences and provide ideas for other nurse educators who have an interest in developing similar programs in their schools but do not know where to start. Suggestions about how to start building relationships that can lead to these opportunities, along with logistics for continuing the programs, will be highlighted.Keywords: global health nursing, nursing education, clinical education, public health nursing
Procedia PDF Downloads 785946 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 1705945 Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil
Authors: A. Shafaghat, H. Khabbaz, S. Moravej, Ah. Shafaghat
Abstract:
The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances.Keywords: bearing capacity, finite element analysis, loose sand, settlement equations, shallow foundation
Procedia PDF Downloads 2565944 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 292