Search results for: mixed methods approach
20445 Global Solar Irradiance: Data Imputation to Analyze Complementarity Studies of Energy in Colombia
Authors: Jeisson A. Estrella, Laura C. Herrera, Cristian A. Arenas
Abstract:
The Colombian electricity sector has been transforming through the insertion of new energy sources to generate electricity, one of them being solar energy, which is being promoted by companies interested in photovoltaic technology. The study of this technology is important for electricity generation in general and for the planning of the sector from the perspective of energy complementarity. Precisely in this last approach is where the project is located; we are interested in answering the concerns about the reliability of the electrical system when climatic phenomena such as El Niño occur or in defining whether it is viable to replace or expand thermoelectric plants. Reliability of the electrical system when climatic phenomena such as El Niño occur, or to define whether it is viable to replace or expand thermoelectric plants with renewable electricity generation systems. In this regard, some difficulties related to the basic information on renewable energy sources from measured data must first be solved, as these come from automatic weather stations. Basic information on renewable energy sources from measured data, since these come from automatic weather stations administered by the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM) and, in the range of study (2005-2019), have significant amounts of missing data. For this reason, the overall objective of the project is to complete the global solar irradiance datasets to obtain time series to develop energy complementarity analyses in a subsequent project. Global solar irradiance data sets to obtain time series that will allow the elaboration of energy complementarity analyses in the following project. The filling of the databases will be done through numerical and statistical methods, which are basic techniques for undergraduate students in technical areas who are starting out as researchers technical areas who are starting out as researchers.Keywords: time series, global solar irradiance, imputed data, energy complementarity
Procedia PDF Downloads 7120444 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation
Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos
Abstract:
The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.Keywords: air pollution, passive samplers, interferometry, indoor, outdoor
Procedia PDF Downloads 39820443 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital
Authors: Wieke Ellen Bouwes
Abstract:
This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations
Procedia PDF Downloads 7420442 Identifying the Barriers behind the Lack of Six Sigma Use in Libyan Manufacturing Companies
Authors: Osama Elgadi, Martin Birkett, Wai Ming Cheung
Abstract:
This paper investigates the barriers behind the underutilisation of six sigma in Libyan manufacturing companies (LMCs). A mixed-method methodology is proposed, starting by conducting interviews to collect qualitative data followed by the development of a questionnaire to obtain quantitative data. The focus of this paper is on discussing the findings of the interview stage and how these can be used to further develop the questionnaire stage. The interview results showed that only four key barriers were highlighted as being encountered by LMCs. With a difference in terms of their significance, these factors were identified, and placed in descending order according to their importance, namely: “Lack of top management commitment”, “Lack of training”, “Lack of knowledge about six sigma”, and “Culture effect”. The findings also showed that some barriers which, were found in previous studies of six sigma implementation were not considered as barriers to LMCs but can, in fact, be considered as success factors or enablers for six sigma adoption. These factors were identified as: “sufficiency of time and financial resources”; “customers unsatisfied”; “good communication between all departments in the company”; “we are certain about its results and benefits to our company and unhappy with the current quality system”. These results suggest that LMCs face fewer barriers to adopting six sigma than many well-established global companies operating in other countries and could take advantage of these successful factors by developing and implementing a six sigma framework to improve their product quality and competitiveness.Keywords: six sigma, barriers, Libyan manufacturing companies, interview
Procedia PDF Downloads 22920441 D3Advert: Data-Driven Decision Making for Ad Personalization through Personality Analysis Using BiLSTM Network
Authors: Sandesh Achar
Abstract:
Personalized advertising holds greater potential for higher conversion rates compared to generic advertisements. However, its widespread application in the retail industry faces challenges due to complex implementation processes. These complexities impede the swift adoption of personalized advertisement on a large scale. Personalized advertisement, being a data-driven approach, necessitates consumer-related data, adding to its complexity. This paper introduces an innovative data-driven decision-making framework, D3Advert, which personalizes advertisements by analyzing personalities using a BiLSTM network. The framework utilizes the Myers–Briggs Type Indicator (MBTI) dataset for development. The employed BiLSTM network, specifically designed and optimized for D3Advert, classifies user personalities into one of the sixteen MBTI categories based on their social media posts. The classification accuracy is 86.42%, with precision, recall, and F1-Score values of 85.11%, 84.14%, and 83.89%, respectively. The D3Advert framework personalizes advertisements based on these personality classifications. Experimental implementation and performance analysis of D3Advert demonstrate a 40% improvement in impressions. D3Advert’s innovative and straightforward approach has the potential to transform personalized advertising and foster widespread personalized advertisement adoption in marketing.Keywords: personalized advertisement, deep Learning, MBTI dataset, BiLSTM network, NLP.
Procedia PDF Downloads 4420440 Analysis of Minimizing Investment Risks in Power and Energy Business Development by Combining Total Quality Management and International Financing Institutions Project Management Tools
Authors: M. Radunovic
Abstract:
Region of Southeastern Europe has a substantial energy resource potential and is witnessing an increasing rate of power and energy project investments. This comes as a result of countries harmonizing their legal framework and market regulations to conform the ones of European Union, enabling direct private investments. Funding in the power and energy market in this region originates from various resources and investment entities, including commercial and institutional ones. Risk anticipation and assessment is crucial to project success, especially given the long exploitation period of project in power and energy domain, as well as the wide range of stakeholders involved. This paper analyzes the possibility of combined application of tools used in total quality management and international financing institutions for project planning, execution and evaluation, with the goal of anticipating, assessing and minimizing the risks that might occur in the development and execution phase of a power and energy project in the market of southeastern Europe. History of successful project management and investments both in the industry and institutional sector provides sufficient experience, guidance and internationally adopted tools to provide proper project assessment for investments in power and energy. Business environment of southeastern Europe provides immense potential for developing power and engineering projects of various magnitudes, depending on stakeholders’ interest. Diversification on investment sources provides assurance that there is interest and commitment to invest in this market. Global economic and political developments will be intensifying the pace of investments in the upcoming period. The proposed approach accounts for key parameters that contribute to the sustainability and profitability of a project which include technological, educational, social and economic gaps between the southeastern European region and western Europe, market trends in equipment design and production on a global level, environment friendly approach to renewable energy sources as well as conventional power generation systems, and finally the effect of the One Belt One Road Initiative led by People’s Republic of China to the power and energy market of this region in the upcoming period on a long term scale. Analysis will outline the key benefits of the approach as well as the accompanying constraints. Parallel to this it will provide an overview of dominant threats and opportunities in present and future business environment and their influence to the proposed application. Through concrete examples, full potential of this approach will be presented along with necessary improvements that need to be implemented. Number of power and engineering projects being developed in southeastern Europe will be increasing in the upcoming period. Proper risk analysis will lead to minimizing project failures. The proposed successful combination of reliable project planning tools from different investment areas can prove to be beneficial in the future power and engineering investments, and guarantee their sustainability and profitability.Keywords: capital investments, lean six sigma, logical framework approach, logical framework matrix, one belt one road initiative, project management tools, quality function deployment, Southeastern Europe, total quality management
Procedia PDF Downloads 10920439 Influence of Laser Excitation on SERS of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)
Procedia PDF Downloads 33320438 An Approach to Autonomous Drones Using Deep Reinforcement Learning and Object Detection
Authors: K. R. Roopesh Bharatwaj, Avinash Maharana, Favour Tobi Aborisade, Roger Young
Abstract:
Presently, there are few cases of complete automation of drones and its allied intelligence capabilities. In essence, the potential of the drone has not yet been fully utilized. This paper presents feasible methods to build an intelligent drone with smart capabilities such as self-driving, and obstacle avoidance. It does this through advanced Reinforcement Learning Techniques and performs object detection using latest advanced algorithms, which are capable of processing light weight models with fast training in real time instances. For the scope of this paper, after researching on the various algorithms and comparing them, we finally implemented the Deep-Q-Networks (DQN) algorithm in the AirSim Simulator. In future works, we plan to implement further advanced self-driving and object detection algorithms, we also plan to implement voice-based speech recognition for the entire drone operation which would provide an option of speech communication between users (People) and the drone in the time of unavoidable circumstances. Thus, making drones an interactive intelligent Robotic Voice Enabled Service Assistant. This proposed drone has a wide scope of usability and is applicable in scenarios such as Disaster management, Air Transport of essentials, Agriculture, Manufacturing, Monitoring people movements in public area, and Defense. Also discussed, is the entire drone communication based on the satellite broadband Internet technology for faster computation and seamless communication service for uninterrupted network during disasters and remote location operations. This paper will explain the feasible algorithms required to go about achieving this goal and is more of a reference paper for future researchers going down this path.Keywords: convolution neural network, natural language processing, obstacle avoidance, satellite broadband technology, self-driving
Procedia PDF Downloads 25120437 Carbon-Encapsulated Iron Nanoparticles for Hydrogen Sulfide Removal
Authors: Meriem Abid, Erika Oliveria-Jardim, Andres Fullana, Joaquin Silvestre-Albero
Abstract:
The rapid industrial development associated with the increase of volatile organic compounds (VOCs) has seriously impacted the environment. Among VOCs, hydrogen sulfide (H₂S) is known as a highly toxic, malodorous, flammable, and corrosive gas, which is emitted from diverse chemical processes, including industrial waste-gas streams, natural gas processing, and biogas purification. The high toxicity, corrosively, and very characteristic odor threshold of H2S call for urgent development of efficient desulfurization processes from the viewpoint of environmental protection and resource regeneration. In order to reduce H₂S emissions, effective technologies for have been performed. The general method of H₂S removal included amine aqueous solution, adsorption process, biological methods, and fixed-bed solid catalytic oxidation processes. Ecologically and economically, low-temperature direct oxidation of H₂S to elemental sulfur using catalytic oxidation is the preferred approach for removing H₂S-containing gas streams. A large number of catalysts made from carbon, metal oxides, clay, and others, have been studied extensively for this application. In this sense, activated carbon (AC) is an attractive catalyst for H₂S removal because it features a high specific surface area, diverse functional groups, low cost, durability, and high efficiency. It is interesting to stand out that AC is modified using metal oxides to promote the efficiency of H₂S removal and to enhance the catalytic performance. Based on these premises, the main goal of the present study is the evaluation of the H₂S adsorption performance in carbon-encapsulated iron nanoparticles obtained from an olive mill, thermally treated at 600, 800 and 1000 ºC temperatures under anaerobic conditions. These results anticipate that carbon-encapsulated iron nanoparticles exhibit a promising performance for the H₂S removal up to 360 mg/g.Keywords: H₂S removal, catalytic oxidation, carbon encapsulated iron, olive mill wastewater
Procedia PDF Downloads 8720436 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 26020435 Reconfigurable Intelligent Surfaces (RIS)-Assisted Integrated Leo Satellite and UAV for Non-terrestrial Networks Using a Deep Reinforcement Learning Approach
Authors: Tesfaw Belayneh Abebe
Abstract:
Integrating low-altitude earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN) with the assistance of reconfigurable intelligent surfaces (RIS), we investigate the problem of how to enhance throughput through integrated LEO satellites and UAVs with the assistance of RIS. We propose a method to jointly optimize the associations with the LEO satellite, the 3D trajectory of the UAV, and the phase shifts of the RIS to maximize communication throughput for RIS-assisted integrated LEO satellite and UAV-enabled wireless communications, which is challenging due to the time-varying changes in the position of the LEO satellite, the high mobility of UAVs, an enormous number of possible control actions, and also the large number of RIS elements. Utilizing a multi-agent double deep Q-network (MADDQN), our approach dynamically adjusts LEO satellite association, UAV positioning, and RIS phase shifts. Simulation results demonstrate that our method significantly outperforms baseline strategies in maximizing throughput. Lastly, thanks to the integrated network and the RIS, the proposed scheme achieves up to 65.66x higher peak throughput and 25.09x higher worst-case throughput.Keywords: integrating low-altitude earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs) within a non-terrestrial network (NTN), reconfigurable intelligent surfaces (RIS), multi-agent double deep Q-network (MADDQN)
Procedia PDF Downloads 4820434 Adolescent-Parent Relationship as the Most Important Factor in Preventing Mood Disorders in Adolescents: An Application of Artificial Intelligence to Social Studies
Authors: Elżbieta Turska
Abstract:
Introduction: One of the most difficult times in a person’s life is adolescence. The experiences in this period may shape the future life of this person to a large extent. This is the reason why many young people experience sadness, dejection, hopelessness, sense of worthlessness, as well as losing interest in various activities and social relationships, all of which are often classified as mood disorders. As many as 15-40% adolescents experience depressed moods and for most of them they resolve and are not carried into adulthood. However, (5-6%) of those affected by mood disorders develop the depressive syndrome and as many as (1-3%) develop full-blown clinical depression. Materials: A large questionnaire was given to 2508 students, aged 13–16 years old, and one of its parts was the Burns checklist, i.e. the standard test for identifying depressed mood. The questionnaire asked about many aspects of the student’s life, it included a total of 53 questions, most of which had subquestions. It is important to note that the data suffered from many problems, the most important of which were missing data and collinearity. Aim: In order to identify the correlates of mood disorders we built predictive models which were then trained and validated. Our aim was not to be able to predict which students suffer from mood disorders but rather to explore the factors influencing mood disorders. Methods: The problems with data described above practically excluded using all classical statistical methods. For this reason, we attempted to use the following Artificial Intelligence (AI) methods: classification trees with surrogate variables, random forests and xgboost. All analyses were carried out with the use of the mlr package for the R programming language. Resuts: The predictive model built by classification trees algorithm outperformed the other algorithms by a large margin. As a result, we were able to rank the variables (questions and subquestions from the questionnaire) from the most to least influential as far as protection against mood disorder is concerned. Thirteen out of twenty most important variables reflect the relationships with parents. This seems to be a really significant result both from the cognitive point of view and also from the practical point of view, i.e. as far as interventions to correct mood disorders are concerned.Keywords: mood disorders, adolescents, family, artificial intelligence
Procedia PDF Downloads 10120433 Nutritional Quality Assessment and Safety Evaluation of Food Crops
Authors: Olawole Emmanuel Aina, Liziwe Lizbeth Mugivhisa, Joshua Oluwole Olowoyo, Chikwela Lawrence Obi
Abstract:
In sustained and consistent efforts to improve food security, numerous and different methods are proposed and used in the production of food crops, and farm produce to meet the demands of consumers. However, unregulated and indiscriminate methods of production present another problem that may expose consumers of these food crops to potential health risks. Therefore, it is imperative that a thorough assessment of farm produce is carried out due to the growing trend of health-conscious consumers preference for minimally processed or raw farm produce. This study evaluated the safety and nutritional quality of food crops. The objectives were to compare the nutritional quality of organic and inorganic farm produce in one hand and, on the other, evaluate the safety of farm produce with respect to trace metal and pathogenic contamination. We conducted a broad systematic search of peer-reviewed published literatures from databases and search engines such as science direct, web-of-science, Google scholar, and Scopus. This study concluded that there is no conclusive evidence to support the notion of nutritional superiority of organic food crops over their inorganic counterparts and there are documented reports of pathogenic and metal contaminations of food crops.Keywords: food crops, fruits and vegetables, pathogens, nutrition, trace metals
Procedia PDF Downloads 8020432 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis
Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz
Abstract:
During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs
Procedia PDF Downloads 20820431 An Innovative Non-Invasive Method To Improve The Stability Of Orthodontic Implants: A Pilot Study
Authors: Dr., Suchita Daokar
Abstract:
Background: Successful orthodontic treatment has always relied on anchorage. The stability of the implants depends on bone quantity, mini-implant design, and placement conditions. Out of the various methods of gaining stability, Platelet concentrations are gaining popularity for various reasons. PRF is a minimally invasive method, and there are various studies that has shown its role in enhancing the stability of general implants. However, there is no literature found regarding the effect of PRF in enhancing the stability of the orthodontic implant. Therefore, this study aimed to evaluate and assess the efficacy of PRF on the stability of the orthodontic implant. Methods: The study comprised of 9 subjects aged above 18 years of age. The split mouth technique was used; Group A (where implants were coated before insertion) and group B (implant were normally inserted). The stability of the implant was measured using resonance frequency analysis at insertion (T0), 24 hours (T1), 2 weeks (T2), at 4 weeks (T3), at 6 weeks (T4), and 8 weeks (T5) after insertion. Result: Statistically significant findings were found when group A was compared to group B using ANOVA test (p<0.05). The stability of the implant of group A at each time interval was greater than group B. The implant stability was high at T0 and reduces at T2, and increasing through T3 to T5. The stability was highest at T5. Conclusion: A chairside, minimally invasive procedure ofPRF coating on implants have shown promising results in improving the stability of orthodontic implants and providing scope for future studies.Keywords: Orthodontic implants, stablity, resonance Frequency Analysis, pre
Procedia PDF Downloads 20220430 The Effectiveness of a School-Based Addiction Prevention Program: Pilot Evaluation of Rajasthan Addiction Prevention Project
Authors: Sadhana Sharma, Neha Sharma, Hardik Khandelwal, Arti Sharma
Abstract:
Background: It is widely acknowledged globally that parents must advocate for their children's drug and substance abuse prevention. However, many parents find it difficult to advocate due to systemic and logistical barriers. Alternatives to introducing advocacy, awareness, and support for the prevention of drug and substance abuse to children could occur in schools. However, little research has been conducted on the development of advocates for substance abuse in school settings. Objective: to evaluate the effectiveness of a school-based addiction prevention and control created as part of the Rajasthan Addiction Prevention Project (a partnership between state-community initiative). Methods: We conducted an evaluation in this study to determine the impact of a RAPP on a primary outcome (substance abuse knowledge) and other outcomes (family–school partnership, empowerment, and support). Specifically, between September-December 2022, two schools participated in the intervention group (advocacy training), and two schools participated in the control group (waiting list). The RAPP designed specialised 2-hrs training to equip teachers-parents with the knowledge and skills necessary to advocate for their own children and those of other families. All participants were required to complete a pre- and post-survey. Results: The intervention group established school advocates in schools where trained parents volunteered to lead support groups for high-risk children. Compared to the participants in the wait list control group, those in the intervention group demonstrated greater education knowledge, P = 0.002, and self-mastery, P = 0.04, and decreased family–school partnership quality, P = 0.002.Conclusions: The experimental evaluation of school-based advocacy programme revealed positive effects on substance abuse that persist over time. The approach wa s deemed feasible and acceptable by both parents and the school.Keywords: prevention, school based, addiction, advocacy
Procedia PDF Downloads 9620429 Application of Raman Spectroscopy for Ovarian Cancer Detection: Comparative Analysis of Fresh, Formalin-Fixed, and Paraffin-Embedded Samples
Authors: Zeinab Farhat, Nicolas Errien, Romuald Wernert, Véronique Verriele, Frédéric Amiard, Philippe Daniel
Abstract:
Ovarian cancer, also known as the silent killer, is the fifth most common cancer among women worldwide, and its death rate is higher than that of other gynecological cancers. The low survival rate of women with high-grade serous ovarian carcinoma highlights the critical need for the development of new methods for early detection and diagnosis of the disease. The aim of this study was to evaluate if Raman spectroscopy combined with chemometric methods such as Principal Component Analysis (PCA) could differentiate between cancerous and normal tissues from different types of samples, such as paraffin embedding, chemical deparaffinized, formalin-fixed and fresh samples of the same normal and malignant ovarian tissue. The method was applied specifically to two critical spectral regions: the signature region (860-1000 〖cm〗^(-1)) and the high-frequency region (2800-3100 〖cm〗^(-1) ). The mean spectra of paraffin-embedded in normal and malignant tissues showed almost similar intensity. On the other hand, the mean spectra of normal and cancer tissues from chemical deparaffinized, formalin-fixed, and fresh samples show significant intensity differences. These spectral differences reflect variations in the molecular composition of the tissues, particularly lipids and proteins. PCA, which was applied to distinguish between cancer and normal tissues, was performed on whole spectra and on selected regions—the PCA score plot of paraffin-embedded shows considerable overlap between the two groups. However, the PCA score of chemicals deparaffinized, formalin-fixed, and fresh samples showed a good discrimination of tissue types. Our findings were validated by analyses of a set of samples whose status (normal and cancerous) was not previously known. The results of this study suggest that Raman Spectroscopy associated with PCA methods has the capacity to provide clinically significant differentiation between normal and cancerous ovarian tissues.Keywords: Raman spectroscopy, ovarian cancer, signal processing, Principal Component Analysis, classification
Procedia PDF Downloads 2920428 Cultural Stereotypes in EFL Classrooms and Their Implications on English Language Procedures in Cameroon
Authors: Eric Enongene Ekembe
Abstract:
Recent calls on EFL teaching posit the centrality of context factors and argue for a correlation between effectiveness in teaching with the learners’ culture in the EFL classroom. Context is not everything; it is defined with indicators of learners’ cultural artifacts and stereotypes in meaningful interactions in the language classroom. In keeping with this, it is difficult to universalise pedagogic procedures given that appropriate procedures are context-sensitive- and contexts differ. It is necessary to investigate what counts as cultural specificities or stereotypes of specific learners to reflect on how different language learning contexts affect or are affected by English language teaching procedures, most especially in under-represented cultures, which have appropriated the English language. This paper investigates cultural stereotypes of EFL learners in the culturally diverse Cameroon to examine how they mediate teaching and learning. Data collected on mixed-method basis from 83 EFL teachers and 1321 learners in Cameroon reveal a strong presence of typical cultural artifacts and stereotypes. Statistical analysis and thematic coding demonstrate that teaching procedures in place were insensitive to the cultural artifacts and stereotypes, resulting in trending tension between teachers and learners. The data equally reveal a serious contradiction between the communicative goals of language teaching and learning: what teachers held as effective teaching was diametrically opposed to success in learning. In keeping with this, the paper argues for a ‘decentred’ teacher preparation in Cameroon that is informed by systemic learners’ feedback. On this basis, applied linguistics has the urgent task of exploring dimensions of what actually counts as contextualized practice in ELT.Keywords: cultural stereotypes, EFL, implications, procedures
Procedia PDF Downloads 12920427 An Investigation of Cyber Financial Crimes After the Enactment of PECA: A Case Study of Pakistan’s Banking Sector During 2016 to 2022
Authors: Zain Khalid
Abstract:
The paper outlines the trends of cyber financial crimes and frauds – approximating upto – in Pakistan after the enactment of The Prevention of Electronic Crimes Act in 2016. The paper elaborates on the newer methods that fraudsters have adopted after tighter preventive and counter measures were employed in Pakistan partly as a result of following the international finance related commitments, particularly the FATF regulations. The paper adopts case studies methods to highlight various aspects of the financial frauds and crimes committed and later investigated jointly by Pakistan’s one of the federal law enforcement agencies, the Federal Investigation Agency, and Mobilink Microfinance Bank , Pakistan’s premier microfinance bank. It additionally enriches the data through expert interviews – with crime investigators and the experts to carry out an in-depth analysis of the various factors involving the crime. This paper emphasizes the structural and situational factors that shape up the cyber financial crimes in Pakistan vis-à-vis digital illiteracy and lack of awareness among the users of financial services. This paper, thus, on the basis of findings and expert interviews, suggests policy reforms to reduce the instances of the financial crimes, especially in the remotest areas of the country.Keywords: financial crimes, cyber crimes, digital literacy, terrorism financing, banking sector
Procedia PDF Downloads 8820426 Exploring the Process of Change in the Identity Constructs of Adolescents Exposed to Family Violence
Authors: Charlene Petersen, Herman Grobler, Karel Botha
Abstract:
Exposure to family violence has an impact on adolescent development, more specifically the identity process. This article explores the process of change in identity constructs of adolescents’ exposed to family violence in a Cape Town community in South Africa. In order to understand the process of identity formation the article explores and describes how the meaning that these adolescents give to family violence can contribute to change in their identity constructs. A mixed method approached was used in the study. A psycho-education strategy was implemented as the intervention and pretest-post-test scales were used to assess for change after the intervention process. Twelve participants were purposely selected for the study and included both male and female adolescents with ages ranging from 15 to 18 years from three secondary schools. The research data for this article were mainly extracted from the pre-test post-test design and the psycho-education strategy of the overall research study. The research results of the psycho-education strategy were thematically analyzed and a statistical procedure was used to measure for significant change within pre-test-post-test scales. The research merely refers to the outcome of psycho-education strategy and how it correlates with the outcome of the pre-test post-test design. Adolescents’ exposure to a psycho-education strategy, as well the pre-test post-test findings reveal a change within identity construct in terms of how they perceive themselves and interaction with others in the context of family violence.Keywords: process of change in adolescent identity, family violence, psycho-education strategy, pre and post assessment
Procedia PDF Downloads 47620425 Determination of Verapamil Hydrochloride in Tablets and Injection Solutions With the Verapamil-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih
Abstract:
Verapamil hydrochloride (Ver) is a drug used in medicine for arrythmia, angina and hypertension as a calcium channel blocker. For the quantitative determination of Ver in dosage forms, the HPLC method is most often used. A convenient alternative to the chromatographic method is potentiometry using a Verselective electrode, which does not require expensive equipment, can be used without separation from the matrix components, which significantly reduces the analysis time, and does not use toxic organic solvents, being a "green", "environmentally friendly" technique. It has been established in this study that the rational choice of the membrane plasticizer and the preconditioning and measurement algorithms, which prevent nonexchangeable extraction of Ver into the membrane phase, makes it possible to achieve excellent analytical characteristics of Ver-selective electrodes based on commercially available components. In particular, an electrode with the following membrane composition: PVC (32.8 wt %), ortho-nitrophenyloctyl ether (66.6 wt %), and tetrakis-4-chlorophenylborate (0.6 wt % or 0.01 M) have the lower detection limit 4 × 10−8 M and potential reproducibility 0.15–0.22 mV. Both direct potentiometry (DP) and potentiometric titration (PT) methods can be used for the determination of Ver in tablets and injection solutions. Masses of Ver per average tablet weight determined by the methods of DP and PT for the same set of 10 tablets were (80.4±0.2 and80.7±0.2) mg, respectively. The masses of Ver in solutions for injection, determined by DP for two ampoules from one set, were (5.00±0.015 and 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.Keywords: verapamil, potentiometry, ion-selective electrode, pharmaceutical analysis
Procedia PDF Downloads 8820424 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 11820423 An Ensemble Learning Method for Applying Particle Swarm Optimization Algorithms to Systems Engineering Problems
Authors: Ken Hampshire, Thomas Mazzuchi, Shahram Sarkani
Abstract:
As a subset of metaheuristics, nature-inspired optimization algorithms such as particle swarm optimization (PSO) have shown promise both in solving intractable problems and in their extensibility to novel problem formulations due to their general approach requiring few assumptions. Unfortunately, single instantiations of algorithms require detailed tuning of parameters and cannot be proven to be best suited to a particular illustrative problem on account of the “no free lunch” (NFL) theorem. Using these algorithms in real-world problems requires exquisite knowledge of the many techniques and is not conducive to reconciling the various approaches to given classes of problems. This research aims to present a unified view of PSO-based approaches from the perspective of relevant systems engineering problems, with the express purpose of then eliciting the best solution for any problem formulation in an ensemble learning bucket of models approach. The central hypothesis of the research is that extending the PSO algorithms found in the literature to real-world optimization problems requires a general ensemble-based method for all problem formulations but a specific implementation and solution for any instance. The main results are a problem-based literature survey and a general method to find more globally optimal solutions for any systems engineering optimization problem.Keywords: particle swarm optimization, nature-inspired optimization, metaheuristics, systems engineering, ensemble learning
Procedia PDF Downloads 9920422 Exploring the In-Between: An Examination of the Contextual Factors That Impact How Young Children Come to Value and Use the Visual Arts in Their Learning and Lives
Authors: S. Probine
Abstract:
The visual arts have been proven to be a central means through which young children can communicate their ideas, reflect on experience, and construct new knowledge. Despite this, perceptions of, and the degree to which the visual arts are valued within education, vary widely within political, educational, community and family contexts. These differing perceptions informed my doctoral research project, which explored the contextual factors that affect how young children come to value and use the visual arts in their lives and learning. The qualitative methodology of narrative inquiry with inclusion of arts-based methods was most appropriate for this inquiry. Using a sociocultural framework, the stories collected were analysed through the sociocultural theories of Lev Vygotsky as well as the work of Urie Bronfenbrenner, together with postmodern theories about identity formation. The use of arts-based methods such as teacher’s reflective art journals and the collection of images by child participants and their parent/caregivers allowed the research participants to have a significant role in the research. Three early childhood settings at which the visual arts were deeply valued as a meaning-making device in children’s learning, were purposively selected to be involved in the research. At each setting, the study found a unique and complex web of influences and interconnections, which shaped how children utilised the visual arts to mediate their thinking. Although the teachers' practices at all three centres were influenced by sociocultural theories, each settings' interpretations of these theories were unique and resulted in innovative interpretations of the role of the teacher in supporting visual arts learning. These practices had a significant impact on children’s experiences of the visual arts. For many of the children involved in this study, visual art was the primary means through which they learned. The children in this study used visual art to represent their experiences, relationships, to explore working theories, their interests (including those related to popular culture), to make sense of their own and other cultures, and to enrich their imaginative play. This research demonstrates that teachers have fundamental roles in fostering and disseminating the importance of the visual arts within their educational communities.Keywords: arts-based methods, early childhood education, teacher's visual arts pedagogies, visual arts
Procedia PDF Downloads 13920421 Factory Virtual Environment Development for Augmented and Virtual Reality
Authors: Michal Gregor, Jiri Polcar, Petr Horejsi, Michal Simon
Abstract:
Machine visualization is an area of interest with fast and progressive development. We present a method of machine visualization which will be applicable in real industrial conditions according to current needs and demands. Real factory data were obtained in a newly built research plant. Methods described in this paper were validated on a case study. Input data were processed and the virtual environment was created. The environment contains information about dimensions, structure, disposition, and function. Hardware was enhanced by modular machines, prototypes, and accessories. We added new functionalities and machines into the virtual environment. The user is able to interact with objects such as testing and cutting machines, he/she can operate and move them. Proposed design consists of an environment with two degrees of freedom of movement. Users are in touch with items in the virtual world which are embedded into the real surroundings. This paper describes the development of the virtual environment. We compared and tested various options of factory layout virtualization and visualization. We analyzed possibilities of using a 3D scanner in the layout obtaining process and we also analyzed various virtual reality hardware visualization methods such as Stereoscopic (CAVE) projection, Head Mounted Display (HMD), and augmented reality (AR) projection provided by see-through glasses.Keywords: augmented reality, spatial scanner, virtual environment, virtual reality
Procedia PDF Downloads 40820420 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture
Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis
Abstract:
Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus
Procedia PDF Downloads 19320419 Effective Infection Control Measures to Prevent Transmission of Multi-Drug Resistant Organisms from Burn Transfer Cases in a Regional Burn Centre
Authors: Si Jack Chong, Chew Theng Yap, Wan Loong James Mok
Abstract:
Introduction: Regional burn centres face the spectra of introduced multi-drug resistant organisms (MDRO) from transfer patients resident in MDRO endemic countries. MDRO can cause severe nosocomial infection, which in massive burn patients, will lead to greater morbidity and mortality and strain the institution financially. We aim to highlight 4 key measures that have effectively prevented transmission of imported MDRO. Methods: A case of Candida auris (C. auris) from a massive burn patient transferred from an MDRO endemic country is used to illustrate the measures. C. auris is a globally emerging multi-drug resistant fungal pathogen causing nosocomial transmission. Results: Infection control measures used to mitigate the risk of outbreak from transfer cases are: (1) Multidisciplinary team approach involving Infection Control and Infectious Disease specialists early to ensure appropriate antibiotics use and implementation of barrier measures, (2) aseptic procedures for dressing change with strict isolation and donning of personal protective equipment in the ward, (3) early screening of massive burn patient from MDRO endemic region, (4) hydrogen peroxide vaporization terminal cleaning for operating theatres and rooms. Conclusion: The prevalence of air travel and international transfer to regional burn centres will need effective infection control measures to reduce the risk of transmission from imported massive burn patients. In our centre, we have effectively implemented 4 measures which have reduced the risks of local contamination. We share a recent case report to illustrate successful management of a potential MDRO outbreak resulting from transfer of massive burn patient resident in an MDRO endemic area.Keywords: burns, burn unit, cross infection, infection control
Procedia PDF Downloads 15220418 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 23820417 The Compositional Effects on Electrospinning of Gelatin and Polyvinyl-alcohol Mixed Nanofibers
Authors: Yi-Chun Wu, Nai-Yun Chang, Chuan LI
Abstract:
This study investigates a feasible range of composition for the mixture of gelatin and polyvinyl alcohol to form nanofibers by electrospinning. Gelatin, one of the most available naturally derived hydrogels of amino acids, is a popular choice for food additives, cosmetic ingredients, biomedical implants, or dressing of its non-toxic and biodegradable nature. Nevertheless, synthetic hydrogel polyvinyl alcohol has long been used as a thickening agent for adhesion purposes. Many biomedical devices are also containing polyvinyl-alcohol as a major content, such as eye drops and contact lenses. To discover appropriate compositions of gelatin and polyvinyl-alcohol for electrospun nanofibers, polymer solutions of different volumetric ratios between gelatin and polyvinyl alcohol were prepared for electrospinning. The viscosity, surface tension, pH value, and electrical conductance of polymer solutions were measured. On the nanofibers, the vibrational modes of molecular structures in nanofibers were investigated by Fourier-transform infrared spectroscopy. The morphologies and surface chemical elements of fibers were examined by the scanning electron microscope and the energy-dispersive X-ray spectroscopy. The hydrophilicity of nanofiberswas evaluated by the water contact angles on the surface of the fibers. To further test the biotoxicity of nanofibers, an in-vitro 3T3 fibroblasts culture further tested the biotoxicity of the electrospun nanofibers. Throughstatistical analyses of the experimental data, it is found that the polyvinyl-alcohol rich composition (the volumetric ratio of gelatin/polyvinyl-alcohol < 1) would be a preferable choice for the formation of nanofibers by the current setup of electrospinning. These electrospun nanofibers tend to be hydrophilic with no biotoxicity threat to the 3T3 fibroblasts.Keywords: gelatin, polyvinyl-alcohol, nanofibers, electrospinning, spin coating
Procedia PDF Downloads 8520416 Artificial Bee Colony Optimization for SNR Maximization through Relay Selection in Underlay Cognitive Radio Networks
Authors: Babar Sultan, Kiran Sultan, Waseem Khan, Ijaz Mansoor Qureshi
Abstract:
In this paper, a novel idea for the performance enhancement of secondary network is proposed for Underlay Cognitive Radio Networks (CRNs). In Underlay CRNs, primary users (PUs) impose strict interference constraints on the secondary users (SUs). The proposed scheme is based on Artificial Bee Colony (ABC) optimization for relay selection and power allocation to handle the highlighted primary challenge of Underlay CRNs. ABC is a simple, population-based optimization algorithm which attains global optimum solution by combining local search methods (Employed and Onlooker Bees) and global search methods (Scout Bees). The proposed two-phase relay selection and power allocation algorithm aims to maximize the signal-to-noise ratio (SNR) at the destination while operating in an underlying mode. The proposed algorithm has less computational complexity and its performance is verified through simulation results for a different number of potential relays, different interference threshold levels and different transmit power thresholds for the selected relays.Keywords: artificial bee colony, underlay spectrum sharing, cognitive radio networks, amplify-and-forward
Procedia PDF Downloads 581