Search results for: facility locators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 753

Search results for: facility locators

33 Understanding What People with Epilepsy and Their Care-Partners Value about an Electronic Patient Portal

Authors: K. Power, M. White, B. Dunleavey, E. Comerford, C. Doherty, N. Delanty, R. Corbridge, M. Fitzsimons

Abstract:

Introduction: Providing people with access to their own healthcare information and engaging them as co-authors of their health record can promote better transparency, trust, and inclusivity in the healthcare system. With the advent of electronic health records, there is a move towards involving patients as partners in their healthcare by providing them with access to their own health data via electronic patient portals (ePortal). For example, a recently developed ePortal to the Irish National Epilepsy Electronic Patient Record (EPR) provides access to summary medical records, tools for Patient Reported Outcomes (PROM), health goal-setting and preparation for clinical appointments. Aim: To determine what people with epilepsy (their families/carers) value about the Irish epilepsy ePortal. Methods: A socio-technical process was employed recruiting 30 families of people with epilepsy who also have an intellectual disability (ID). Family members who are a care partner of the person with epilepsy (PWE) were invited to co-design, develop and implement the ePortal. Family members engaged in usability and utility testing which involved a face to face meeting to learn about the ePortal, register for a user account and evaluate its structure and content. Family members were instructed to login to the portal on at least two separate occasions following the meeting and to complete a self-report evaluation tool during this time. The evaluation tool, based on a Usability Questionnaire (Lewis, 1993), consists of a short assessment of comfort using technology, instructions for using the ePortal and some tasks to complete. Tasks included validating summary record details, assessing ePortal ease of use, evaluation of information presented. Participants were asked for suggestions on how to improve the portal and make it more applicable to PWE who also have an ID. Results: Family members responded positively to the ePortal and valued the ability to share information between clinicians and care partners; use the ePortal as a passport between different healthcare settings (e.g., primary care to hospital). In the context of elderly parents of PWE, the ePortal is valued as a tool for supporting shared care between family members. Participants welcomed the facility to log lists of questions and goals to discuss with the clinician at the next clinical appointment as a means of improving quality of care. Participants also suggested further enhancements to the ePortal such as access to clinic letters which can provide an aide memoir in terms of the careplan agreed with the clinical team. For example, through the ePortal, people could see what investigations or therapies are scheduled. Conclusion: The Epilepsy Patient Portal is accessible via a range of devices such as smartphones and tablets. ePortals have the potential to help personalise care, improve patient involvement in clinical decision making, engage them as quality and safety partners, and help clinicians be more responsive to patient needs. Acknowledgement: The epilepsy ePortal project is part of PISCES, a Lighthouse Project funded by eHealth Ireland and HSE to help build an understanding of the benefits of eHealth technologies in the Irish Healthcare System.

Keywords: electronic patient portal, electronic patient record, epilepsy, intellectual disability, usability testing

Procedia PDF Downloads 341
32 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 201
31 Experimental Study of the Behavior of Elongated Non-spherical Particles in Wall-Bounded Turbulent Flows

Authors: Manuel Alejandro Taborda Ceballos, Martin Sommerfeld

Abstract:

Transport phenomena and dispersion of non-spherical particle in turbulent flows are found everywhere in industrial application and processes. Powder handling, pollution control, pneumatic transport, particle separation are just some examples where the particle encountered are not only spherical. These types of multiphase flows are wall bounded and mostly highly turbulent. The particles found in these processes are rarely spherical but may have various shapes (e.g., fibers, and rods). Although research related to the behavior of regular non-spherical particles in turbulent flows has been carried out for many years, it is still necessary to refine models, especially near walls where the interaction fiber-wall changes completely its behavior. Imaging-based experimental studies on dispersed particle-laden flows have been applied for many decades for a detailed experimental analysis. These techniques have the advantages that they provide field information in two or three dimensions, but have a lower temporal resolution compared to point-wise techniques such as PDA (phase-Doppler anemometry) and derivations therefrom. The applied imaging techniques in dispersed two-phase flows are extensions from classical PIV (particle image velocimetry) and PTV (particle tracking velocimetry) and the main emphasis was simultaneous measurement of the velocity fields of both phases. In a similar way, such data should also provide adequate information for validating the proposed models. Available experimental studies on the behavior of non-spherical particles are uncommon and mostly based on planar light-sheet measurements. Especially for elongated non-spherical particles, however, three-dimensional measurements are needed to fully describe their motion and to provide sufficient information for validation of numerical computations. For further providing detailed experimental results allowing a validation of numerical calculations of non-spherical particle dispersion in turbulent flows, a water channel test facility was built around a horizontal closed water channel. Into this horizontal main flow, a small cross-jet laden with fiber-like particles was injected, which was also solely driven by gravity. The dispersion of the fibers was measured by applying imaging techniques based on a LED array for backlighting and high-speed cameras. For obtaining the fluid velocity fields, almost neutrally buoyant tracer was used. The discrimination between tracer and fibers was done based on image size which was also the basis to determine fiber orientation with respect to the inertial coordinate system. The synchronous measurement of fluid velocity and fiber properties also allow the collection of statistics of fiber orientation, velocity fields of tracer and fibers, the angular velocity of the fibers and the orientation between fiber and instantaneous relative velocity. Consequently, an experimental study the behavior of elongated non-spherical particles in wall bounded turbulent flows was achieved. The development of a comprehensive analysis was succeeded, especially near the wall region, where exists hydrodynamic wall interaction effects (e.g., collision or lubrication) and abrupt changes of particle rotational velocity. This allowed us to predict numerically afterwards the behavior of non-spherical particles within the frame of the Euler/Lagrange approach, where the particles are therein treated as “point-particles”.

Keywords: crossflow, non-spherical particles, particle tracking velocimetry, PIV

Procedia PDF Downloads 87
30 Quality of Life Among People with Mental Illness Attending a Psychiatric Outpatient Clinic in Ethiopia: A Structural Equation Model

Authors: Wondale Getinet Alemu, Lillian Mwanri, Clemence Due, Telake Azale, Anna Ziersch

Abstract:

Background: Mental illness is one of the most severe, chronic, and disabling public health problems that affect patients' Quality of life (QoL). Improving the QoL for people with mental illness is one of the most critical steps in stopping disease progression and avoiding complications of mental illness. Therefore, we aimed to assess the QoL and its determinants in patients with mental illness in outpatient clinics in Northwest Ethiopia in 2023. Methods: A facility-based cross-sectional study was conducted among people with mental illness in an outpatient clinic in Ethiopia. The sampling interval was decided by dividing the total number of study participants who had a follow-up appointment during the data collection period (2400) by the total sample size of 638, with the starting point selected by lottery method. The interviewer-administered WHOQOL BREF-26 tool was used to measure the QoL of people with mental illness. The domains and Health-Related Quality of Life (HRQoL) were identified. The indirect and direct effects of variables were calculated using structural equation modeling with SPSS-28 and Amos-28 software. A p-value of < 0.05 and a 95% CI were used to evaluate statistical significance. Results: A total of 636 (99.7%) participants responded and completed the WHOQOL-BREF questionnaire. The mean score of overall HRQoL of people with mental illness in the outpatient clinic was (49.6 ± 10 Sd). The highest QoL was found in the physical health domain (50.67 ±9.5 Sd), and the lowest mean QoL was found in the psychological health domain (48.41±10 Sd). Rural residents, drug nonadherence, suicidal ideation, not getting counseling, moderate or severe subjective severity, the family does not participate in patient care, and a family history of mental illness had an indirect negative effect on HRQoL. Alcohol use and psychological health domain had a direct positive effect on QoL. Furthermore, objective severity of illness, having low self-esteem, and having a history of mental illness in the family had both direct and indirect effects on QoL. Furthermore, sociodemographic factors (residence, educational status, marital status), social support-related factors (self-esteem, family not participating in patient care), substance use factors (alcohol use, tobacco use,) and clinical factors (objective and subjective severity of illness, not getting counseling, suicidal ideation, number of episodes, comorbid illness, family history of mental illness, poor drug adherence) directly and indirectly affected QoL. Conclusions: In this study, the QoL of people with mental illness was poor, with the psychological health domain being the most affected. Sociodemographic factors, social support-related factors, drug use factors, and clinical factors directly and indirectly, affect QoL through the mediator variables of physical health domains, psychological health domains, social relation health domains, and environmental health domains. In order to improve the QoL of people with mental illnesses, we recommend that emphasis be given to addressing the scourge of mental health, including the development of policy and practice drivers that address the above-identified factors.

Keywords: quality of life, mental wellbeing, mental illness, mental disorder, Ethiopia

Procedia PDF Downloads 83
29 Prompt Photons Production in Compton Scattering of Quark-Gluon and Annihilation of Quark-Antiquark Pair Processes

Authors: Mohsun Rasim Alizada, Azar Inshalla Ahmdov

Abstract:

Prompt photons are perhaps the most versatile tools for studying the dynamics of relativistic collisions of heavy ions. The study of photon radiation is of interest that in most hadron interactions, photons fly out as a background to other studied signals. The study of the birth of prompt photons in nucleon-nucleon collisions was previously carried out in experiments on Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Due to the large energy of colliding nucleons, in addition to prompt photons, many different elementary particles are born. However, the birth of additional elementary particles makes it difficult to determine the accuracy of the effective section of the birth of prompt photons. From this point of view, the experiments planned on the Nuclotron-based Ion Collider Facility (NICA) complex will have a great advantage, since the energy obtained for colliding heavy ions will reduce the number of additionally born elementary particles. Of particular importance is the study of the processes of birth of prompt photons to determine the gluon leaving hadrons since the photon carries information about a rigid subprocess. At present, paper production of prompt photon in Compton scattering of quark-gluon and annihilation of quark–antiquark processes is investigated. The matrix elements Compton scattering of quark-gluon and annihilation of quark-antiquark pair processes has been written. The Square of matrix elements of processes has been calculated in FeynCalc. The phase volume of subprocesses has been determined. Expression to calculate the differential cross-section of subprocesses has been obtained: Given the resulting expressions for the square of the matrix element in the differential section expression, we see that the differential section depends not only on the energy of colliding protons, but also on the mass of quarks, etc. Differential cross-section of subprocesses is estimated. It is shown that the differential cross-section of subprocesses decreases with the increasing energy of colliding protons. Asymmetry coefficient with polarization of colliding protons is determined. The calculation showed that the squares of the matrix element of the Compton scattering process without and taking into account the polarization of colliding protons are identical. The asymmetry coefficient of this subprocess is zero, which is consistent with the literary data. It is known that in any single polarization processes with a photon, squares of matrix elements without taking into account and taking into account the polarization of the original particle must coincide, that is, the terms in the square of the matrix element with the degree of polarization are equal to zero. The coincidence of the squares of the matrix elements indicates that the parity of the system is preserved. The asymmetry coefficient of annihilation of quark–antiquark pair process linearly decreases from positive unit to negative unit with increasing the production of the polarization degrees of colliding protons. Thus, it was obtained that the differential cross-section of the subprocesses decreases with the increasing energy of colliding protons. The value of the asymmetry coefficient is maximal when the polarization of colliding protons is opposite and minimal when they are directed equally. Taking into account the polarization of only the initial quarks and gluons in Compton scattering does not contribute to the differential section of the subprocess.

Keywords: annihilation of a quark-antiquark pair, coefficient of asymmetry, Compton scattering, effective cross-section

Procedia PDF Downloads 151
28 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions

Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra

Abstract:

In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.

Keywords: aerosol, CFD, deposition, coagulation

Procedia PDF Downloads 144
27 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels

Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe

Abstract:

The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.

Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa

Procedia PDF Downloads 232
26 Environmental Sanitation Parameters Recording in Refugee-Migrants Camps in Greece, 2017

Authors: Crysovaladou Kefaloudi, Kassiani Mellou, Eirini Saranti-Papasaranti, Athanasios Koustenis, Chrysoula Botsi, Agapios Terzidis

Abstract:

Recent migration crisis led to a vast migrant – refugees movement to Greece which created an urgent need for hosting settlements. Taken into account the protection of public health from possible pathogens related to water and food supply as well as waste and sewage accumulation, a 'Living Conditions Recording Form' was created in the context of 'PHILOS' European Program funded by the Asylum Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs, in order to assess a number of environmental sanitation parameters, in refugees – migrants camps in mainland. The assessment will be completed until the end of July. From March to June 2017, mobile unit teams comprised of health inspectors of sub-action 2 of “PHILOS” proceeded with the assessment of living conditions in twenty-two out of thirty-one camps and 'Stata' was used for the statistical analysis of obtained information. Variables were grouped into the following categories: 1) Camp administration, 2) hosted population number, 3) accommodation, 4) heating installations, 5) personal hygiene, 6) sewage collection and disposal, 7) water supply, 8) waste collection and management, 9) pest control, 10) fire safety, 11) food handling and safety. Preliminary analysis of the results showed that camp administration was performed in 90% of the camps by a public authority with the coordination of various NGOs. The median number of hosted population was 222 ranging from 62 to 3200, and the median value of hosted population per accommodation type was 4 in 19 camps. Heating facilities were provided in 86.1% of camps. In 18.2 % of the camps, one personal hygiene facility was available per 6 people ranging in the rest of the camps from 1 per 3 to 1 per 20 hosted refugees-migrants. Waste and sewage collection was performed depending on populations demand in an adequate way in all recorded camps. In 90% of camps, water was supplied through the central water supply system. In 85% of camps quantity and quality of water supply inside camps was regularly monitored for microbial and chemical indices. Pest control was implemented in 86.4% of the camps as well as fire safety measures. Food was supplied by catering companies in 50% of the camps, and the quality and quantity food was monitored at a regular basis. In 77% of camps, food was prepared by the hosted population with the availability of proper storage conditions. Furthermore, in all camps, hosted population was provided with personal hygiene items and health sanitary educational programs were implemented in 77.3% of camps. In conclusion, in the majority of the camps, environmental sanitation parameters were satisfactory. However, waste and sewage accumulation, as well as inadequate pest control measures were recorded in some camps. The obtained data have led to a number of recommendations for the improvement of sanitary conditions, disseminated to all relevant stakeholders. Special emphasis was given to hygiene measures implementation during food handling by migrants – refugees, as well as to waste and sewage accumulation taking in to account the population’s cultural background.

Keywords: environmental sanitation parameters, food borne diseases risk assessment, refugee – migrants camps, water borne diseases risk assessment

Procedia PDF Downloads 231
25 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System

Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci

Abstract:

The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.

Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines

Procedia PDF Downloads 183
24 Temporal Delays along the Neurosurgical Care Continuum for Traumatic Brain Injury Patients in Mulago Hospital in Kampala Uganda

Authors: Silvia D. Vaca, Benjamin J. Kuo, Joao Ricardo N. Vissoci, Catherine A. Staton, Linda W. Xu, Michael Muhumuza, Hussein Ssenyonjo, John Mukasa, Joel Kiryabwire, Henry E. Rice, Gerald A. Grant, Michael M. Haglund

Abstract:

Background: While delays to care exist in resource rich settings, greater delays are seen along the care continuum in low- and middle-income countries (LMICs) largely due to limited healthcare capacity to address the disproportional rates of traumatic brain injury (TBI) in Sub Saharan Africa (SSA). While many LMICs have government subsidized systems to offset surgical costs, the burden of securing funds by the patients for medications, supplies, and CT diagnostics poses a significant challenge to timely surgical interventions. In Kampala Uganda, the challenge of obtaining timely CT scans is twofold. First, due to a lack of a functional CT scanner at the tertiary hospital, patients need to arrange their own transportation to the nearby private facility for CT scans. Second, self-financing for the private CT scans ranges from $80 - $130, which is near the average monthly income in Kampala. These bottlenecks contribute significantly to the care continuum delays and are associated with poor TBI outcomes. Objective: The objectives of this study are to 1) describe the temporal delays through a modified three delays model that fits the context of neurosurgical interventions for TBI patients in Kampala and 2) investigate the association between delays and mortality. Methods: Prospective data were collected for 563 TBI patients presenting to a tertiary hospital in Kampala from 1 June – 30 November 2016. Four time intervals were constructed along five time points: injury, hospital arrival, neurosurgical evaluation, CT results, and definitive surgery. Time interval differences among mild, moderate and severe TBI and their association with mortality were analyzed. Results: The mortality rate of all TBI patients presenting to MNRH was 9.6%, which ranged from 4.7% for mild and moderate TBI patients receiving surgery to 81.8% for severe TBI patients who failed to receive surgery. The duration from injury to surgery varied considerably across TBI severity with the largest gap seen between mild TBI (174 hours) and severe TBI (69 hours) patients. Further analysis revealed care continuum differences for interval 3 (neurosurgical evaluation to CT result) and 4 (CT result to surgery) between severe TBI patients (7 hours for interval 3 and 24 hours for interval 4) and mild TBI patients (19 hours for interval 3, and 96 hours for interval 4). These post-arrival delays were associated with mortality for mild (p=0.05) and moderate TBI (p=0.03) patients. Conclusions: To our knowledge, this is the first analysis using a modified ‘three delays’ framework to analyze the care continuum of TBI patients in Uganda from injury to surgery. We found significant associations between delays and mortality for mild and moderate TBI patients. As it currently stands, poorer outcomes were observed for these mild and moderate TBI patients who were managed non-operatively or failed to receive surgery while surgical services were shunted to more severely ill patients. While well intentioned, high mortality rates were still observed for the severe TBI patients managed surgically. These results suggest the need for future research to optimize triage practices, understand delay contributors, and improve pre-hospital logistical referral systems.

Keywords: care continuum, global neurosurgery, Kampala Uganda, LMIC, Mulago, prospective registry, traumatic brain injury

Procedia PDF Downloads 348
23 Integrated Services Hub for Exploration and Production Industry: An Indian Narrative

Authors: Sunil Arora, Anitya Kumar Jena, S. A. Ravi

Abstract:

India is at the cusp of major reforms in the hydrocarbon sector. Oil and gas sector is highly liberalised to attract private investment and to increase domestic production. Major hydrocarbon Exploration & Production (E&P) activity here have been undertaken by Government owned companies but with easing up and reworking of hydro carbon exploration licensing policies private players have also joined the fray towards achieving energy security for India. Government of India has come up with policy and administrative reforms including Hydrocarbon Exploration and Licensing Policy (HELP), Sagarmala (port-led development with coastal connectivity), and Development of Small Discovered Fields, etc. with the intention to make industry friendly conditions for investment, ease of doing business and reduce gestation period. To harness the potential resources of Deep water and Ultra deep water, High Pressure – High Temperature (HP-HT) regions, Coal Bed Methane (CBM), Shale Hydrocarbons besides Gas Hydrates, participation shall be required from both domestic and international players. Companies engaged in E&P activities in India have traditionally been managing through their captive supply base, but with crude prices under hammer, the need is being felt to outsource non-core activities. This necessitates establishment of a robust support services to cater to E&P Industry, which is currently non-existent to meet the bourgeon challenges. This paper outlines an agenda for creating an Integrated Services Hub (ISH) under Special Economic Zone (SEZ) to facilitate complete gamut of non-core support activities of E&P industry. This responsive and proficient multi-usage facility becomes viable with better resource utilization, economies of scale to offer cost effective services. The concept envisages companies to bring-in their core technical expertise leaving complete hardware peripherals outsourced to this ISH. The Integrated Services Hub, complying with the best in class global standards, shall typically provide following Services under Single Window Solution, but not limited to: a) Logistics including supply base operations, transport of manpower and material, helicopters, offshore supply vessels, warehousing, inventory management, sourcing and procurement activities, international freight forwarding, domestic trucking, customs clearance service etc. b) Trained/Experienced pool of competent Manpower (Technical, Security etc.) will be available for engagement by companies on either short or long term basis depending upon the requirements with provisions of meeting any training requirements. c) Specialized Services through tie-up with global best companies for Crisis Management, Mud/Cement, Fishing, Floating Dry-dock besides provision of Workshop, Repair and Testing facilities, etc. d) Tools and Tackles including drill strings, etc. A pre-established Integrated Services Hub shall facilitate an early start-up of activities with substantial savings in time lines. This model can be replicated at other parts of the world to expedite E&P activities.

Keywords: integrated service hub, India, oil gas, offshore supply base

Procedia PDF Downloads 151
22 Investigation of Chemical Effects on the Lγ2,3 and Lγ4 X-ray Production Cross Sections for Some Compounds of 66dy at Photon Energies Close to L1 Absorption-edge Energy

Authors: Anil Kumar, Rajnish Kaur, Mateusz Czyzycki, Alessandro Migilori, Andreas Germanos Karydas, Sanjiv Puri

Abstract:

The radiative decay of Li(i=1-3) sub-shell vacancies produced through photoionization results in production of the characteristic emission spectrum comprising several X-ray lines, whereas non-radiative vacancy decay results in Auger electron spectrum. Accurate reliable data on the Li(i=1-3) sub-shell X-ray production (XRP) cross sections is of considerable importance for investigation of atomic inner-shell ionization processes as well as for quantitative elemental analysis of different types of samples employing the energy dispersive X-ray fluorescence (EDXRF) analysis technique. At incident photon energies in vicinity of the absorption edge energies of an element, the many body effects including the electron correlation, core relaxation, inter-channel coupling and post-collision interactions become significant in the photoionization of atomic inner-shells. Further, in case of compounds, the characteristic emission spectrum of the specific element is expected to get influenced by the chemical environment (coordination number, oxidation state, nature of ligand/functional groups attached to central atom, etc.). These chemical effects on L X-ray fluorescence parameters have been investigated by performing the measurements at incident photon energies much higher than the Li(i=1-3) sub-shell absorption edge energies using EDXRF spectrometers. In the present work, the cross sections for production of the Lk(k= γ2,3, γ4) X-rays have been measured for some compounds of 66Dy, namely, Dy2O3, Dy2(CO3)3, Dy2(SO4)3.8H2O, DyI2 and Dy metal by tuning the incident photon energies few eV above the L1 absorption-edge energy in order to investigate the influence of chemical effects on these cross sections in presence of the many body effects which become significant at photon energies close to the absorption-edge energies. The present measurements have been performed under vacuum at the IAEA end-station of the X-ray fluorescence beam line (10.1L) of ELETTRA synchrotron radiation facility (Trieste, Italy) using self-supporting pressed pellet targets (1.3 cm diameter, nominal thicknesses ~ 176 mg/cm2) of 66Dy compounds (procured from Sigma Aldrich) and a metallic foil of 66Dy (nominal thickness ~ 3.9 mg/cm2, procured from Good Fellow, UK). The present measured cross sections have been compared with theoretical values calculated using the Dirac-Hartree-Slater(DHS) model based fluorescence and Coster-Kronig yields, Dirac-Fock(DF) model based X-ray emission rates and two sets of L1 sub-shell photoionization cross sections based on the non-relativistic Hartree-Fock-Slater(HFS) model and those deduced from the self-consistent Dirac-Hartree-Fock(DHF) model based total photoionization cross sections. The present measured XRP cross sections for 66Dy as well as for its compounds for the L2,3 and L4 X-rays, are found to be higher by ~14-36% than the two calculated set values. It is worth to be mentioned that L2,3 and L4 X-ray lines are originated by filling up of the L1 sub-shell vacancies by the outer sub-shell (N2,3 and O2,3) electrons which are much more sensitive to the chemical environment around the central atom. The present observed differences between measured and theoretical values are expected due to combined influence of the many-body effects and the chemical effects.

Keywords: chemical effects, L X-ray production cross sections, Many body effects, Synchrotron radiation

Procedia PDF Downloads 133
21 A Two-Step, Temperature-Staged, Direct Coal Liquefaction Process

Authors: Reyna Singh, David Lokhat, Milan Carsky

Abstract:

The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal is an abundant resource. This work was aimed at producing a high value hydrocarbon liquid product from the Direct Coal Liquefaction (DCL) process at, comparatively, mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated. In a two reactor lab-scale pilot plant facility, the objectives included maximising thermal dissolution of the coal in the presence of a hydrogen donor solvent in the first stage, subsequently promoting hydrogen saturation and hydrodesulphurization (HDS) performance in the second. The feed slurry consisted of high grade, pulverized bituminous coal on a moisture-free basis with a size fraction of < 100μm; and Tetralin mixed in 2:1 and 3:1 solvent/coal ratios. Magnetite (Fe3O4) at 0.25wt% of the dry coal feed was added for the catalysed runs. For both stages, hydrogen gas was used to maintain a system pressure of 100barg. In the first stage, temperatures of 250℃ and 300℃, reaction times of 30 and 60 minutes were investigated in an agitated batch reactor. The first stage liquid product was pumped into the second stage vertical reactor, which was designed to counter-currently contact the hydrogen rich gas stream and incoming liquid flow in the fixed catalyst bed. Two commercial hydrotreating catalysts; Cobalt-Molybdenum (CoMo) and Nickel-Molybdenum (NiMo); were compared in terms of their conversion, selectivity and HDS performance at temperatures 50℃ higher than the respective first stage tests. The catalysts were activated at 300°C with a hydrogen flowrate of approximately 10 ml/min prior to the testing. A gas-liquid separator at the outlet of the reactor ensured that the gas was exhausted to the online VARIOplus gas analyser. The liquid was collected and sampled for analysis using Gas Chromatography-Mass Spectrometry (GC-MS). Internal standard quantification methods for the sulphur content, the BTX (benzene, toluene, and xylene) and alkene quality; alkanes and polycyclic aromatic hydrocarbon (PAH) compounds in the liquid products were guided by ASTM standards of practice for hydrocarbon analysis. In the first stage, using a 2:1 solvent/coal ratio, an increased coal to liquid conversion was favoured by a lower operating temperature of 250℃, 60 minutes and a system catalysed by magnetite. Tetralin functioned effectively as the hydrogen donor solvent. A 3:1 ratio favoured increased concentrations of the long chain alkanes undecane and dodecane, unsaturated alkenes octene and nonene and PAH compounds such as indene. The second stage product distribution showed an increase in the BTX quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, NiMo performed better than CoMo. CoMo is selective to a higher concentration of cyclohexane. For 16 days on stream each, NiMo had a higher activity than CoMo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated.

Keywords: catalyst, coal, liquefaction, temperature-staged

Procedia PDF Downloads 648
20 Analysis of Vibration and Shock Levels during Transport and Handling of Bananas within the Post-Harvest Supply Chain in Australia

Authors: Indika Fernando, Jiangang Fei, Roger Stanley, Hossein Enshaei

Abstract:

Delicate produce such as fresh fruits are increasingly susceptible to physiological damage during the essential post-harvest operations such as transport and handling. Vibration and shock during the distribution are identified factors for produce damage within post-harvest supply chains. Mechanical damages caused during transit may significantly diminish the quality of fresh produce which may also result in a substantial wastage. Bananas are one of the staple fruit crops and the most sold supermarket produce in Australia. It is also the largest horticultural industry in the state of Queensland where 95% of the total production of bananas are cultivated. This results in significantly lengthy interstate supply chains where fruits are exposed to prolonged vibration and shocks. This paper is focused on determining the shock and vibration levels experienced by packaged bananas during transit from the farm gate to the retail market. Tri-axis acceleration data were captured by custom made accelerometer based data loggers which were set to a predetermined sampling rate of 400 Hz. The devices recorded data continuously for 96 Hours in the interstate journey of nearly 3000 Km from the growing fields in far north Queensland to the central distribution centre in Melbourne in Victoria. After the bananas were ripened at the ripening facility in Melbourne, the data loggers were used to capture the transport and handling conditions from the central distribution centre to three retail outlets within the outskirts of Melbourne. The quality of bananas were assessed before and after transport at each location along the supply chain. Time series vibration and shock data were used to determine the frequency and the severity of the transient shocks experienced by the packages. Frequency spectrogram was generated to determine the dominant frequencies within each segment of the post-harvest supply chain. Root Mean Square (RMS) acceleration levels were calculated to characterise the vibration intensity during transport. Data were further analysed by Fast Fourier Transform (FFT) and the Power Spectral Density (PSD) profiles were generated to determine the critical frequency ranges. It revealed the frequency range in which the escalated energy levels were transferred to the packages. It was found that the vertical vibration was the highest and the acceleration levels mostly oscillated between ± 1g during transport. Several shock responses were recorded exceeding this range which were mostly attributed to package handling. These detrimental high impact shocks may eventually lead to mechanical damages in bananas such as impact bruising, compression bruising and neck injuries which affect their freshness and visual quality. It was revealed that the frequency range between 0-5 Hz and 15-20 Hz exert an escalated level of vibration energy to the packaged bananas which may result in abrasion damages such as scuffing, fruit rub and blackened rub. Further research is indicated specially in the identified critical frequency ranges to minimise exposure of fruits to the harmful effects of vibration. Improving the handling conditions and also further study on package failure mechanisms when exposed to transient shock excitation will be crucial to improve the visual quality of bananas within the post-harvest supply chain in Australia.

Keywords: bananas, handling, post-harvest, supply chain, shocks, transport, vibration

Procedia PDF Downloads 191
19 Fueling Efficient Reporting And Decision-Making In Public Health With Large Data Automation In Remote Areas, Neno Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Julia Huggins, Fabien Munyaneza

Abstract:

Background: Partners In Health – Malawi introduced one of Operational Researches called Primary Health Care (PHC) Surveys in 2020, which seeks to assess progress of delivery of care in the district. The study consists of 5 long surveys, namely; Facility assessment, General Patient, Provider, Sick Child, Antenatal Care (ANC), primarily conducted in 4 health facilities in Neno district. These facilities include Neno district hospital, Dambe health centre, Chifunga and Matope. Usually, these annual surveys are conducted from January, and the target is to present final report by June. Once data is collected and analyzed, there are a series of reviews that take place before reaching final report. In the first place, the manual process took over 9 months to present final report. Initial findings reported about 76.9% of the data that added up when cross-checked with paper-based sources. Purpose: The aim of this approach is to run away from manually pulling the data, do fresh analysis, and reporting often associated not only with delays in reporting inconsistencies but also with poor quality of data if not done carefully. This automation approach was meant to utilize features of new technologies to create visualizations, reports, and dashboards in Power BI that are directly fished from the data source – CommCare hence only require a single click of a ‘refresh’ button to have the updated information populated in visualizations, reports, and dashboards at once. Methodology: We transformed paper-based questionnaires into electronic using CommCare mobile application. We further connected CommCare Mobile App directly to Power BI using Application Program Interface (API) connection as data pipeline. This provided chance to create visualizations, reports, and dashboards in Power BI. Contrary to the process of manually collecting data in paper-based questionnaires, entering them in ordinary spreadsheets, and conducting analysis every time when preparing for reporting, the team utilized CommCare and Microsoft Power BI technologies. We utilized validations and logics in CommCare to capture data with less errors. We utilized Power BI features to host the reports online by publishing them as cloud-computing process. We switched from sharing ordinary report files to sharing the link to potential recipients hence giving them freedom to dig deep into extra findings within Power BI dashboards and also freedom to export to any formats of their choice. Results: This data automation approach reduced research timelines from the initial 9 months’ duration to 5. It also improved the quality of the data findings from the original 76.9% to 98.9%. This brought confidence to draw conclusions from the findings that help in decision-making and gave opportunities for further researches. Conclusion: These results suggest that automating the research data process has the potential of reducing overall amount of time spent and improving the quality of the data. On this basis, the concept of data automation should be taken into serious consideration when conducting operational research for efficiency and decision-making.

Keywords: reporting, decision-making, power BI, commcare, data automation, visualizations, dashboards

Procedia PDF Downloads 118
18 Menstrual Hygiene Practices Among the Women Age 15-24 in India

Authors: Priyanka Kumari

Abstract:

Menstrual hygiene is an important aspect in the life of young girls. Menstrual Hygiene Management (MHM) is defined as ‘Women and adolescent girls using a clean material to absorb or collect menstrual blood that can be changed in privacy as often as necessary for the duration of the menstruation period, using soap and water for washing the body as required and having access to facilities to dispose of used menstrual management materials. This paper aims to investigate the prevalence of hygienic menstrual practices and socio-demographic correlates of hygienic menstrual practices among women aged 15-24 in India. Data from the 2015–2016 National Family Health Survey–4 for 244,500 menstruating women aged 15–24 were used. The methods have been categorized into two, women who use sanitary napkins, locally prepared napkins and tampons considered as a hygienic method and those who use cloth, any other method and nothing used at all during menstruation considered as an unhygienic method. Women’s age, year of schooling, religion, place of residence, caste/tribe, marital status, wealth index, type of toilet facility used, region, the structure of the house and exposure to mass media are taken as an independent variables. Bivariate analysis was carried out with selected background characteristics to analyze the socio-economic and demographic factors associated with the use of hygienic methods during menstruation. The odds for the use of the hygienic method were computed by employing binary logistic regression. Almost 60% of the women use cloth as an absorbent during menstruation to prevent blood stains from becoming evident. The hygienic method, which includes the use of locally prepared napkins, sanitary napkins and tampons, is 16.27%, 41.8% and 2.4%. The proportion of women who used hygienic methods to prevent blood stains from becoming evident was 57.58%. Multivariate analyses reveal that education of women, wealth and marital status are found to be the most important positive factors of hygienic menstrual practices. The structure of the house and exposure to mass media also have a positive impact on the use of menstrual hygiene practices. In contrast, women residing in rural areas belonging to scheduled tribes are less likely to use hygienic methods during their menstruation. Geographical regions are also statistically significant with the use of hygienic methods during menstruation. This study reveals that menstrual hygiene is not satisfactory among a large proportion of adolescent girls. They need more education about menstrual hygiene. A variety of factors affect menstrual behaviors; amongst these, the most influential is economic status, educational status and residential status, whether urban or rural. It is essential to design a mechanism to address and access healthy menstrual knowledge. It is important to encourage policies and quality standards that promote safe and affordable options and dynamic markets for menstrual products. Materials that are culturally acceptable, contextually available and affordable. Promotion of sustainable, environmentally friendly menstrual products and their disposal as it is a very important aspect of sustainable development goals. We also need to educate the girls about the services which are provided by the government, like a free supply of sanitary napkins to overcome reproductive tract infections. Awareness regarding the need for information on healthy menstrual practices is very important. It is essential to design a mechanism to address and access healthy menstrual practices. Emphasis should be given to the education of young girls about the importance of maintaining hygiene during menstruation to prevent the risk of reproductive tract infections.

Keywords: adolescent, menstruation, menstrual hygiene management, menstrual hygiene

Procedia PDF Downloads 140
17 Ethnic Andean Concepts of Health and Illness in the Post-Colombian World and Its Relevance Today

Authors: Elizabeth J. Currie, Fernando Ortega Perez

Abstract:

—‘MEDICINE’ is a new project funded under the EC Horizon 2020 Marie-Sklodowska Curie Actions, to determine concepts of health and healing from a culturally specific indigenous context, using a framework of interdisciplinary methods which integrates archaeological-historical, ethnographic and modern health sciences approaches. The study will generate new theoretical and methodological approaches to model how peoples survive and adapt their traditional belief systems in a context of alien cultural impacts. In the immediate wake of the conquest of Peru by invading Spanish armies and ideology, native Andeans responded by forming the Taki Onkoy millenarian movement, which rejected European philosophical and ontological teachings, claiming “you make us sick”. The study explores how people’s experience of their world and their health beliefs within it, is fundamentally shaped by their inherent beliefs about the nature of being and identity in relation to the wider cosmos. Cultural and health belief systems and related rituals or behaviors sustain a people’s sense of identity, wellbeing and integrity. In the event of dislocation and persecution these may change into devolved forms, which eventually inter-relate with ‘modern’ biomedical systems of health in as yet unidentified ways. The development of new conceptual frameworks that model this process will greatly expand our understanding of how people survive and adapt in response to cultural trauma. It will also demonstrate the continuing role, relevance and use of TM in present-day indigenous communities. Studies will first be made of relevant pre-Colombian material culture, and then of early colonial period ethnohistorical texts which document the health beliefs and ritual practices still employed by indigenous Andean societies at the advent of the 17th century Jesuit campaigns of persecution - ‘Extirpación de las Idolatrías’. Core beliefs drawn from these baseline studies will then be used to construct a questionnaire about current health beliefs and practices to be taken into the study population of indigenous Quechua peoples in the northern Andean region of Ecuador. Their current systems of knowledge and medicine have evolved within complex historical contexts of both the conquest by invading Inca armies in the late 15th century, followed a generation later by Spain, into new forms. A new model will be developed of contemporary  Andean concepts of health, illness and healing demonstrating  the way these have changed through time. With this, a ‘policy tool’ will be constructed as a bridhging facility into contemporary global scenarios relevant to other Indigenous, First Nations, and migrant peoples to provide a means through which their traditional health beliefs and current needs may be more appropriately understood and met. This paper presents findings from the first analytical phases of the work based upon the study of the literature and the archaeological records. The study offers a novel perspective and methods in the development policies sensitive to indigenous and minority people’s health needs.

Keywords: Andean ethnomedicine, Andean health beliefs, health beliefs models, traditional medicine

Procedia PDF Downloads 348
16 Sensorless Machine Parameter-Free Control of Doubly Fed Reluctance Wind Turbine Generator

Authors: Mohammad R. Aghakashkooli, Milutin G. Jovanovic

Abstract:

The brushless doubly-fed reluctance generator (BDFRG) is an emerging, medium-speed alternative to a conventional wound rotor slip-ring doubly-fed induction generator (DFIG) in wind energy conversion systems (WECS). It can provide competitive overall performance and similar low failure rates of a typically 30% rated back-to-back power electronics converter in 2:1 speed ranges but with the following important reliability and cost advantages over DFIG: the maintenance-free operation afforded by its brushless structure, 50% synchronous speed with the same number of rotor poles (allowing the use of a more compact, and more efficient two-stage gearbox instead of a vulnerable three-stage one), and superior grid integration properties including simpler protection for the low voltage ride through compliance of the fractional converter due to the comparatively higher leakage inductances and lower fault currents. Vector controlled pulse-width-modulated converters generally feature a much lower total harmonic distortion relative to hysteresis counterparts with variable switching rates and as such have been a predominant choice for BDFRG (and DFIG) wind turbines. Eliminating a shaft position sensor, which is often required for control implementation in this case, would be desirable to address the associated reliability issues. This fact has largely motivated the recent growing research of sensorless methods and developments of various rotor position and/or speed estimation techniques for this purpose. The main limitation of all the observer-based control approaches for grid-connected wind power applications of the BDFRG reported in the open literature is the requirement for pre-commissioning procedures and prior knowledge of the machine inductances, which are usually difficult to accurately identify by off-line testing. A model reference adaptive system (MRAS) based sensor-less vector control scheme to be presented will overcome this shortcoming. The true machine parameter independence of the proposed field-oriented algorithm, offering robust, inherently decoupled real and reactive power control of the grid-connected winding, is achieved by on-line estimation of the inductance ratio, the underlying rotor angular velocity and position MRAS observer being reliant upon. Such an observer configuration will be more practical to implement and clearly preferable to the existing machine parameter dependent solutions, and especially bearing in mind that with very little modifications it can be adapted for commercial DFIGs with immediately obvious further industrial benefits and prospects of this work. The excellent encoder-less controller performance with maximum power point tracking in the base speed region will be demonstrated by realistic simulation studies using large-scale BDFRG design data and verified by experimental results on a small laboratory prototype of the WECS emulation facility.

Keywords: brushless doubly fed reluctance generator, model reference adaptive system, sensorless vector control, wind energy conversion

Procedia PDF Downloads 62
15 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 228
14 Insights on Nitric Oxide Interaction with Phytohormones in Rice Root System Response to Metal Stress

Authors: Piacentini Diego, Della Rovere Federica, Fattorini Laura, Lanni Francesca, Cittadini Martina, Altamura Maria Maddalena, Falasca Giuseppina

Abstract:

Plants have evolved sophisticated mechanisms to cope with environmental cues. Changes in intracellular content and distribution of phytohormones, such as the auxin indole-3-acetic acid (IAA), have been involved in morphogenic adaptation to environmental stresses. In addition to phytohormones, plants can rely on a plethora of small signal molecules able to promptly sense and transduce the stress signals, resulting in morpho/physiological responses thanks also to their capacity to modulate the levels/distribution/reception of most hormones. Among these signaling molecules, nitrogen monoxide (nitric oxide – NO) is a critical component in several plant acclimation strategies to both biotic and abiotic stresses. Depending on its levels, NO increases plant adaptation by enhancing the enzymatic or non-enzymatic antioxidant systems or by acting as a direct scavenger of reactive oxygen/nitrogen (ROS/RNS) species produced during the stress. In addition, exogenous applications of NO-specific donor compounds showed the involvement of the signal molecule in auxin metabolism, transport, and signaling, under both physiological and stress conditions. However, the complex mechanisms underlying NO action in interacting with phytohormones, such as auxins, during metal stress responses are still poorly understood and need to be better investigated. Emphasis must be placed on the response of the root system since it is the first plant organ system to be exposed to metal soil pollution. The monocot Oryza sativa L. (rice) has been chosen given its importance as a stable food for some 4 billion people worldwide. In addition, increasing evidence has shown that rice is often grown in contaminated paddy soils with high levels of heavy metal cadmium (Cd) and metalloid arsenic (As). The facility through which these metals are taken up by rice roots and transported to the aerial organs up to the edible caryopses makes rice one of the most relevant sources of these pollutants for humans. This study aimed to evaluate if NO has a mitigatory activity in the roots of rice seedlings against Cd or As toxicity and to understand if this activity requires interactions with auxin. Our results show that exogenous treatments with the NO-donor SNP alleviate the stress induced by Cd, but not by As, in in-vitro-grown rice seedlings through increased intracellular root NO levels. The damages induced by the pollutants include root growth inhibition, root histological alterations and ROS (H2O2, O2●ˉ), and RNS (ONOOˉ) production. Also, SNP treatments mitigate both the root increase in root IAA levels and the IAA alteration in distribution monitored by the OsDR5::GUS system due to the toxic metal exposure. Notably, the SNP-induced mitigation of the IAA homeostasis altered by the pollutants does not involve changes in the expression of OsYUCCA1 and ASA2 IAA-biosynthetic genes. Taken together, the results highlight a mitigating role of NO in the rice root system, which is pollutant-specific, and involves the interaction of the signal molecule with both IAA and brassinosteroids at different (i.e., transport, levels, distribution) and multiple levels (i.e., transcriptional/post-translational levels). The research is supported by Progetti Ateneo Sapienza University of Rome, grant number: RG120172B773D1FF

Keywords: arsenic, auxin, cadmium, nitric oxide, rice, root system

Procedia PDF Downloads 80
13 A Case Study of Brownfield Revitalization in Taiwan

Authors: Jen Wang, Wei-Chia Hsu, Zih-Sin Wang, Ching-Ping Chu, Bo-Shiou Guo

Abstract:

In the late 19th century, the Jinguashi ore deposit in northern Taiwan was discovered, and accompanied with flourishing mining activities. However, tons of contaminants including heavy metals, sulfur dioxide, and total petroleum hydrocarbons (TPH) were released to surroundings and caused environmental problems. Site T was one of copper smelter located on the coastal hill near Jinguashi ore deposit. In over ten years of operation, variety contaminants were emitted that it polluted the surrounding soil and groundwater quality. In order to exhaust fumes produced from smelting process, three stacks were built along the hill behind the factory. The sediment inside the stacks contains high concentration of heavy metals such as arsenic, lead, copper, etc. Moreover, soil around the discarded stacks suffered a serious contamination when deposition leached from the ruptures of stacks. Consequently, Site T (including the factory and its surroundings) was declared as a pollution remediation site that visiting the site and land-use activities on it are forbidden. However, the natural landscape and cultural attractions of Site T are spectacular that it attracts a lot of visitors annually. Moreover, land resources are extremely precious in Taiwan. In addition, Taiwan Environmental Protection Administration (EPA) is actively promoting the contaminated land revitalization policy. Therefore, this study took Site T as case study for brownfield revitalization planning to the limits of activate and remediate the natural resources. Land-use suitability analysis and risk mapping were applied in this study to make appropriate risk management measures and redevelopment plan for the site. In land-use suitability analysis, surrounding factors into consideration such as environmentally sensitive areas, biological resources, land use, contamination, culture, and landscapes were collected to assess the development of each area; health risk mapping was introduced to show the image of risk assessments results based on the site contamination investigation. According to land-use suitability analysis, the site was divided into four zones: priority area (for high-efficiency development), secondary area (for co-development with priority area), conditional area (for reusing existing building) and limited area (for Eco-tourism and education). According to the investigation, polychlorinated biphenyls (PCB), heavy metals and TPH were considered as target contaminants while oral, inhalation and dermal would be the major exposure pathways in health risk assessment. In accordance with health risk map, the highest risk was found in the southwest and eastern side. Based on the results, the development plan focused on zoning and land use. Site T was recommended be divides to public facility zone, public architectonic art zone, viewing zone, existing building preservation zone, historic building zone, and cultural landscape zone for various purpose. In addition, risk management measures including sustained remediation, extinguish exposure and administration management are applied to ensure particular places are suitable for visiting and protect the visitors’ health. The consolidated results are corroborated available by analyzing aspects of law, land acquired method, maintenance and management and public participation. Therefore, this study has a certain reference value to promote the contaminated land revitalization policy in Taiwan.

Keywords: brownfield revitalization, land-use suitability analysis, health risk map, risk management

Procedia PDF Downloads 186
12 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique

Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang

Abstract:

AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.

Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage

Procedia PDF Downloads 263
11 Understanding Systemic Barriers (and Opportunities) to Increasing Uptake of Subcutaneous Medroxy Progesterone Acetate Self-Injection in Health Facilities in Nigeria

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: The DISC project collaborated with partners to implement demand creation and service delivery interventions, including the MoT (Moment of Truth) innovation, in over 500 health facilities across 15 states. This has increased the voluntary conversion rate to self-injection among women who opt for injectable contraception. While some facilities recorded an increasing trend in key performance indicators, few others persistently performed sub-optimally due to provider and system-related barriers. Methodology: Twenty-two facilities performing sub-optimally were selected purposively from three Nigerian states. Low productivity was appraised using low reporting rates and poor SI conversion rates as indicators. Interviews were conducted with health providers across these health facilities using a rapid diagnosis tool. The project also conducted a data quality assessment that evaluated the veracity of data elements reported across the three major sources of family planning data in the facility. Findings: The inability and sometimes refusal of providers to support clients to self-inject effectively was associated with the misunderstanding of its value to their work experience. It was also observed that providers still held a strong influence over clients’ method choices. Furthermore, providers held biases and misconceptions about DMPA-SC that restricted the access of obese clients and new acceptors to services – a clear departure from the recommendations of the national guidelines. Additionally, quality of care standards was compromised because job aids were not used to inform service delivery. Facilities performing sub-optimally often under-reported DMPA-SC utilization data, and there were multiple uncoordinated responsibilities for recording and reporting. Additionally, data validation meetings were not regularly convened, and these meetings were ineffective in authenticating data received from health facilities. Other reasons for sub-optimal performance included poor documentation and tracking of stock inventory resulting in commodity stockouts, low client flow because of poor positioning of health facilities, and ineffective messaging. Some facilities lacked adequate human and material resources to provide services effectively and received very few supportive supervision visits. Supportive supervision visits and Data Quality Audits have been useful to address the aforementioned performance barriers. The project has deployed digital DMPA-SC self-injection checklists that have been aligned with nationally approved templates. During visits, each provider and community mobilizer is accorded special attention by the supervisor until he/she can perform procedures in line with best practice (protocol). Conclusion: This narrative provides a summary of a range of factors that identify health facilities performing sub-optimally in their provision of DMPA-SC services. Findings from this assessment will be useful during project design to inform effective strategies. As the project enters its final stages of implementation, it is transitioning high-impact activities to state institutions in the quest to sustain the quality of service beyond the tenure of the project. The project has flagged activities, as well as created protocols and tools aimed at placing state-level stakeholders at the forefront of improving productivity in health facilities.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, barriers, opportunities, performance

Procedia PDF Downloads 82
10 Improving Data Completeness and Timely Reporting: A Joint Collaborative Effort between Partners in Health and Ministry of Health in Remote Areas, Neno District, Malawi

Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Moses Banda Aron, Julia Higgins, Manuel Mulwafu, Kondwani Mpinga, Mwayi Chunga, Grace Momba, Enock Ndarama, Dickson Sumphi, Atupere Phiri, Fabien Munyaneza

Abstract:

Background: Data is key to supporting health service delivery as stakeholders, including NGOs rely on it for effective service delivery, decision-making, and system strengthening. Several studies generated debate on data quality from national health management information systems (HMIS) in sub-Saharan Africa. This limits the utilization of data in resource-limited settings, which already struggle to meet standards set by the World Health Organization (WHO). We aimed to evaluate data quality improvement of Neno district HMIS over a 4-year period (2018 – 2021) following quarterly data reviews introduced in January 2020 by the district health management team and Partners In Health. Methods: Exploratory Mixed Research was used to examine report rates, followed by in-depth interviews using Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). We used the WHO module desk review to assess the quality of HMIS data in the Neno district captured from 2018 to 2021. The metrics assessed included the completeness and timeliness of 34 reports. Completeness was measured as a percentage of non-missing reports. Timeliness was measured as the span between data inputs and expected outputs meeting needs. We computed T-Test and recorded P-values, summaries, and percentage changes using R and Excel 2016. We analyzed demographics for key informant interviews in Power BI. We developed themes from 7 FGDs and 11 KIIs using Dedoose software, from which we picked perceptions of healthcare workers, interventions implemented, and improvement suggestions. The study was reviewed and approved by Malawi National Health Science Research Committee (IRB: 22/02/2866). Results: Overall, the average reporting completeness rate was 83.4% (before) and 98.1% (after), while timeliness was 68.1% and 76.4 respectively. Completeness of reports increased over time: 2018, 78.8%; 2019, 88%; 2020, 96.3% and 2021, 99.9% (p< 0.004). The trend for timeliness has been declining except in 2021, where it improved: 2018, 68.4%; 2019, 68.3%; 2020, 67.1% and 2021, 81% (p< 0.279). Comparing 2021 reporting rates to the mean of three preceding years, both completeness increased from 88% to 99% (in 2021), while timeliness increased from 68% to 81%. Sixty-five percent of reports have maintained meeting a national standard of 90%+ in completeness while only 24% in timeliness. Thirty-two percent of reports met the national standard. Only 9% improved on both completeness and timeliness, and these are; cervical cancer, nutrition care support and treatment, and youth-friendly health services reports. 50% of reports did not improve to standard in timeliness, and only one did not in completeness. On the other hand, factors associated with improvement included improved communications and reminders using internal communication, data quality assessments, checks, and reviews. Decentralizing data entry at the facility level was suggested to improve timeliness. Conclusion: Findings suggest that data quality in HMIS for the district has improved following collaborative efforts. We recommend maintaining such initiatives to identify remaining quality gaps and that results be shared publicly to support increased use of data. These results can inform Ministry of Health and its partners on some interventions and advise initiatives for improving its quality.

Keywords: data quality, data utilization, HMIS, collaboration, completeness, timeliness, decision-making

Procedia PDF Downloads 85
9 Modern Cardiac Surgical Outcomes in Nonagenarians: A Multicentre Retrospective Observational Study

Authors: Laurence Weinberg, Dominic Walpole, Dong-Kyu Lee, Michael D’Silva, Jian W. Chan, Lachlan F. Miles, Bradley Carp, Adam Wells, Tuck S. Ngun, Siven Seevanayagam, George Matalanis, Ziauddin Ansari, Rinaldo Bellomo, Michael Yii

Abstract:

Background: There have been multiple recent advancements in the selection, optimization and management of cardiac surgical patients. However, there is limited data regarding the outcomes of nonagenarians undergoing cardiac surgery, despite this vulnerable cohort increasingly receiving these interventions. This study describes the patient characteristics, management and outcomes of a group of nonagenarians undergoing cardiac surgery in the context of contemporary peri-operative care. Methods: A retrospective observational study was conducted of patients 90 to 99 years of age (i.e., nonagenarians) who had undergone cardiac surgery requiring a classic median sternotomy (i.e., open-heart surgery). All operative indications were included. Patients who underwent minimally invasive surgery, transcatheter aortic valve implantation and thoracic aorta surgery were excluded. Data were collected from four hospitals in Victoria, Australia, over an 8-year period (January 2012 – December 2019). The primary objective was to assess six-month mortality in nonagenarians undergoing open-heart surgery and to evaluate the incidence and severity of postoperative complications using the Clavien-Dindo classification system. The secondary objective was to provide a detailed description of the characteristics and peri-operative management of this group. Results: A total of 12,358 adult patients underwent cardiac surgery at the study centers during the observation period, of whom 18 nonagenarians (0.15%) fulfilled the inclusion criteria. The median (IQR) [min-max] age was 91 years (90.0:91.8) [90-94] and 14 patients (78%) were men. Cardiovascular comorbidities, polypharmacy and frailty, were common. The median (IQR) predicted in-hospital mortality by EuroSCORE II was 6.1% (4.1-14.5). All patients were optimized preoperatively by a multidisciplinary team of surgeons, cardiologists, geriatricians and anesthetists. All index surgeries were performed on cardiopulmonary bypass. Isolated coronary artery bypass grafting (CABG) and CABG with aortic valve replacement were the most common surgeries being performed in four and five patients, respectively. Half the study group underwent surgery involving two or more major procedures (e.g. CABG and valve replacement). Surgery was undertaken emergently in 44% of patients. All patients except one experienced at least one postoperative complication. The most common complications were acute kidney injury (72%), new atrial fibrillation (44%) and delirium (39%). The highest Clavien-Dindo complication grade was IIIb occurring once each in three patients. Clavien-Dindo grade IIIa complications occurred in only one patient. The median (IQR) postoperative length of stay was 11.6 days (9.8:17.6). One patient was discharged home and all others to an inpatient rehabilitation facility. Three patients had an unplanned readmission within 30 days of discharge. All patients had follow-up to at least six months after surgery and mortality over this period was zero. The median (IQR) duration of follow-up was 11.3 months (6.0:26.4) and there were no cases of mortality observed within the available follow-up records. Conclusion: In this group of nonagenarians undergoing cardiac surgery, postoperative six-month mortality was zero. Complications were common but generally of low severity. These findings support carefully selected nonagenarian patients being offered cardiac surgery in the context of contemporary, multidisciplinary perioperative care. Further, studies are needed to assess longer-term mortality and functional and quality of life outcomes in this vulnerable surgical cohort.

Keywords: cardiac surgery, mortality, nonagenarians, postoperative complications

Procedia PDF Downloads 121
8 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks

Authors: Christina Kirsch, Adam Hatzigiannis

Abstract:

Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.

Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis

Procedia PDF Downloads 121
7 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 176
6 Successful Optimization of a Shallow Marginal Offshore Field and Its Applications

Authors: Kumar Satyam Das, Murali Raghunathan

Abstract:

This note discusses the feasibility of field development of a challenging shallow offshore field in South East Asia and how its learnings can be applied to marginal field development across the world especially developing marginal fields in this low oil price world. The field was found to be economically challenging even during high oil prices and the project was put on hold. Shell started development study with the aim to significantly reduce cost through competitively scoping and revive stranded projects. The proposed strategy to achieve this involved Improve Per platform recovery and Reduction in CAPEX. Methodology: Based on various Benchmarking Tool such as Woodmac for similar projects in the region and economic affordability, a challenging target of 50% reduction in unit development cost (UDC) was set for the project. Technical scope was defined to the minimum as to be a wellhead platform with minimum functionality to ensure production. The evaluation of key project decisions like Well location and number, well design, Artificial lift methods and wellhead platform type under different development concept was carried out through integrated multi-discipline approach. Key elements influencing per platform recovery were Wellhead Platform (WHP) location, Well count, well reach and well productivity. Major Findings: Reservoir being shallow posed challenges in well design (dog-leg severity, casing size and the achievable step-out), choice of artificial lift and sand-control method. Integrated approach amongst relevant disciplines with challenging mind-set enabled to achieve optimized set of development decisions. This led to significant improvement in per platform recovery. It was concluded that platform recovery largely depended on the reach of the well. Choice of slim well design enabled designing of high inclination and better productivity wells. However, there is trade-off between high inclination Gas Lift (GL) wells and low inclination wells in terms of long term value, operational complexity, well reach, recovery and uptime. Well design element like casing size, well completion, artificial lift and sand control were added successively over the minimum technical scope design leading to a value and risk staircase. Logical combinations of options (slim well, GL) were competitively screened to achieve 25% reduction in well cost. Facility cost reduction was achieved through sourcing standardized Low Cost Facilities platform in combination with portfolio execution to maximizing execution efficiency; this approach is expected to reduce facilities cost by ~23% with respect to the development costs. Further cost reductions were achieved by maximizing use of existing facilities nearby; changing reliance on existing water injection wells and utilizing existing water injector (W.I.) platform for new injectors. Conclusion: The study provides a spectrum of technically feasible options. It also made clear that different drivers lead to different development concepts and the cost value trade off staircase made this very visible. Scoping of the project through competitive way has proven to be valuable for decision makers by creating a transparent view of value and associated risks/uncertainty/trade-offs for difficult choices: elements of the projects can be competitive, whilst other parts will struggle, even though contributing to significant volumes. Reduction in UDC through proper scoping of present projects and its benchmarking paves as a learning for the development of marginal fields across the world, especially in this low oil price scenario. This way of developing a field has on average a reduction of 40% of cost for the Shell projects.

Keywords: benchmarking, full field development, CAPEX, feasibility

Procedia PDF Downloads 159
5 Managing Crowds at Sports Mega Events: Examining the Impact of ‘Fan Parks’ at International Football Tournaments between 2002 and 2016

Authors: Joel Rookwood

Abstract:

Sports mega events have become increasingly significant in sporting, political and economic terms, with analysis often focusing on issues including resource expenditure, development, legacy and sustainability. Transnational tournaments can inspire interest from a variety of demographics, and the operational management of such events can involve contributions from a range of personnel. In addition to television audiences events also attract attending spectators, and in football contexts the temporary migration of fans from potentially rival nations and teams can present event organising committees and security personnel with various challenges in relation to crowd management. The behaviour, interaction and control of supporters has previously led to incidents of disorder and hooliganism, with damage to property as well as injuries and deaths proving significant consequences. The Heysel tragedy at the 1985 European Cup final in Brussels is a notable example, where 39 fans died following crowd disorder and mismanagement. Football disasters and disorder, particularly in the context of international competition, have inspired responses from police, law makers, event organisers, clubs and associations, including stadium improvements, legislative developments and crowd management practice to improve the effectiveness of spectator safety. The growth and internationalisation of fandom and developments in event management and tourism have seen various responses to the evolving challenges associated with hosting large numbers of visiting spectators at mega events. In football contexts ‘fan parks’ are a notable example. Since the first widespread introduction in European football competitions at the 2006 World Cup finals in Germany, these facilities have become a staple element of such mega events. This qualitative, longitudinal, multi-continent research draws on extensive semi-structured interview and observation data. As a frame of reference, this work considers football events staged before and after the development of fan parks. Research was undertaken at four World Cup finals (Japan 2002, Germany 2006, South Africa 2010 and Brazil 2014), four European Championships (Portugal 2004, Switzerland/Austria 2008, Poland/Ukraine 2012 and France 2016), four other confederation tournaments (Ghana 2008, Qatar 2011, USA 2011 and Chile 2015), and four European club finals (Istanbul 2005, Athens 2007, Rome 2009 and Basle 2016). This work found that these parks are typically temporarily erected, specifically located zones where supporters congregate together irrespective of allegiances to watch matches on large screens, and partake in other forms of organised on-site entertainment. Such facilities can also allow organisers to control the behaviour, confine the movement and monitor the alcohol consumption of supporters. This represents a notable shift in policy from previous football tournaments, when the widely assumed causal link between alcohol and hooliganism which frequently shaped legislative and police responses to disorder, also dissuaded some authorities from permitting fans to consume alcohol in and around stadia. It also reflects changing attitudes towards modern football fans. The work also found that in certain contexts supporters have increasingly engaged with such provision which impacts fan behaviour, but that this is relative to factors including location, facilities, management and security.

Keywords: event, facility, fan, management, park

Procedia PDF Downloads 313
4 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 273