Search results for: poly (lactic acid)
3083 Reactivity Study on South African Calcium Based Material Using a pH-Stat and Citric Acid: A Statistical Approach
Authors: Hilary Rutto, Mbali Chiliza, Tumisang Seodigeng
Abstract:
The study on reactivity of calcined calcium-based material is very important in dry flue gas desulphurisation (FGD) process, so as to produce absorbent with high sulphur dioxide capture capacity during the hydration process. The effect of calcining temperature and time on the reactivity of calcined limestone material were investigated. In this study, the reactivity was measured using a pH stat apparatus and also confirming the result by performing citric acid reactivity test. The reactivity was calculated using the shrinking core model. Based on the experiments, a mathematical model is developed to correlate the effect of time and temperature to the reactivity of absorbent. The calcination process variables were temperature (700 -1000°C) and time (1-6 hrs). It was found that reactivity increases with an increase in time and temperature.Keywords: reactivity, citric acid, calcination, time
Procedia PDF Downloads 2203082 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs
Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas
Abstract:
The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens). The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.Keywords: silicic acid, chelators, meat quality, pigs, zinc sulphate
Procedia PDF Downloads 1803081 Treatment of Acid Mine Drainage with Metallurgical Slag
Authors: Sukla Saha, Alok Sinha
Abstract:
Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD.Keywords: acid mine drainage, Heavy metals, metallurgical slag, Neutralization
Procedia PDF Downloads 1873080 Aerobic Exercise Increases Circulating Hematopoietic Stem Cells and Endothelial Progenitor Cells
Authors: Khaled A. shady, Fagr B. Bazeed, Nashwa K. Abousamra, Ihab H. Elberawe, Ashraf E. shaalan, Mohamed A. Sobh
Abstract:
Physical activity activates a variety of adult stem cells which might be released into the circulation or might be activated in their organ-resident state. A variety of stimuli such as metabolic, mechanical, and hormonal stimuli might by responsible for the mobilization. This study was done to know the changes in hematopoietic stem cells and endothelial progenitor in athletes in the 24 hours following 30 min of aerobic exercise. Methods: Ten healthy male's athlete's (age 20.7± 0.61 y) performed moderate running with 30 min at 80% of velocity of The IAT. Blood samples taken pre-, and immediately, 30 min, 2h, 6h and 24h post-exercise were analyzed for hematopoietic stem cells (HSCs ), endothelial progenitor cells (EPCs(, vascular endothelial growth factor (VEGF), nitric oxide (NO), lactic acid (LA), and white blood cells . HSCs and EPCs were quantified by flow cytometry. Results: After 30min of aerobic exercise significant increases in HSCs, EPC, VEGF, NO, LA and WBCs (p ˂ 0.05). This increase will be at different rates according to the timing of taking blood sample and was in the maximum rate of increase after 30 min of aerobic exercise. HSCs, EPC, NO and WBCs were in the maximum rate of increase 2h post exercise. In addition, VEGF was in the maximum rate of increase immediately post exercise and LA concentration not affected after exercise. Conclusion: These data suggest that HSCs and EPCs increased after aerobic exercise due to increase of VEGF which play an important role in mobilization of stem cells and promotes NO increase which contributes to increase EPCs.Keywords: physical activity, hematopoietic stem cells, mobilization, athletes
Procedia PDF Downloads 1173079 Alpha Lipoic Acid: An Antioxidant for Infertility
Authors: Chiara Di Tucci, Giulia Galati, Giulia Mattei, Valentina Bonanni, Oriana Capri, Renzo D'Amelio, Ludovico Muzii, Pierluigi Benedetti Panici
Abstract:
Objective: Infertility is an increasingly frequent health condition, which may depend on female or male factors. Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, affects the reproductive lifespan of men and women. In this review, we examine if alpha lipoic acid (ALA), among the oral supplements currently in use, has an evidence-based beneficial role in the context of female and male infertility. Methods: We performed a search from English literature using the PubMed database with the following keywords: 'female infertility', 'male infertility', 'semen', 'sperm', 'sub-fertile man', 'alpha-lipoic acid', ' alpha lipoic acid', 'lipoid acid', 'endometriosis', 'chronic pelvic pain', 'follicular fluid' and 'oocytes'. We included clinical trials, multicentric studies, and reviews. The total number of references found after automatically and manually excluding duplicates was 180. After the primary and secondary screening, 28 articles were selected. Results: The available literature demonstrates the positive effects of ALA in multiple processes, from oocyte maturation (0.87 ± 0.9% of oocyte in MII vs 0.81 ± 3.9%; p < .05) to fertilization, embryo development (57.7% vs 75.7% grade 1 embryo; p < .05) and reproductive outcomes. Its regular administration both in sub-fertile women and men has been shown to reduce pelvic pain in endometriosis (p < .05), regularize menstrual flow and metabolic disorders (p < .01), and improve sperm quality (p < .001). Conclusions: ALA represents a promising new molecule in the field of couple infertility. More clinical studies are needed in order to enhance its use in clinical practice.Keywords: alpha lipoic acid, endometriosis, infertility, male factor, polycystic ovary syndrome
Procedia PDF Downloads 863078 Study of the Kinetics of Formation of Carboxylic Acids Using Ion Chromatography during Oxidation Induced by Rancimat of the Oleic Acid, Linoleic Acid, Linolenic Acid, and Biodiesel
Authors: Patrícia T. Souza, Marina Ansolin, Eduardo A. C. Batista, Antonio J. A. Meirelles, Matthieu Tubino
Abstract:
Lipid oxidation is a major cause of the deterioration of the quality of the biodiesel, because the waste generated damages the engines. Among the main undesirable effects are the increase of viscosity and acidity, leading to the formation of insoluble gums and sediments which cause the blockage of fuel filters. The auto-oxidation is defined as the spontaneous reaction of atmospheric oxygen with lipids. Unsaturated fatty acids are usually the components affected by such reactions. They are present as free fatty acids, fatty esters and glycerides. To determine the oxidative stability of biodiesels, through the induction period, IP, the Rancimat method is used, which allows continuous monitoring of the induced oxidation process of the samples. During the oxidation of the lipids, volatile organic acids are produced as byproducts, in addition, other byproducts, including alcohols and carbonyl compounds, may be further oxidized to carboxylic acids. By the methodology developed in this work using ion chromatography, IC, analyzing the water contained in the conductimetric vessel, were quantified organic anions of carboxylic acids in samples subjected to oxidation induced by Rancimat. The optimized chromatographic conditions were: eluent water:acetone (80:20 v/v) with 0.5 mM sulfuric acid; flow rate 0.4 mL min-1; injection volume 20 µL; eluent suppressor 20 mM LiCl; analytical curve from 1 to 400 ppm. The samples studied were methyl biodiesel from soybean oil and unsaturated fatty acids standards: oleic, linoleic and linolenic. The induced oxidation kinetics curves were constructed by analyzing the water contained in the conductimetric vessels which were removed, each one, from the Rancimat apparatus at prefixed intervals of time. About 3 g of sample were used under the conditions of 110 °C and air flow rate of 10 L h-1. The water of each conductimetric Rancimat measuring vessel, where the volatile compounds were collected, was filtered through a 0.45 µm filter and analyzed by IC. Through the kinetic data of the formation of the organic anions of carboxylic acids, the formation rates of the same were calculated. The observed order of the rates of formation of the anions was: formate >>> acetate > hexanoate > valerate for the oleic acid; formate > hexanoate > acetate > valerate for the linoleic acid; formate >>> valerate > acetate > propionate > butyrate for the linolenic acid. It is possible to suppose that propionate and butyrate are obtained mainly from linolenic acid and that hexanoate is originated from oleic and linoleic acid. For the methyl biodiesel the order of formation of anions was: formate >>> acetate > valerate > hexanoate > propionate. According to the total rate of formation these anions produced during the induced degradation of the fatty acids can be assigned the order of reactivity: linolenic acid > linoleic acid >>> oleic acid.Keywords: anions of carboxylic acids, biodiesel, ion chromatography, oxidation
Procedia PDF Downloads 4753077 The Utilization of Salicylic Acid of the Extract from Avocado Skin as an Inhibitor of Ethylene Production to Keep the Quality of Banana in Storage
Authors: Adira Nofeadri Ryofi, Alvin Andrianus, Anna Khairunnisa, Anugrah Cahyo Widodo, Arbhyando Tri Putrananda, Arsy Imanda N. Raswati, Gita Rahmaningsih, Ina Agustina
Abstract:
The consumption level of fresh bananas from 2005 until 2010, increased from 8.2 to 10 kg/capita/year. The commercial scale of banana generally harvested when it still green to make the banana avoid physical damage, chemical, and disease after harvest and ripe fruit. That first metabolism activity can be used as a synthesis reaction. Ripening fruit was influenced by ethylene hormone that synthesized in fruit which is experiencing ripe and including hormone in the ripening fruit process in klimaterik phase. This ethylene hormone is affected by the respiration level that would speed up the restructuring of carbohydrates inside the fruit, so the weighting of fruit will be decreased. Compared to other klimaterik fruit, banana is a fruit that has a medium ethylene production rate and the rate of respiration is low. The salicylic acid can regulate the result number of the growth process or the development of fruits and plants. Salicylic acid serves to hinder biosynthesis ethylene and delay senses. The research aims to understand the influence of salicylic acid concentration that derived from the waste of avocado skin in inhibition process to ethylene production that the maturation can be controlled, so it can keep the quality of banana for storage. It is also to increase the potential value of the waste of avocado skin that were still used in industrial cosmetics.Keywords: ethylene hormone, extract avocado skin, inhibitor, salicylic acid
Procedia PDF Downloads 2373076 Sorption of Charged Organic Dyes from Anionic Hydrogels
Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos
Abstract:
Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents
Procedia PDF Downloads 2593075 Microbial Dynamics and Sensory Traits of Spanish- and Greek-Style Table Olives (Olea europaea L. cv. Ascolana tenera) Fermented with Sea Fennel (Crithmum maritimum L.)
Authors: Antonietta Maoloni, Federica Cardinali, Vesna Milanović, Andrea Osimani, Ilario Ferrocino, Maria Rita Corvaglia, Luca Cocolin, Lucia Aquilanti
Abstract:
Table olives (Olea europaea L.) are among the most important fermented vegetables all over the world, while sea fennel (Crithmum maritimum L.) is an emerging food crop with interesting nutritional and sensory traits. Both of them are characterized by the presence of several bioactive compounds with potential beneficial health effects, thus representing two valuable substrates for the manufacture of innovative vegetable-based preserves. Given these premises, the present study was aimed at exploring the co-fermentation of table olives and sea fennel to produce new high-value preserves. Spanish style or Greek style processing method and the use of a multiple strain starter were explored. The preserves were evaluated for their microbial dynamics and key sensory traits. During the fermentation, a progressive pH reduction was observed. Mesophilic lactobacilli, mesophilic lactococci, and yeasts were the main microbial groups at the end of the fermentation, whereas Enterobacteriaceae decreased during fermentation. An evolution of the microbiota was revealed by metataxonomic analysis, with Lactiplantibacillus plantarum dominating in the late stage of fermentation, irrespective of processing method and use of the starter. Greek style preserves resulted in more crunchy and less fibrous than Spanish style one and were preferred by trained panelists.Keywords: lactic acid bacteria, Lactiplantibacillus plantarum, metataxonomy, panel test, rock samphire
Procedia PDF Downloads 1293074 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer
Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail
Abstract:
Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)
Procedia PDF Downloads 4693073 Microwave Assisted Foam-Mat Drying of Guava Pulp
Authors: Ovais S. Qadri, Abhaya K. Srivastava
Abstract:
Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.Keywords: foam mat drying, foam mat guava, guava powder, microwave drying
Procedia PDF Downloads 3333072 Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)
Authors: A. Bárbara Cattozatto Fortunato, D. de Lucca Soave, E. Pinheiro de Mello, M. Piasentini Oliva, V. Tavares de Moraes, G. Wolf Lebrão, D. Fernandes Parra, S. Marraccini Giampietri Lebrão
Abstract:
Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio® (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions.Keywords: biocomposites, sisal, polilactic acid, Polylactic Acid (PLA)
Procedia PDF Downloads 2483071 Durability Performances of Epoxy Resin/TiO₂ Composited Alkali-Activated Slag/Fly Ash Pastes in Phosphoric Acid Solution
Abstract:
Laden with phosphates at a low pH value, sewage wastewater aggressive environments constitute a great threat to concrete-based pipes which is made of alkaline cementitious materials such as ordinary Portland cement (OPC). As a promising alternative for OPC-based binders, alkali-activated slag/fly ash (AASF) cementitious binders are generally believed to gain similar or better properties compared to OPC-based counterparts, especially durability. However, there is limited research on the performance of AASF binders in phosphoric acid solution. Moreover, the behavior of AASF binders composited with epoxy resin/TiO₂ when exposed to acidic media has been rarely explored. In this study, the performance of AASF paste with the precursor slag:fly ash (50:50 in mass ratio) enhanced with epoxy resin/TiO₂ composite in phosphoric acid solution (pH = 3.0-4.0) was investigated. The exposure towards acid attack lasted for 90 days. The same AASF mixture without resin/TiO₂ composite was used as a reference. The compressive strength and porous-related properties prior to acidic immersion were tested. The mass variations and degradation depth of the two mixtures of binders were also monitored which is based on phenolphthalein-videomicroscope method. The results show that the binder with epoxy resin/TiO₂ addition gained a higher compressive strength and lower water absorption than the reference. In addition, it also displayed a higher resistance towards acid attack indicated by a less mass loss and less degradation depth compared to the control sample. This improvement can be attributed to a dense microstructure evidenced by the higher compressive strength and related porous structures. It can be concluded that the microstructure can be improved by adding epoxy resin/TiO₂ composite in order to enhance the resistance of AASF binder towards acid attacks.Keywords: alkali-activated paste, epoxy resin/TiO₂, composites, mechanical properties, phosphoric acid
Procedia PDF Downloads 1213070 Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth
Authors: Aqsa Kanwal, Min Zhang, Faisal Sharaf, Li Chengtao
Abstract:
The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications.Keywords: aliphatic-aromatic co-polyesters, polybutylene adipate terephthalate, lipase (CALB), biodegradation, plant growth
Procedia PDF Downloads 793069 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity
Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki
Abstract:
The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.Keywords: indium tin oxide, particles, surface-modification, volume resistivity
Procedia PDF Downloads 2533068 Attenuation of Homocysteine-Induced Cyclooxygenase-2 Expression in Human Monocytes by Fulvic Acid
Authors: Shao-Ju Chien, Yi-Chien Wu, Ting-Ying Huang, Li-Tsen Li, You-Jin Chen, Cheng-Nan Chen
Abstract:
Homocysteine and pro-inflammatory mediators such as cyclooxygenase-2 (COX-2) have been linked to vascular dysfunction and risks of cardiovascular diseases. Fulvic acid (FA) is class of compounds of humic substances and possesses various pharmacological properties. However, the effect of FA on inflammatory responses of the monocytes remains unclear. We investigated the regulatory effect of FA on homocysteine-induced COX-2 expression in human monocytes. Peripheral blood monocytes and U937 cells were kept as controls or pre-treated with FA, and then stimulated with homocysteine. The results show that pretreating monocytes with FA inhibited the homocysteine-induced COX-2 expression in a dose-dependent manner. The inhibitor for nuclear factor-kB (NF-kB) attenuated homocysteine-induced COX-2 expression. Our findings provide a molecular mechanism by which FA inhibit homocysteine-induced COX-2 expression in monocytes, and a basis for using FA in pharmaceutical therapy against inflammation.Keywords: homocysteine, monocytes, cyclooxygenase-2, fulvic acid, anti-inflammation
Procedia PDF Downloads 5973067 Synthesis and Spectrophotometric Study of Omeprazole Charge Transfer Complexes with Bromothymol Blue, Methyl Orange, and Picric Acid
Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne
Abstract:
Charge transfer complexes of omeprazole with bromothymol blue, methyl orange, and picric acid in the Beer’s law ranges 7-56, 6-48, and 10-80 µg mL-1, exhibiting stoichiometric ratio 1:1, and maximum wavelength 400, 420 and 373 nm respectively have been studied in aqueous medium. ICH guidelines were followed for validation study. Spectroscopic parameters including oscillator’s strength, dipole moment, ionization potential, energy of complexes, resonance energy, association constant and Gibb’s free energy changes have also been investigated and Benesi-Hildebrand plot in each case has been obtained. In addition, the methods were fruitfully employed for omeprazole determination in pharmaceutical formulations with no excipients obstruction during analysis. Solid omeprazole complexes with all the acceptors were synthesized and then structure was elucidated by IR and 1H NMR spectroscopy.Keywords: omeprazole, bromothymol blue, methyl orange and picric acid, charge transfer complexes
Procedia PDF Downloads 5403066 Separation of Rare-Earth Metals from E-Wastes
Authors: Gulsara Akanova, Akmaral Ismailova, Duisek Kamysbayev
Abstract:
The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method.Keywords: dissolution of the magnet, Neodymium magnet, rare earth metals, separation, Sorption
Procedia PDF Downloads 2093065 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces
Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi
Abstract:
Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption
Procedia PDF Downloads 3433064 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables
Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei
Abstract:
A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor
Procedia PDF Downloads 2253063 Effect of Citric Acid and Clove on Cured Smoked Meat: A Traditional Meat Product
Authors: Esther Eduzor, Charles A. Negbenebor, Helen O. Agu
Abstract:
Smoking of meat enhances the taste and look of meat, it also increases its longevity, and helps preserve the meat by slowing down the spoilage of fat and growth of bacteria. The Lean meat from the forequarter of beef carcass was obtained from the Maiduguri abattoir. The meat was cut into four portions with weight ranging from 525-545 g. The meat was cut into bits measuring about 8 cm in length, 3.5 cm in thickness and weighed 64.5 g. Meat samples were washed, cured with various concentration of sodium chloride, sodium nitrate, citric acid and clove for 30 min, drained and smoked in a smoking kiln at a temperature range of 55-600°C, for 8 hr a day for 3 days. The products were stored at ambient temperature and evaluated microbiologically and organoleptically. In terms of processing and storage there were increases in pH, free fatty acid content, a decrease in water holding capacity and microbial count of the cured smoked meat. The panelists rated control samples significantly (p < 0.05) higher in terms of colour, texture, taste and overall acceptability. The following organisms were isolated and identified during storage: Bacillus specie, Bacillus subtilis, streptococcus, Pseudomonas, Aspergillus niger, Candida and Penicillium specie. The study forms a basis for new product development for meat industry.Keywords: citric acid, cloves, smoked meat, bioengineering
Procedia PDF Downloads 4453062 Development of a Nurse Led Tranexamic Acid Administration Protocol for Trauma Patients in Rural South Africa
Authors: Christopher Wearmouth, Jacob Smith
Abstract:
Administration of tranexamic acid (TXA) reduces all-cause mortality in trauma patients when given within 3 hours of injury. Due to geographical distance and lack of emergency medical services patients often present late, following trauma, to our emergency department. Additionally, we found patients that may have benefited from TXA did not receive it, often due to lack of staff awareness, staff shortages out of hours and lack of equipment for delivering infusions. Our objective was to develop a protocol for nurse-led administration of TXA in the emergency department. We developed a protocol using physiological observations along with criteria from the South African Triage Scale to allow nursing staff to identify patients with, or at risk of, significant haemorrhage. We will monitor the use of the protocol to ensure appropriate compliance and for any adverse events reported.Keywords: emergency department, emergency nursing, rural healthcare, tranexamic acid, trauma, triage
Procedia PDF Downloads 2303061 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption
Procedia PDF Downloads 2633060 Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark
Authors: Gehan F. Abdel Raoof, Ataa A. Said, Khaled Y. Mohamed, Hala M. Mohammed
Abstract:
Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug.Keywords: analgesic, anti-inflammatory, bark, petroleum ether extract, Pleiogynium timorense
Procedia PDF Downloads 1693059 Nutritional Composition of Provitamin A-Biofortified Amahewu, a Maize Based Beverage with Potential to Alleviate Vitamin A Deficiency
Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela
Abstract:
Amahewu, a lactic acid fermented non-alcoholic maize based beverage is widely consumed in Southern Africa. It is traditionally made with white maize which is deficient in vitamin A. Provitamin A-biofortified maize has been developed for use as a complementary strategy to alleviate vitamin A deficiency. In this study the nutritional composition and protein digestibility of amahewu produced using provitamin A-biofortified maize was determined. Provitamin A-biofortified amahewu was processed by fermenting cooked maize porridge using malted provitamin A-biofortified maize, wheat bran and lactobacillus mixed starter culture with either malted maize or wheat bran. The total provitamin A content in amahewu products ranged from 3.3-3.8 μg/g (DW). The % retention of total provitamin A ranged from 79 %- 90 % μg/g (DW). The lowest % retention was observed in products fermented with the addition of starter culture. The gross energy of amahewu products were approx. 20 MJ/kg. There was a slight increase in the lysine content of amahewu after fermentation. Protein digestibility of amahewu (approx.91%) was slightly higher compared to unprocessed provitamin A maize (86%). However, a general decrease was observed in the minerals when compared to the unprocessed provitamin A maize. Amahewu processed using starter cultures has higher iron content than those processed with the addition of malt. These result suggests that provitamin A-biofortified amahewu has the potential to make a significant contribution towards alleviating Vitamin A Deficiency in rural communities who are also the most vulnerable to VAD.Keywords: vitamin A deficiency, provitamin A maize, biofortification, fermentation
Procedia PDF Downloads 4173058 Potential of ᵞ-Polyglutamic Acid for Cadmium Toxicity Alleviation in Rice
Authors: N. Kotabin, Y. Tahara, K. Issakul, O. Chunhachart
Abstract:
Cadmium (II) (Cd) is one of the major toxic elemental pollutants which is hazardous for humans, animals and plants. γ-Polyglutamic acid (γ-PGA) is an extracellular biopolymer produced by several species of Bacillus which has been reported to be an effective biosorbent for metal ions. The effect of γ-PGA on growth of rice grown under laboratory conditions was investigated. Rice seeds were germinated and then grown at 30±1°C on filter paper soaked with Cd solution and γ-PGA for 7 days. The result showed that Cd significantly inhibited the growth of roots and shoots by reducing root and shoot lengths. Fresh and dry weights also decreased compared with control; however, the addition of 500 mg•L-1 γ-PGA alleviated rice seedlings from the adverse effects of Cd. The analysis of physiological traits revealed that Cd caused a decrease in the total chlorophyll and soluble protein contents and amylase activities in all treatments. The Cd content in seedling tissues increased for the Cd 250 μM treatment (P < 0.05) but the addition of 500 mg•L-1 γ-PGA resulted in a noticeable decrease in Cd (P < 0.05).Keywords: polyglutamic acid, cadmium, rice, bacillus subtilis
Procedia PDF Downloads 2993057 Biodegradable Poly-ε-Caprolactone-Based Siloxane Polymer
Authors: Maria E. Fortună, Elena Ungureanu, Răzvan Rotaru, Valeria Harabagiu
Abstract:
Polymers are used in a variety of areas due to their unique mechanical and chemical properties. Natural polymers are biodegradable, whereas synthetic polymers are rarely biodegradable but can be modified. As a result, by combining the benefits of natural and synthetic polymers, composite materials that are biodegradable can be obtained with potential for biomedical and environmental applications. However, because of their strong resistance to degradation, it may be difficult to eliminate waste. As a result, interest in developing biodegradable polymers has risen significantly. This research involves obtaining and characterizing two biodegradable poly-ε-caprolactone-polydimethylsiloxane copolymers. A comparison study was conducted using an aminopropyl-terminated polydimethylsiloxane macroinitiator with two distinct molecular weights. The copolymers were obtained by ring-opening polymerization of poly (ɛ-caprolactone) in the presence of aminopropyl-terminated polydimethylsiloxane as initiator and comonomers and stannous 2-ethylhexanoate as a catalyst. The materials were characterized using a number of techniques, including NMR, FTIR, EDX, SEM, AFM, and DSC. Additionally, the water contact angle and water vapor sorption capacity were assessed. Furthermore, the copolymers were examined for environmental susceptibility by conducting biological tests on tomato plants (Lypercosium esculentum), with an accent on biological stability and metabolism. Subsequent to the copolymer's degradation, the dynamics of nitrogen experience evolutionary alterations, validating the progression of the process accompanied by the liberation of organic nitrogen. The biological tests performed (germination index, average seedling height, green and dry biomass) on Lypercosium esculentum, San Marzano variety tomato plants in direct contact with the copolymer indicated normal growth and development, suggesting a minimal toxic effect and, by extension, compatibility of the copolymer with the environment. The total chlorophyll concentration of plant leaves in contact with copolymers was determined, considering the pigment's critical role in photosynthesis and, implicitly, plant metabolism and physiological state.Keywords: biodegradable, biological stability, copolymers, polydimethylsiloxane
Procedia PDF Downloads 233056 Evaluation of Phytochemical and Fatty Acids Content and Composition in Iranian Borage (Echium amoenum) in Different Habitate of Iran
Authors: Esmaeil Babakhanzadeh Sajirani, Mohamadjavad Shakouri
Abstract:
Iranian Gole GavZaban (Echium amoenum fich & mey), is one of the most important medicinal plant in north of iran . is dry petals used for tonic, tranquillizer, diaphoretic, cough suppressant and a remedy for sore throat in treditional Iranian medicine. This study is the report about the analysis of phytochemical and seeds oil of Echium amoenum's in different habitates and accessions of Iran. The results showed that the oil content of seeds was 36% and eleven fatty acids were identified and quantified by gas chromatography (GC). The major fatty acids wereα-Linolenicacid (39.99), Linoleic acid (20.86), linolenic acid (20%) and Oleic acid (15.36) respectively. The amount of phenols, tannins, flavonoids and anthocyanins with increasing height, increased amount of these compounds. So that the highest rates of these compounds were observed at an altitude of 2125 meters in ciposht accession.Keywords: accession, phytochemical, oil components, Iranian borage
Procedia PDF Downloads 2523055 Lactobacillus sp. Isolates Slaughterhouse Waste as Probiotics for Broilers
Authors: Nourmalita Safitri Ningsih, Ridwan, Iqri Puspa Yunanda
Abstract:
The aim of this study was to utilize the waste from slaughterhouses for chicken feed ingredients is probiotic. Livestock waste produced by livestock activities such as feces, urine, food remains, as well as water from livestock and cage cleaning. The process starts with the isolation of bacteria. Rumen fluid is taken at Slaughterhouse Giwangan, Yogyakarta. Isolation of Lactobacillus ruminus is done by using de Mann Rogosa Sharpe (MRS) medium. In the sample showed a rod-shaped bacteria are streaked onto an agar plates. After it was incubated at 37ºC for 48 hours, after which it is observed. The observation of these lactic acid bacteria it will show a clear zone at about the colony. These bacterial colonies are white, round, small, shiny on the agar plate mikroenkapsul In the manufacturing process carried out by the method of freeze dried using skim milk in addition capsulated material. Then the results of these capsulated bacteria are mixed with feed for livestock. The results from the mixing of capsulated bacteria in feed are to increase the quality of animal feed so as to provide a good effect on livestock. Scanning electron microscope testing we have done show the results of bacteria have been shrouded in skim milk. It can protect the bacteria so it is more durable in use. The observation of the bacteria showed a sheath on Lactobacillus sp. Preservation of bacteria in this way makes the bacteria more durable for use. As well as skim milk can protect bacteria that are resistant to the outside environment. Results of probiotics in chicken feed showed significant weight gain in chickens. Calculation Anova (P <0.005) shows the average chicken given probiotics her weight increased.Keywords: chicken, probiotics, waste, Lactobacillus sp, bacteria
Procedia PDF Downloads 3193054 Investigation of Parameters Affecting Copper Recovery from Brass Melting Dross
Authors: Sercan Basit, Muhlis N. Sarıdede
Abstract:
Metal amounts of copper based compounds in the various wastes have been recovered successfully by hydrometallurgical treatment methods in the literature. X-ray diffraction pattern of the brass melting slag demonstrates that it contains sufficient amount of recoverable copper. Recovery of copper from brass melting dross by sulfuric acid leaching and the effect of temperature and acid and oxidant concentration on recovery rate of copper have been investigated in this study. Experiments were performed in a temperature-controlled reactor in sulfuric acid solution in different molarities using solid liquid ratio of 100 g/L, with leaching time of 300 min. Temperature was changed between 25 °C and 80 °C and molarity was between 0.5 and 3M. The results obtained showed that temperature has important positive effect on recovery whereas it decreases with time. Also copper was recovered in larger amounts from brass dross in the presence of H2O2 as an oxidant according to the case that oxidant was not used.Keywords: brass dross, copper recovery, hydrogen peroxide, leaching
Procedia PDF Downloads 332