Search results for: web usage data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26345

Search results for: web usage data

25625 Evaluation of Massive Open Online Course in a Rural Marginalized Area: Case Study of Alice Community, Eastern Cape, South Africa

Authors: Dare Ebenezer Fatumo, Olusesan Emmanuel Adelabu

Abstract:

Online learning has taken another dimension through the introduction of Massive Open Online Courses (MOOCs), it has also become an important resource base for teaching and learning. This research aimed at investigating the use of Massive Open Online Course in a rural marginalized area. The survey research design of descriptive nature was adopted to evaluate the awareness and usage of Massive Open Online Course (MOOCs) in Alice community, Eastern Cape, South Africa. This study also employed quantitative approach by using self-structured questionnaire to evoke information from the respondents. The data collected were analyzed by Statistical Package for Social Sciences (SPSS). The findings revealed amongst others the efficacy of Massive Open Online Course (MOOCs) in fostering teaching and learning in rural marginalized areas. This study concludes that MOOCs is a veritable medium for busy or less privileged individual to acquire a degree or certification. Therefore, the study recommends MOOCs platform to be fully embraced by people in rural marginalized areas, awareness programs about its usefulness should be propagated across the municipalities nationwide.

Keywords: distance learning, information and communication technology, massive open online course, online learning, teaching and learning

Procedia PDF Downloads 178
25624 Critical Analysis of Media Discourse and the Politics of Self-Censorship in Afghanistan

Authors: Abdul Wahab Rahimi

Abstract:

This research examines the role of discursive strategies in the politics of self-censorship in Afghanistan, where political pressure, press freedom, and independent media work together, and language plays a vital role in implementing these strategies. Critical Discourse Analysis was conducted to describe the connection between language usage and the exercise of power by analyzing news stories related to women’s rights. This research focuses on 11 months of chronologically collected data from two mainstream television channels in Afghanistan: Tolo News and Ariana News. The findings show that Tolo News sustains and justifies juxtaposition and political critics’ discursive strategies to address women’s rights issues, criticize government policies, and deal with political pressure. At the same time, Ariana News follows the factual narrative strategy, practices self-censorship, and skips or partially focuses on the objective reporting of sensitive issues. The research concludes that the domestic media in Afghanistan follows the media policy of the Islamic Emirate of Afghanistan by covering sensitive issues and marginalizing women's rights issues in the media discourse.

Keywords: discursive strategies, Taliban, TV Channel, news stories, self-censorship, women's rights.

Procedia PDF Downloads 12
25623 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 135
25622 Architects Lens on Afrocentric Cultural Approach to Housing

Authors: Aisha Abdulkarim Aliyu, Alice Sabrina Ismail, Fadhlina Binti Ahmad

Abstract:

The study's main goal is to improve Afrocentric cultural approaches in Nigerian residential environments (Kano) in terms of physical, aesthetical, and socio-cultural factors. Kano's fast-changing residential settings and city image have been subjected to a significant neoliberal restructuring process in recent decades. Architects have evolved in lockstep with the society they serve, first as an art form, then as a science, and finally as a business that designs structures. Design values have always emphasized a certain building style throughout history. Architects and architectural critics have a different perspective on them than the general public. In fact, a popular style among the general public was taken into consideration. When it comes to the current design, this study examines the values and viewpoints of architects on the usage of an Afrocentric cultural approach to housing. The qualitative data analysis of surveys conducted with Kano housing and planning professionals is used to determine the criteria for using an Afrocentric cultural approach in housing development in order to preserve and restore our cultural heritage, as well as to rank these criteria according to their importance. The professional lens on this subject differs insignificantly across Nigeria, although they do vary to some amount based on the sector of the housing industry, according to the study.

Keywords: architects lens, Afrocentric culture, housing, northern Nigeria

Procedia PDF Downloads 155
25621 Internet Pornography Consumption and Relationship Commitment of Filipino Married Individuals

Authors: Racidon P. Bernarte, Vincent Jude G. Estella, Dominador Jr. M. Nucon, Jin Danniel O. Villatema

Abstract:

Purpose: Internet pornography has many negative effects, but one of the disturbing phases of pornography usage is; users are insentient on how pornography influences and affects them. The acceptance of Internet pornography use in a relationship has been found to be higher among men than among women. The use of pornography directly correlates to a decrease in sexual intimacy. Hence, this might lead to the weakening of the relationship of the married individuals to their partner. To find out the relevance of the claim, the researchers aimed to explore the relationship of Internet pornography consumption to the relationship commitment of married individuals in the Philippines. Different factors such as level of satisfaction, the size of the investment, quality of alternatives, relationship stability, and viewing habits of the Filipino married individuals were also considered in determining the relationship of watching pornography online and the relationship commitment of the Filipino married individuals. Design/ Methodology/ Approach –The study used the quantitative research approach, specifically descriptive method and correlation in order to further analyze the gathered data. A self-administered survey was distributed to 400 selected Filipino married individuals who were married individuals that are watching pornography on the Internet who are living in Quezon City. Findings –It is revealed that Internet pornography consumption has a negative effect on the relationship commitment of married individuals. Furthermore, watching pornography online weakened the relationship commitment of the Filipino married individuals that leads to an unstable relationship.

Keywords: internet pornography consumption, relationship commitment, married individuals, polytechnic university of the Philippines

Procedia PDF Downloads 418
25620 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
25619 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 93
25618 Derivation of Bathymetry Data Using Worldview-2 Multispectral Images in Shallow, Turbid and Saline Lake Acıgöl

Authors: Muhittin Karaman, Murat Budakoglu

Abstract:

In this study, derivation of lake bathymetry was evaluated using the high resolution Worldview-2 multispectral images in the very shallow hypersaline Lake Acıgöl which does not have a stable water table due to the wet-dry season changes and industrial usage. Every year, a great part of the lake water budget has been consumed for the industrial salt production in the evaporation ponds, which are generally located on the south and north shores of Lake Acıgöl. Therefore, determination of the water level changes from a perspective of remote sensing-based lake water by bathymetry studies has a great importance in the sustainability-control of the lake. While the water table interval is around 1 meter between dry and wet season, dissolved ion concentration, salinity and turbidity also show clear differences during these two distinct seasonal periods. At the same time, with the satellite data acquisition (June 9, 2013), a field study was conducted to collect the salinity values, Secchi disk depths and turbidity levels. Max depth, Secchi disk depth and salinity were determined as 1,7 m, 0,9 m and 43,11 ppt, respectively. Eight-band Worldview-2 image was corrected for atmospheric effects by ATCOR technique. For each sampling point in the image, mean reflectance values in 1*1, 3*3, 5*5, 7*7, 9*9, 11*11, 13*13, 15*15, 17*17, 19*19, 21*21, 51*51 pixel reflectance neighborhoods were calculated separately. A unique image has been derivated for each matrix resolution. Spectral values and depth relation were evaluated for these distinct resolution images. Correlation coefficients were determined for the 1x1 matrix: 0,98, 0,96, 0,95 and 0,90 for the 724 nm, 831 nm, 908 nm and 659 nm, respectively. While 15x5 matrix characteristics with 0,98, 0,97 and 0,97 correlation values for the 724 nm, 908 nm and 831 nm, respectively; 51x51 matrix shows 0,98, 0,97 and 0,96 correlation values for the 724 nm, 831 nm and 659 nm, respectively. Comparison of all matrix resolutions indicates that RedEdge band (724 nm) of the Worldview-2 satellite image has the best correlation with the saline shallow lake of Acıgöl in-situ depth.

Keywords: bathymetry, Worldview-2 satellite image, ATCOR technique, Lake Acıgöl, Denizli, Turkey

Procedia PDF Downloads 447
25617 Concordance of Maghrebian Place Names in Hungarian School Atlases

Authors: Malak Alasli

Abstract:

Hungarians come to use geographic names that are foreign to their environment and language in diverse settings, hence the aim of trying to adapt them to their own linguistic context. The Maghreb region (Morocco, Algeria, and Tunisia) uses both Arabic and French in presenting the place names. Consequently, the lexicographical treatment of the toponym will, therefore, consist of both the presentation of the toponymic term and the pronunciation of the entries. The motivation behind this approach is the need for a better identification of the place in question by avoiding ambiguities, and for more respect to the heritage by conforming to the right use of toponyms both in written as well as in oral practice. The goal is to provide Hungarians with a set of data by attempting a system of transliteration from French/Arabic to Hungarian, where the place names of the Maghreb are transliterated for more efficient usage. To examine the importance of toponyms’ pronunciation, the latter were collected from several 20th and 21st Hungarian school atlases. Most people meet, for the first time, foreign place names in school, hence the choice of solely extracting place names from school atlases as sample data. Interviews targeted university students, where they were asked to pronounce the place names collected. Results revealed the intricacy behind the pronunciation. Two main conclusions emerged; Hungarian students encountered challenges reading the toponyms, and Arabic speakers could not identify the names either, which causes a cut in communication. Ergo, the importance of elaborating on the pronunciation of toponyms. Concordance is where you find variants of a name. Therefore, a chart was put forward including all the name variants obtained from various references with their Arabic transcription indicating any changes that may have occurred, and the origin of the denomination (Roman, Berber, etc.). A case will also be added for comments and observations. This work embraces a dual purpose. It will provide information to Hungarians on the official names of foreign places in case of occurring changes; for instance, 'El-goléa, Algeria' (used in a latest edition of a school atlas) has now the official name of 'El Ménia'. It will also serve as a reference for knowing the correct and precise forms of place names’ pronunciation.

Keywords: concordance, onomastics, settlement names, school atlases

Procedia PDF Downloads 109
25616 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 157
25615 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 593
25614 Predicting Long-Term Meat Productivity for the Kingdom of Saudi Arabia

Authors: Ahsan Abdullah, Ahmed A. S. Bakshwain

Abstract:

Livestock is one of the fastest-growing sectors in agriculture. If carefully managed, have potential opportunities for economic growth, food sovereignty and food security. In this study we mainly analyse and compare long-term i.e. for year 2030 climate variability impact on predicted productivity of meat i.e. beef, mutton and poultry for the Kingdom of Saudi Arabia w.r.t three factors i.e. i) climatic-change vulnerability ii) CO2 fertilization and iii) water scarcity and compare the results with two countries of the region i.e. Iraq and Yemen. We do the analysis using data from diverse sources, which was extracted, transformed and integrated before usage. The collective impact of the three factors had an overall negative effect on the production of meat for all the three countries, with adverse impact on Iraq. High similarity was found between CO2 fertilization (effecting animal fodder) and water scarcity i.e. higher than that between production of beef and mutton for the three countries considered. Overall, the three factors do not seem to be favorable for the three Middle-East countries considered. This points to possibility of a vegetarian year 2030 based on dependency on indigenous live-stock population.

Keywords: prediction, animal-source foods, pastures, CO2 fertilization, climatic-change vulnerability, water scarcity

Procedia PDF Downloads 321
25613 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 354
25612 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 189
25611 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia PDF Downloads 191
25610 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 246
25609 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub

Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi

Abstract:

This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendly

Keywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing

Procedia PDF Downloads 62
25608 Second Order Journalism: A Study of Selected Niche Authorities on Facebook and Twitter

Authors: Yvonne Dedzo

Abstract:

Social media has become a powerful tool in bridging the distance between individuals regardless of their location. It has become a convenient platform for public discussion and, consequently, generated the phenomenon of citizen journalists who have become both proactive and reactive participants in the dissemination of news, information and other epochal and historical events. This phenomenon has fueled the growth of niche authorities who deliver exceptional democratically consequential information online. This study, therefore, investigates how some selected niche authorities maintain their status on social media. Using the selective processes theory, the study further interrogates the information shared by niche authorities and further analyses the extent to which a public interest-altruistic motive or personal interest-self-serving motive drives their agenda of new sharing and usage. Through cyber-ethnography and, qualitative content analysis and semi-structured interviews, data was gathered and analysed from the posts of two purposely selected niche authorities on Facebook and Twitter. The findings indicate that niche authorities maintain their status by being consistent, prompt, informative, resourceful and interactive in their postings on the social media platform. The study also discovered that even though niche authorities are motivated by both public interest-altruism and interest-self-serving, the latter had a higher of motivation than the former.

Keywords: social medida, citizen journalist, niche authorities, selective processes theory

Procedia PDF Downloads 66
25607 Compare Online Metacognitive Reading Strategies Used by Iranian Postgraduate Students with Internal and External Locus of Control

Authors: Mitra Mesgar

Abstract:

Online learning environment is becoming more popular among learners because of their multiple information representations. Despite the growing importance of online reading strategies among adult learners, little attention has been carried out to postgraduate EFL learners. This study is quantitative research designed and aimed to investigate metacognitive reading strategies employed by Iranian postgraduate learners to read online academic texts. This study is conducted by over 50 Iranian postgraduate students studying in different Malaysian universities. This study used two different survey questionnaires, namely, 1) background questionnaire and 2) OSORS questionnaire. The collected data were analyzed using SPSS. The findings of the study emphasized metacognitive reading strategies used by different aged adult learners. The results of the survey questionnaires revealed that adult learners use global reading strategies as well as problem-solving strategies and support reading strategies. Also, through one-way analysis of variance toward age factor revealed that it has no meaningful changes on metacognitive reading strategy usage. This means that metacognitive reading strategies used by adult learners are independent of age variable. Drawing from findings, adult learners have learning goals, and since they have more exposure to online academic texts, they are able to use different metacognitive online reading strategies that affect their understanding of academic texts.

Keywords: online reading strategies, metacognitive strategies, online learning, independent students, locus of control

Procedia PDF Downloads 89
25606 Horizontal-Vertical and Enhanced-Unicast Interconnect Testing Techniques for Network-on-Chip

Authors: Mahdiar Hosseinghadiry, Razali Ismail, F. Fotovati

Abstract:

One of the most important and challenging tasks in testing network-on-chip based system-on-chips (NoC based SoCs) is to verify the communication entity. It is important because of its usage for transferring both data packets and test patterns for intellectual properties (IPs) during normal and test mode. Hence, ensuring of NoC reliability is required for reliable IPs functionality and testing. On the other hand, it is challenging due to the required time to test it and the way of transferring test patterns from the tester to the NoC components. In this paper, two testing techniques for mesh-based NoC interconnections are proposed. The first one is based on one-by-one testing and the second one divides NoC interconnects into three parts, horizontal links of switches in even columns, horizontal links of switches in odd columns and all vertical. A design for testability (DFT) architecture is represented to send test patterns directly to each switch under test and also support the proposed testing techniques by providing a loopback path in each switch. The simulation results shows the second proposed testing mechanism outperforms in terms of test time because this method test all the interconnects in only three phases, independent to the number of existed interconnects in the network, while test time of other methods are highly dependent to the number of switches and interconnects in the NoC.

Keywords: on chip, interconnection testing, horizontal-vertical testing, enhanced unicast

Procedia PDF Downloads 553
25605 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 143
25604 Exploring Bidirectional Encoder Representations from the Transformers’ Capabilities to Detect English Preposition Errors

Authors: Dylan Elliott, Katya Pertsova

Abstract:

Preposition errors are some of the most common errors created by L2 speakers. In addition, improving error correction and detection methods remains an open issue in the realm of Natural Language Processing (NLP). This research investigates whether the bidirectional encoder representations from the transformers model (BERT) have the potential to correct preposition errors accurately enough to be useful in error correction software. This research finds that BERT performs strongly when the scope of its error correction is limited to preposition choice. The researchers used an open-source BERT model and over three hundred thousand edited sentences from Wikipedia, tagged for part of speech, where only a preposition edit had occurred. To test BERT’s ability to detect errors, a technique known as multi-level masking was used to generate suggestions based on sentence context for every prepositional environment in the test data. These suggestions were compared with the original errors in the data and their known corrections to evaluate BERT’s performance. The suggestions were further analyzed to determine if BERT more often agreed with the judgements of the Wikipedia editors. Both the untrained and fined-tuned models were compared. Finetuning led to a greater rate of error-detection which significantly improved recall, but lowered precision due to an increase in false positives or falsely flagged errors. However, in most cases, these false positives were not errors in preposition usage but merely cases where more than one preposition was possible. Furthermore, when BERT correctly identified an error, the model largely agreed with the Wikipedia editors, suggesting that BERT’s ability to detect misused prepositions is better than previously believed. To evaluate to what extent BERT’s false positives were grammatical suggestions, we plan to do a further crowd-sourcing study to test the grammaticality of BERT’s suggested sentence corrections against native speakers’ judgments.

Keywords: BERT, grammatical error correction, preposition error detection, prepositions

Procedia PDF Downloads 147
25603 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming

Authors: Milind Chaudhari, Suhail Balasinor

Abstract:

Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.

Keywords: big data, IoT, vertical farming, indoor farming

Procedia PDF Downloads 175
25602 Synergistic Anti-Proliferation Effect of PLK-1 Inhibitor and Livistona Chinensis Fruit Extracts on Lung Adenocarcinoma A549 Cells

Authors: Min-Chien Su, Tzu-Hsuan Hsu, Guan-Xuan Wu, Shyh-Ming Kuo

Abstract:

Lung cancer is one of the clinically challenging malignant diseases worldwide. For efficient therapeutics in cancer, combination therapy has developed to acquire a better outcome. PLK-1 was one of the major factors affecting cell mitosis in cancer cells, its inhibitor Bi6727 was proven effective in treating several different cancers namely oral cancer, colon cancer and lung cancer. Despite its low toxicity toward normal cells compared to traditional chemotherapy, it is still yet to be evaluated in detail. Livistona Chinensis (LC) is a Chinese herb that used as a traditional prescription to treat lung cancer. Due to the uncertainty of the efficacy of LC, we utilized a water extraction method to extract the Livistona Chinensis and then lyophilized into powder for further study. In this study we investigated the antiproliferation activities of Bi6727 and LC extracts (LCE) on A549 non-small lung cancer cells. The IC50 of Bi6727 and LCE on A549 are 60 nM and 0.8 mg/mL, respectively. The fluorescent staining images shown nucleolus damage in cells treated with Bi6727 and mitochondrial damage after treated with LCE. A549 cells treated with Bi6727 and LCE showed increased expression of Bax, Caspase-3 and Caspase-9 proteins from Western blot assay. LCE also inhibited A549 cells growth keeping cells at G2-M phase from cell cycle assay. Apoptosis assay results showed that LCE induced late apoptosis of A549 cells. JC-1 assay showed that the mitochondria damaged at the LCE concentration of 0.4 mg/mL. In our preliminary anti-proliferation test of combined LCE and Bi-6727 on A549 cells, we found a dramatically decrease in proliferation after treated with LCE first for 24-h and then Bi-6727 for extra 24-h. This was an important finding regarding synergistic anti-proliferation effect of these drugs, However, the usage, the application sequence of LCE and Bi-6727 on A549 cells and their related mechanisms still need to be evaluated. In summary, the drugs exerted anti-proliferation effect on A549 cells independently. We hopefully combine the usage of these two drugs will bring a different and potential outcome in treating lung cancer.

Keywords: anti-proliferation, A549, Livistona Chinensis fruit extracts, PLK-1 inhibitor

Procedia PDF Downloads 141
25601 Intensifier as Changed from the Impolite Word in Thai

Authors: Methawee Yuttapongtada

Abstract:

Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.

Keywords: impolite word, intensifier, Thai, semantic change

Procedia PDF Downloads 181
25600 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital

Authors: Wieke Ellen Bouwes

Abstract:

This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.

Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations

Procedia PDF Downloads 74
25599 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt

Authors: A. Anis, W. Bekheet, A. El Hakim

Abstract:

Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.

Keywords: road safety management system, road crash, road fatality, road injury

Procedia PDF Downloads 146
25598 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE

Authors: Oualid Walid Ben Ali

Abstract:

Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.

Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE

Procedia PDF Downloads 490
25597 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: data mining, environmental modeling, sustainability, urban planning

Procedia PDF Downloads 308
25596 Identification of the Usage of Some Special Places in the Prehistoric Site of Tapeh Zagheh through Multi-Elemental Chemical Analysis of the Soil Samples

Authors: Iraj Rezaei, Kamal Al Din Niknami

Abstract:

Tapeh Zagheh is an important prehistoric site located in the central plateau of Iran, which has settlement layers of the Neolithic and Chalcolithic periods. For this research, 38 soil samples were collected from different parts of the site, as well as two samples from its outside as witnesses. Then the samples were analyzed by XRF. The purpose of this research was to identify some places with special usage for human activities in Tapeh Zagheh by measuring the amount of some special elements in the soil. The result of XRF analysis shows a significant amount of P and K in samples No.3 (fourth floor) and No.4 (third floor), probably due to certain activities such as food preparation and consumption. Samples No.9 and No.10 can be considered suitable examples of the hearths of the prehistoric period in the central plateau of Iran. The color of these samples was completely darkened due to the presence of ash, charcoal, and burnt materials. According to the XRF results, the soil of these hearths has very high amounts of elements such as P, Ca, Mn, S, K, and significant amounts of Ti, Fe, and Na. In addition, the elemental composition of sample No. 14, which was taken from a home waster, also has very high amounts of P, Mn, Mg, Ti, and Fe and high amounts of K and Ca. Sample No. 11, which is related to soil containing large amounts of waster of the kiln, along with a very strong increase in Cl and Na, the amount of elements such as K, Mg, and S has also increased significantly. It seems that the reason for the increase of elements such as Ti and Fe in some Tapeh Zagheh floors (for example, samples number 1, 2, 3, 4, 5) was the use of materials such as ocher mud or fire ash in the composition of these floors. Sample No. 13, which was taken from an oven located in the FIX trench, has very high amounts of Mn, Ti, and Fe and high amounts of P and Ca. Sample No. 15, which is related to House No. VII (probably related to a pen or a place where animals were kept) has much more phosphate compared to the control samples, which is probably due to the addition of animal excrement and urine to the soil. Sample No. 29 was taken from the north of the industrial area of Zagheh village (place of pottery kilns). The very low amount of index elements in sample No. 29 shows that the industrial activities did not extend to the mentioned point, and therefore, the range of this point can be considered as the boundary between the residential part of the Zagheh village and its industrial part.

Keywords: prehistory, multi-elemental analysis, Tapeh Zagheh, XRF

Procedia PDF Downloads 92