Search results for: generalized random graphs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3129

Search results for: generalized random graphs

2409 Power Quality Issues: Power Supply Interruptions as Key Constraint to Development in Ekiti State, Nigeria

Authors: Oluwatosin S. Adeoye

Abstract:

The power quality issues in the world today are critical to the development of different nations. Prosperity of each nation depends on availability of constant power supply. Constant power supply is a major challenge in Africa particularly in Nigeria where the generated power is than thirty percent of the required power. The metrics of power quality are voltage dip, flickers, spikes, harmonics and interruptions. The level of interruptions in Ekiti State was examined through the investigation of the causes of power interruptions in the State. The method used was the collection of data from the Distribution Company, assessment through simple programming as a command for plotting the graphs through the use of MATLAB 2015 depicting the behavioural pattern of the interruption for a period of six months in 2016. The result shows that the interrelationship between the interruptions and development. Recommendations were suggested with the objective of solving the problems being set up by interruptions in the State and these include installation of reactors, automatic voltage regulators and effective tap changing system on the lines, busses and transformer substation respectively.

Keywords: development, frequency, interruption, power, quality

Procedia PDF Downloads 162
2408 Characterization Techniques for Studying Properties of Nanomaterials

Authors: Nandini Sharma

Abstract:

Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis.

Keywords: characterization, structural, optical, nanomaterial

Procedia PDF Downloads 146
2407 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: Matevž Breška, Iztok Peruš, Vlado Stankovski

Abstract:

Systematic overview of existing Ground Motion Prediction Equations (GMPEs) has been published by Douglas. The number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration (PGA) the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database, peak ground acceleration

Procedia PDF Downloads 462
2406 Investigation of Slope Stability in Gravel Soils in Unsaturated State

Authors: Seyyed Abolhasan Naeini, Ehsan Azini

Abstract:

In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software.  we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground.  Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.

Keywords: slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil

Procedia PDF Downloads 176
2405 Observation and Analysis of Urban Micro-Climate and Urban Morphology on Block Scale in Zhengzhou City

Authors: Linlin Guo, Baofeng Li

Abstract:

Zhengzhou is a typical plain city with a high population density and a permanent population of 10 million, located in central China. The scale of this city is constantly expanding, and the urban form has changed dramatically by the accelerating process of urbanization, which makes a great effect on the urban microclimate. In order to study the influence of block morphology on urban micro-climate, air temperature, humidity, wind velocity and so on in three typical types of blocks in the center of Zhengzhou were collected, which was chosen to perform the fixed and mobile observation. After data handling and analysis, a series of graphs and diagrams were obtained to reflect the differences in the influence of different types of block morphology on the urban microclimate. These can provide targeted strategies for urban design to improve and regulate urban micro-climate.

Keywords: urban micro-climate, block morphology, fixed and mobile observation, urban design

Procedia PDF Downloads 240
2404 Theoretical Investigation on Electronic and Magnetic Properties of Cubic PrMnO3 Perovskite

Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad, T. Lantri, A. Zitouni

Abstract:

The purpose of this study was to investigate the structural,electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3. It includes our calculations based on the use of the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, The spin polarized electronic band structures and densities of states as well as the integer value of the magnetic moment of the unit cell (6 μB) illustrate that PrMnO3 is half-metallic ferromagnetic. The study prove that the compound is half-metallic ferromagnetic however the results obtained, make the cubic PrMnO3 a promising candidate for application in spintronics.

Keywords: cubic, DFT, electronic properties, magnetic moment, spintronics

Procedia PDF Downloads 465
2403 Calculated Structural and Electronic Properties of Mg and Bi

Authors: G. Patricia Abdel Rahim, Jairo Arbey Rodriguez M, María Guadalupe Moreno Armenta

Abstract:

The present study shows the structural, electronic and magnetic properties of magnesium (Mg) and bismuth (Bi) in a supercell (1X1X5). For both materials were studied in five crystalline structures: rock salt (NaCl), cesium chloride (CsCl), zinc-blende (ZB), wurtzite (WZ), and nickel arsenide (NiAs), using the Density Functional Theory (DFT), the Generalized Gradient Approximation (GGA), and the Full Potential Linear Augmented Plane Wave (FP-LAPW) method. By means of fitting the Murnaghan's state equation we determine the lattice constant, the bulk modulus and it's derived with the pressure. Also we calculated the density of states (DOS) and the band structure.

Keywords: bismuth, magnesium, pseudo-potential, supercell

Procedia PDF Downloads 822
2402 Foundation Settlement Determination: A Simplified Approach

Authors: Adewoyin O. Olusegun, Emmanuel O. Joshua, Marvel L. Akinyemi

Abstract:

The heterogeneous nature of the subsurface requires the use of factual information to deal with rather than assumptions or generalized equations. Therefore, there is need to determine the actual rate of settlement possible in the soil before structures are built on it. This information will help in determining the type of foundation design and the kind of reinforcement that will be necessary in constructions. This paper presents a simplified and a faster approach for determining foundation settlement in any type of soil using real field data acquired from seismic refraction techniques and cone penetration tests. This approach was also able to determine the depth of settlement of each strata of soil. The results obtained revealed the different settlement time and depth of settlement possible.

Keywords: heterogeneous, settlement, foundation, seismic, technique

Procedia PDF Downloads 445
2401 Extracting the Failure Criterion to Evaluate the Strength of Cracked Drills under Torque Caused by Drilling

Authors: A. Falsafi, M. Dadkhah, S. Shahidi

Abstract:

The destruction and defeat of drill pipes and drill rigs in oil wells often combined with a combination of shear modulus II and III. In such a situation, the strength and load bearing capacity of the drill are evaluated based on the principles of fracture mechanics and crack growth criteria. In this paper, using the three-dimensional stress equations around the Turkish frontier, the relations of the tense-tense criterion (MTS) are extracted for the loading of the combined II and III modulus. It is shown that in crisp deflection under loading of combination II and III, the level of fracture is characterized by two different angles: the longitudinal angle of deflection θ and the angle of the deflection of the alpha. Based on the relationships obtained from the MTS criterion, the failure criteria, the longitudinal angle of the theta failure and the lateral angle of the failure of the alpha are presented. Also, the role of Poisson's coefficient on these parameters is investigated in these graphs.

Keywords: most tangential tension criterion, longitudinal angle of failure, side angle of fracture, drills crack

Procedia PDF Downloads 133
2400 Synthesis of Silver Powders Destined for Conductive Paste Metallization of Solar Cells Using Butyl-Carbitol and Butyl-Carbitol Acetate Chemical Reduction

Authors: N. Moudir, N. Moulai-Mostefa, Y. Boukennous, I. Bozetine, N. Kamel, D. Moudir

Abstract:

the study focuses on a novel process of silver powders synthesis for the preparation of conductive pastes used for solar cells metalization. Butyl-Carbitol and butyl-carbitol Acetate have been used as solvents and reducing agents of silver nitrate (AgNO3) as precursor to get silver powders. XRD characterization revealed silver powders with a cubic crystal system. SEM micro graphs showed spherical morphology of the particles. Laser granulometer gives similar particles distribution for the two agents. Using same glass frit and organic vehicle for comparative purposes, two conductive pastes were prepared with the synthesized silver powders for the front-side metalization of multi-crystalline cells. The pastes provided acceptable fill factor of 59.5 % and 60.8 % respectively.

Keywords: chemical reduction, conductive paste, silver nitrate, solar cell

Procedia PDF Downloads 304
2399 Evolution of Predator-prey Body-size Ratio: Spatial Dimensions of Foraging Space

Authors: Xin Chen

Abstract:

It has been widely observed that marine food webs have significantly larger predator–prey body-size ratios compared with their terrestrial counterparts. A number of hypotheses have been proposed to account for such difference on the basis of primary productivity, trophic structure, biophysics, bioenergetics, habitat features, energy efficiency, etc. In this study, an alternative explanation is suggested based on the difference in the spatial dimensions of foraging arenas: terrestrial animals primarily forage in two dimensional arenas, while marine animals mostly forage in three dimensional arenas. Using 2-dimensional and 3-dimensional random walk simulations, it is shown that marine predators with 3-dimensional foraging would normally have a greater foraging efficiency than terrestrial predators with 2-dimensional foraging. Marine prey with 3-dimensional dispersion usually has greater swarms or aggregations than terrestrial prey with 2-dimensional dispersion, which again favours a greater predator foraging efficiency in marine animals. As an analytical tool, a Lotka-Volterra based adaptive dynamical model is developed with the predator-prey ratio embedded as an adaptive variable. The model predicts that high predator foraging efficiency and high prey conversion rate will dynamically lead to the evolution of a greater predator-prey ratio. Therefore, marine food webs with 3-dimensional foraging space, which generally have higher predator foraging efficiency, will evolve a greater predator-prey ratio than terrestrial food webs.

Keywords: predator-prey, body size, lotka-volterra, random walk, foraging efficiency

Procedia PDF Downloads 77
2398 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 400
2397 Modelling Sudden Deaths from Myocardial Infarction and Stroke

Authors: Y. S. Yusoff, G. Streftaris, H. R Waters

Abstract:

Death within 30 days is an important factor to be looked into, as there is a significant risk of deaths immediately following or soon after, Myocardial Infarction (MI) or stroke. In this paper, we will model the deaths within 30 days following a Myocardial Infarction (MI) or stroke in the UK. We will see how the probabilities of sudden deaths from MI or stroke have changed over the period 1981-2000. We will model the sudden deaths using a Generalized Linear Model (GLM), fitted using the R statistical package, under a Binomial distribution for the number of sudden deaths. We parameterize our model using the extensive and detailed data from the Framingham Heart Study, adjusted to match UK rates. The results show that there is a reduction for the sudden deaths following a MI over time but no significant improvement for sudden deaths following a stroke.

Keywords: sudden deaths, myocardial infarction, stroke, ischemic heart disease

Procedia PDF Downloads 287
2396 Robust Half-Metallicity and Magnetic Properties of Cubic PrMnO3 Perovskite

Authors: B. Bouadjemi, S. Bentata, W. Benstaali, A. Abbad, T. Lantri, A. Zitouni

Abstract:

The purpose of this study was to investigate the structural,electronic and magnetic properties of the cubic praseodymium oxides perovskites PrMnO3. It includes our calculations based on the use of the density functional theory (DFT) with both generalized gradient approximation (GGA) and GGA+U approaches, The spin polarized electronic band structures and densities of states aswellas the integer value of the magnetic moment of the unit cell (6 μB) illustrate that PrMnO3 is half-metallic ferromagnetic. The study shows that the robust half-metallicity makes the cubic PrMnO3 a promising candidate for application in spintronics.

Keywords: Perovskite, DFT, electronic properties, Magnetic moment, half-metallic

Procedia PDF Downloads 457
2395 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms

Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel

Abstract:

Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.

Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning

Procedia PDF Downloads 169
2394 The Role of Urban Development Patterns for Mitigating Extreme Urban Heat: The Case Study of Doha, Qatar

Authors: Yasuyo Makido, Vivek Shandas, David J. Sailor, M. Salim Ferwati

Abstract:

Mitigating extreme urban heat is challenging in a desert climate such as Doha, Qatar, since outdoor daytime temperature area often too high for the human body to tolerate. Recent studies demonstrate that cities in arid and semiarid areas can exhibit ‘urban cool islands’ - urban areas that are cooler than the surrounding desert. However, the variation of temperatures as a result of the time of day and factors leading to temperature change remain at the question. To address these questions, we examined the spatial and temporal variation of air temperature in Doha, Qatar by conducting multiple vehicle-base local temperature observations. We also employed three statistical approaches to model surface temperatures using relevant predictors: (1) Ordinary Least Squares, (2) Regression Tree Analysis and (3) Random Forest for three time periods. Although the most important determinant factors varied by day and time, distance to the coast was the significant determinant at midday. A 70%/30% holdout method was used to create a testing dataset to validate the results through Pearson’s correlation coefficient. The Pearson’s analysis suggests that the Random Forest model more accurately predicts the surface temperatures than the other methods. We conclude with recommendations about the types of development patterns that show the greatest potential for reducing extreme heat in air climates.

Keywords: desert cities, tree-structure regression model, urban cool Island, vehicle temperature traverse

Procedia PDF Downloads 392
2393 A Network-Theorical Perspective on Music Analysis

Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria

Abstract:

The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.

Keywords: computational musicology, mathematical music modelling, music analysis, style classification

Procedia PDF Downloads 103
2392 Object-Based Image Analysis for Gully-Affected Area Detection in the Hilly Loess Plateau Region of China Using Unmanned Aerial Vehicle

Authors: Hu Ding, Kai Liu, Guoan Tang

Abstract:

The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human causes. Gully features detection including gully-affected area and its two dimension parameters (length, width, area et al.), is a significant task not only for researchers but also for policy-makers. This study aims at gully-affected area detection in three catchments of Chinese Loess Plateau, which were selected in Changwu, Ansai, and Suide by using unmanned aerial vehicle (UAV). The methodology includes a sequence of UAV data generation, image segmentation, feature calculation and selection, and random forest classification. Two experiments were conducted to investigate the influences of segmentation strategy and feature selection. Results showed that vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were ideal for the Loess Plateau region. The segmentation strategy adopted in this paper, which considers the topographic information, and optimal parameter combination can improve the segmentation results. Besides, the overall extraction accuracy in Changwu, Ansai, and Suide achieved was 84.62%, 86.46%, and 93.06%, respectively, which indicated that the proposed method for detecting gully-affected area is more objective and effective than traditional methods. This study demonstrated that UAV can bridge the gap between field measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV), object-analysis image analysis, gully erosion, gully-affected area, Loess Plateau, random forest

Procedia PDF Downloads 218
2391 Structural, Electronic and Magnetic Properties of Co and Mn Doped CDTE

Authors: A. Zitouni, S. Bentata, B. Bouadjemi, T. Lantri, W. Benstaali, A. Zoubir, S. Cherid, A. Sefir

Abstract:

The structural, electronic, and magnetic properties of transition metal Co and Mn doped zinc-blende semiconductor CdTe were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA). We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. We find that the Co and Mn doped zinc blende CdTe show half-metallic behavior with a total magnetic moment of 6.0 and 10.0 µB, respectively.The results obtained, make the Co and Mn doped CdTe a promising candidate for application in spintronics.

Keywords: first-principles, half-metallic, diluted magnetic semiconductor, magnetic moment

Procedia PDF Downloads 459
2390 Intrusion Detection in Cloud Computing Using Machine Learning

Authors: Faiza Babur Khan, Sohail Asghar

Abstract:

With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.

Keywords: cloud security, threats, machine learning, random forest, classification

Procedia PDF Downloads 320
2389 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 128
2388 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
2387 The Effects of Infographics as a Supplementary Tool in Promoting Academic Reading Skill in an EFL Class

Authors: Niracha Chompurach, Dararat Khampusaen

Abstract:

EFL students have to be able to synthesize the texts they are reading critically to compose and connect the information. This study focuses on the effects of the application of Infographics as a supplementary tool to improve Thai EFL students’ Academic reading skills. Infographics are graphic visual representations of information, data, and knowledge offering students to work on gathering multiple types of information, such as pictures, texts, graphs, mapping, and charts. The study aims to investigate if the Infographics as a supplementary tool in academic reading lessons can make a difference in students’ reading skills, and the students’ opinions toward the application of infographics as a reading tool. The participants of this study were 3rd year Thai EFL Khon Kaen University students who took English Academic Reading course. This study employed Infographics assignments, Infographics rubric, and Gucus group interview. This study would advantage for both EFL teachers and students as a means to engage the students to handle the larger load of and represents the complex information in visible and comprehensible way.

Keywords: EFL, e-learning, infographics, language education

Procedia PDF Downloads 163
2386 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
2385 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 72
2384 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors

Authors: Sudhir Kumar Singh, Debashish Chakravarty

Abstract:

Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.

Keywords: finite element method, geotechnical engineering, machine learning, slope stability

Procedia PDF Downloads 101
2383 Prediction of Live Birth in a Matched Cohort of Elective Single Embryo Transfers

Authors: Mohsen Bahrami, Banafsheh Nikmehr, Yueqiang Song, Anuradha Koduru, Ayse K. Vuruskan, Hongkun Lu, Tamer M. Yalcinkaya

Abstract:

In recent years, we have witnessed an explosion of studies aimed at using a combination of artificial intelligence (AI) and time-lapse imaging data on embryos to improve IVF outcomes. However, despite promising results, no study has used a matched cohort of transferred embryos which only differ in pregnancy outcome, i.e., embryos from a single clinic which are similar in parameters, such as: morphokinetic condition, patient age, and overall clinic and lab performance. Here, we used time-lapse data on embryos with known pregnancy outcomes to see if the rich spatiotemporal information embedded in this data would allow the prediction of the pregnancy outcome regardless of such critical parameters. Methodology—We did a retrospective analysis of time-lapse data from our IVF clinic utilizing Embryoscope 100% of the time for embryo culture to blastocyst stage with known clinical outcomes, including live birth vs nonpregnant (embryos with spontaneous abortion outcomes were excluded). We used time-lapse data from 200 elective single transfer embryos randomly selected from January 2019 to June 2021. Our sample included 100 embryos in each group with no significant difference in patient age (P=0.9550) and morphokinetic scores (P=0.4032). Data from all patients were combined to make a 4th order tensor, and feature extraction were subsequently carried out by a tensor decomposition methodology. The features were then used in a machine learning classifier to classify the two groups. Major Findings—The performance of the model was evaluated using 100 random subsampling cross validation (train (80%) - test (20%)). The prediction accuracy, averaged across 100 permutations, exceeded 80%. We also did a random grouping analysis, in which labels (live birth, nonpregnant) were randomly assigned to embryos, which yielded 50% accuracy. Conclusion—The high accuracy in the main analysis and the low accuracy in random grouping analysis suggest a consistent spatiotemporal pattern which is associated with pregnancy outcomes, regardless of patient age and embryo morphokinetic condition, and beyond already known parameters, such as: early cleavage or early blastulation. Despite small samples size, this ongoing analysis is the first to show the potential of AI methods in capturing the complex morphokinetic changes embedded in embryo time-lapse data, which contribute to successful pregnancy outcomes, regardless of already known parameters. The results on a larger sample size with complementary analysis on prediction of other key outcomes, such as: euploidy and aneuploidy of embryos will be presented at the meeting.

Keywords: IVF, embryo, machine learning, time-lapse imaging data

Procedia PDF Downloads 92
2382 Numerical Solution of Porous Media Equation Using Jacobi Operational Matrix

Authors: Shubham Jaiswal

Abstract:

During modeling of transport phenomena in porous media, many nonlinear partial differential equations (NPDEs) encountered which greatly described the convection, diffusion and reaction process. To solve such types of nonlinear problems, a reliable and efficient technique is needed. In this article, the numerical solution of NPDEs encountered in porous media is derived. Here Jacobi collocation method is used to solve the considered problems which convert the NPDEs in systems of nonlinear algebraic equations that can be solved using Newton-Raphson method. The numerical results of some illustrative examples are reported to show the efficiency and high accuracy of the proposed approach. The comparison of the numerical results with the existing analytical results already reported in the literature and the error analysis for each example exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: nonlinear porous media equation, shifted Jacobi polynomials, operational matrix, spectral collocation method

Procedia PDF Downloads 439
2381 Application of Generalized Taguchi and Design of Experiment Methodology for Rebar Production at an Integrated Steel Plant

Authors: S. B. V. S. P. Sastry, V. V. S. Kesava Rao

Abstract:

In this paper, x-ray impact of Taguchi method and design of experiment philosophy to project relationship between various factors leading to output yield strength of rebar is studied. In bar mill of an integrated steel plant, there are two production lines called as line 1 and line 2. The metallic properties e.g. yield strength of finished product of the same material is varying for a particular grade material when rolled simultaneously in both the lines. A study has been carried out to set the process parameters at optimal level for obtaining equal value of yield strength simultaneously for both lines.

Keywords: bar mill, design of experiment, taguchi, yield strength

Procedia PDF Downloads 241
2380 Simscape Library for Large-Signal Physical Network Modeling of Inertial Microelectromechanical Devices

Authors: S. Srinivasan, E. Cretu

Abstract:

The information flow (e.g. block-diagram or signal flow graph) paradigm for the design and simulation of Microelectromechanical (MEMS)-based systems allows to model MEMS devices using causal transfer functions easily, and interface them with electronic subsystems for fast system-level explorations of design alternatives and optimization. Nevertheless, the physical bi-directional coupling between different energy domains is not easily captured in causal signal flow modeling. Moreover, models of fundamental components acting as building blocks (e.g. gap-varying MEMS capacitor structures) depend not only on the component, but also on the specific excitation mode (e.g. voltage or charge-actuation). In contrast, the energy flow modeling paradigm in terms of generalized across-through variables offers an acausal perspective, separating clearly the physical model from the boundary conditions. This promotes reusability and the use of primitive physical models for assembling MEMS devices from primitive structures, based on the interconnection topology in generalized circuits. The physical modeling capabilities of Simscape have been used in the present work in order to develop a MEMS library containing parameterized fundamental building blocks (area and gap-varying MEMS capacitors, nonlinear springs, displacement stoppers, etc.) for the design, simulation and optimization of MEMS inertial sensors. The models capture both the nonlinear electromechanical interactions and geometrical nonlinearities and can be used for both small and large signal analyses, including the numerical computation of pull-in voltages (stability loss). Simscape behavioral modeling language was used for the implementation of reduced-order macro models, that present the advantage of a seamless interface with Simulink blocks, for creating hybrid information/energy flow system models. Test bench simulations of the library models compare favorably with both analytical results and with more in-depth finite element simulations performed in ANSYS. Separate MEMS-electronic integration tests were done on closed-loop MEMS accelerometers, where Simscape was used for modeling the MEMS device and Simulink for the electronic subsystem.

Keywords: across-through variables, electromechanical coupling, energy flow, information flow, Matlab/Simulink, MEMS, nonlinear, pull-in instability, reduced order macro models, Simscape

Procedia PDF Downloads 137