Search results for: surface flow
3156 Restrictedly-Regular Map Representation of n-Dimensional Abstract Polytopes
Authors: Antonio Breda d’Azevedo
Abstract:
Regularity has often been present in the form of regular polyhedra or tessellations; classical examples are the nine regular polyhedra consisting of the five Platonic solids (regular convex polyhedra) and the four Kleper-Poinsot polyhedra. These polytopes can be seen as regular maps. Maps are cellular embeddings of graphs (with possibly multiple edges, loops or dangling edges) on compact connected (closed) surfaces with or without boundary. The n-dimensional abstract polytopes, particularly the regular ones, have gained popularity over recent years. The main focus of research has been their symmetries and regularity. Planification of polyhedra helps its spatial construction, yet it destroys its symmetries. To our knowledge there is no “planification” for n-dimensional polytopes. However we show that it is possible to make a “surfacification” of the n-dimensional polytope, that is, it is possible to construct a restrictedly-marked map representation of the abstract polytope on some surface that describes its combinatorial structures as well as all of its symmetries. We also show that there are infinitely many ways to do this; yet there is one that is more natural that describes reflections on the sides ((n−1)-faces) of n-simplices with reflections on the sides of n-polygons. We illustrate this construction with the 4-tetrahedron (a regular 4-polytope with automorphism group of size 120) and the 4-cube (a regular 4-polytope with automorphism group of size 384).Keywords: abstract polytope, automorphism group, N-simplicies, symmetry
Procedia PDF Downloads 1653155 Runoff Estimation Using NRCS-CN Method
Authors: E. K. Naseela, B. M. Dodamani, Chaithra Chandran
Abstract:
The GIS and remote sensing techniques facilitate accurate estimation of surface runoff from watershed. In the present study an attempt has been made to evaluate the applicability of Natural Resources Service Curve Number method using GIS and Remote sensing technique in the upper Krishna basin (69,425 Sq.km). Landsat 7 (with resolution 30 m) satellite data for the year 2012 has been used for the preparation of land use land cover (LU/LC) map. The hydrologic soil group is mapped using GIS platform. The weighted curve numbers (CN) for all the 5 subcatchments calculated on the basis of LU/LC type and hydrologic soil class in the area by considering antecedent moisture condition. Monthly rainfall data was available for 58 raingauge stations. Overlay technique is adopted for generating weighted curve number. Results of the study show that land use changes determined from satellite images are useful in studying the runoff response of the basin. The results showed that there is no significant difference between observed and estimated runoff depths. For each subcatchment, statistically positive correlations were detected between observed and estimated runoff depth (0.63154 Ultrasonographic Evaluation of Tars and Metatars Region of Dromedary Camel
Authors: Aboozar Dehghan, S. Sharifi, A. Ardeshiri, F. Jafari, F. Samani
Abstract:
Ultrasonography is a safe, particular, available and easy to use method to evaluate soft tissues. Tendons play the main role to body locomotors system. Ultrasonography performed in tarsus and metatarsus region of rare limb of eight adult, Dromedary camels (camelus dromedaries) in both sex. Clinical examination and gate analysis was performed before slaughtering. From the tarsus to the 1st phalanx was divided to 4 equal region include 1a, 2a, 1b and 2b. Flexor surface was clipped and covered by enough ultrasonography gel. Ultrasonography was performed by linear phased array 8-12 Mhz transducer in transverse and longitudinal section and Superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT) and suspensory ligament (SL) were imaged. Echogenicity and diameter of these structures were recorded. Size of tendons and SL measured after necropsy too. statistical analysis obtained that SDFT diameter larger than others in all described regions and mean of DDFT diameter larger than suspensory ligament. Echogenicity of SL more than SDFT and DDFT. No Significant relationship was seen between left and right rare limb structures size. Between sex and tendons and SL diameter, significant relationship not seen.Keywords: dromedary camel, tars and metatars, ultrasonography
Procedia PDF Downloads 5603153 Leader Personality Traits and Constructive Voice Behavior: Mediating Roles of Empowering Leadership and Leader-Member Exchange
Authors: Umamaheswara Rao Jada, Susmita Mukhopadhyay
Abstract:
Employee voice behavior has emerged as an important topic in relation to understanding the paybacks within the organizations. Organizations are expecting employees to contribute in the form of suggestions and ideas that not only help an organization to grow but also survive the turbulent times. Leadership in the organization enables and arouses an individual to offer constructive ideas. The significant impact of leadership is undeniable in a context of creating an environment that promotes a free flow of thoughts and ideas in the organization which in turn is significantly influenced by the personality of the leader. Therefore our study aims at examining the underlying factors which influence employee constructive voice behavior in connection with leader’s personality, empowering form of leadership and leader-member exchange in the organization sequentially. A standardized survey questionnaire was used to collect sample of 272 service executives in India. Smart PLS 2.0 was used to test hypothesis and explore the mediation effect. The result shows that the leader personality traits of agreeableness and conscientiousness were positively related to empowering leadership, whereas neuroticism was unrelated to empowering leadership. Empowering leadership influenced followers’ constructive voice behavior significantly. Furthermore, the relationship was partially mediated by leader member exchange relationship. Theoretical and practical implications of the findings, as well as directions for the future line of research, have been presented in the study.Keywords: constructive voice, empowering leadership, leader member exchange (LMX), leader personality traits
Procedia PDF Downloads 3003152 Thermally Stimulated Depolarization Current (TSDC) and Transient Current Study in Polysulfone (PSF) and Polyvinylidenefluoride (PVDF) Blends
Authors: S. Patel, T. Mitra, R. Dubey, J. Keller
Abstract:
In the present investigations, an attempt has been made to study the charge storage mechanism and mechanism for the flow of transient charging and discharging current in an amorphous polymer (Polysulfone) (PSF) and a semi-crystalline polar Polyvinylidene fluoride (PVDF) blends in ratio PSF: PVDF: 80:20;85:15;90:10 and 95:05 at various poling temperatures (i.e. 60, 75, 90 and 1150C) and with field strength (100, 150, 200 and 250kVcm⁻¹). Thermally stimulated depolarizing current TSDC thermograms for (Polysulfone (PSF) and Polyvinylidene fluoride (PVDF) Blends sample have been obtained under different polarizing conditions. Peaks are found at high-temperature side. The variation of structure on blending and poling condition affects the magnitude of TSDC. The activation energy values have been calculated using the initial rise method of Garlick and Gibson. The transient current with the similar polarizing condition has been investigated over a period of 3X10³ sec. The observed characteristics obey Curie-Von Schweidler law in the studied temperature range. The charging current versus polarizing temperature curves at a constant time, i.e., isochronal current characteristics were studied and the activation energies were calculated. The activation energy in transient thermograms calculated by different methods is in good agreement with the values obtained from TSDC studies.Keywords: activation energy, polysulfone (PSF), polyvinylidenefluoride (PVDF), thermally stimulated depolarizing current (TSDC)
Procedia PDF Downloads 1703151 Failure and Stress Analysis of Super Heater Tubes of a 67 TPH Coke Dry Quenching Boiler
Authors: Subodh N. Patel, Abhijit Pusty, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
The steam superheater (SH) is a coil type heat exchanger which is used to produce superheated steam or to convert the wet steam to dry steam (69.6 kg/cm² and 495°C), generated by a boiler. There were two superheaters in the system, SH I and SH II. SH II is a set of tubes that faces the initial interaction with flue gas at high temperature followed by SH I tubes. After a service life of 2100 hours, a tube in the SH II found to be punctured. Dye penetrant test revealed that out of 50 such tubes, 14 more tubes had severe cracks at a similar location. The failure was investigated in detail. The materials and scale were characterized by optical microscope and advance characterization technique. Scale, observed on fracture surface, was characterized under scanning electron microscope and Raman spectroscopy. Stresses acting on the tubes in working condition were analyzed by finite element method software, ANSYS. Cyclic stresses were observed in the simulation at the same prone location due to restriction in expansion of tubes. Based on scale characterization and stress analysis, it was concluded that the tube failed in thermo-mechanical fatigue. Finally, prevention and control measures were taken to avoid such failure in the future.Keywords: finite element analysis, oxide scale, superheater tube, thermomechanical fatigue
Procedia PDF Downloads 1173150 Influence of Free Field Vibrations Due to Vibratory Pile Driving
Authors: Shashank Mukkoti, Mainak Majumder, Srinivasan Venkatraman
Abstract:
Owing to the land scarcity in the modern-day, most of the construction activities are carried out closed to the existing buildings. Most of the high-rise buildings are constructed on pile foundations to transfer the design loads to a strong stratum below the ground surface. Due to the proximity of the new and existing structures, noise disturbances are prominent during the pile installation. Installation of vibratory piles is most suitable in urban areas. The ground vibrations developed due to the vibratory pile driving may cause many detrimental effects on the surrounding structures based on the proximity of the sources and nature of the structures. In the present study, an attempt has been made to study the severity of ground vibrations induced by vibratory pile driving. For this purpose, a three-dimensional finite element model has been developed in the ABAQUS/ Explicit finite element program. The couple finite/infinite element method has been employed for the capturing of propagating waves due to the pile installation. The geometry of the pile foundations, frequency of the pile driving, length of the pile has been considered for the parametric study. The results show that vibrations generated due to the vibratory pile installation are either very close or more than the thresholds tolerance limits set by different guidelines.Keywords: FE model, pile driving, free field vibrations, wave propagation
Procedia PDF Downloads 2983149 Optimization of Hot Metal Charging Circuit in a Steel Melting Shop Using Industrial Engineering Techniques for Achieving Manufacturing Excellence
Authors: N. Singh, A. Khullar, R. Shrivastava, I. Singh, A. S. Kumar
Abstract:
Steel forms the basis of any modern society and is essential to economic growth. India’s annual crude steel production has seen a consistent increase over the past years and is poised to grow to 300 million tons per annum by 2030-31 from current level of 110-120 million tons per annum. Steel industry is highly capital-intensive industry and to remain competitive, it is imperative that it invests in operational excellence. Due to inherent nature of the industry, there is large amount of variability in its supply chain both internally and externally. Production and productivity of a steel plant is greatly affected by the bottlenecks present in material flow logistics. The internal logistics constituting of transport of liquid metal within a steel melting shop (SMS) presents an opportunity in increasing the throughput with marginal capital investment. The study was carried out at one of the SMS of an integrated steel plant located in the eastern part of India. The plant has three SMS’s and the study was carried out at one of them. The objective of this study was to identify means to optimize SMS hot metal logistics through application of industrial engineering techniques. The study also covered the identification of non-value-added activities and proposed methods to eliminate the delays and improve the throughput of the SMS.Keywords: optimization, steel making, supply chain, throughput enhancement, workforce productivity
Procedia PDF Downloads 1183148 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw
Authors: N. Ouslimani, M. T. Abadlia
Abstract:
Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption
Procedia PDF Downloads 2633147 Aerodynamics of Spherical Combat Platform Levitation
Authors: Aelina Franz
Abstract:
In recent years, the scientific community has witnessed a paradigm shift in the exploration of unconventional levitation methods, particularly in the domain of spherical combat platforms. This paper explores aerodynamics and levitational dynamics inherent in these spheres by examining interactions at the quantum level. Our research unravels the nuanced aerodynamic phenomena governing the levitation of spherical combat platforms. Through an analysis of the quantum fluid dynamics surrounding these spheres, we reveal the crucial interactions between air resistance, surface irregularities, and the quantum fluctuations that influence their levitational behavior. Our findings challenge conventional understanding, providing a perspective on the aerodynamic forces at play during the levitation of spherical combat platforms. Furthermore, we propose design modifications and control strategies informed by both classical aerodynamics and quantum information processing principles. These advancements not only enhance the stability and maneuverability of the combat platforms but also open new avenues for exploration in the interdisciplinary realm of engineering and quantum information sciences. This paper aims to contribute to levitation technologies and their applications in the field of spherical combat platforms. We anticipate that our work will stimulate further research to create a deeper understanding of aerodynamics and quantum phenomena in unconventional levitation systems.Keywords: spherical combat platforms, levitation technologies, aerodynamics, maneuverable platforms
Procedia PDF Downloads 573146 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass
Authors: Demet Tatar, Bahattin Düzgün
Abstract:
In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis
Procedia PDF Downloads 3853145 Management Strategies for Risk Events in Construction Industries during Economic Situation and COVID-19 Pandemic in Nigeria
Authors: Ezeabasili Chibuike Patrick
Abstract:
The complex situation of construction industries in Nigeria and the risk of failures involved includes cost overrun, time overrun, Corruption, Government influence, Subcontractor challenges, Political influence and Instability, Cultural differences, Human resources deficiencies, cash flow Challenges, foreign exchange issues, inadequate design, Safety, low productivity, late payment, Quality control issues, project management issues, Environmental issues, Force majeure Competition amongst others has made the industry prone to risk and failures. Good project management remains effective in improving decision-making, which minimizes these risk events. This study was done to address these project risks and good decision-making to avert them. A mixed-method approach to research was used to do this study. Data collected by questionnaires and interviews on thirty-two (32) construction professionals was used in analyses to aid the knowledge and management of risks that were identified. The study revealed that there is no good risk management expertise in Nigeria. Also, that the economic/political situation and the recent COVID-19 pandemic has added to the risk and poor management strategies. The contingency theory and cost has therefore surfaced to be the most strategic management method used to reduce these risk issues and they seem to be very effective.Keywords: strategies, risk management, contingency theory, Nigeria
Procedia PDF Downloads 1313144 Sensitivity Analysis Optimization of a Horizontal Axis Wind Turbine from Its Aerodynamic Profiles
Authors: Kevin Molina, Daniel Ortega, Manuel Martinez, Andres Gonzalez-Estrada, William Pinto
Abstract:
Due to the increasing environmental impact, the wind energy is getting strong. This research studied the relationship between the power produced by a horizontal axis wind turbine (HAWT) and the aerodynamic profiles used for its construction. The analysis is studied using the Computational Fluid Dynamic (CFD), presenting the parallel between the energy generated by a turbine designed with selected profiles and another one optimized. For the study, a selection process was carried out from profile NACA 6 digits recommended by the National Renewable Energy Laboratory (NREL) for the construction of this type of turbines. The selection was taken into account different characteristics of the wind (speed and density) and the profiles (aerodynamic coefficients Cl and Cd to different Reynolds and incidence angles). From the selected profiles, was carried out a sensitivity analysis optimization process between its geometry and the aerodynamic forces that are induced on it. The 3D model of the turbines was realized using the Blade Element Momentum method (BEM) and both profiles. The flow fields on the turbines were simulated, obtaining the forces induced on the blade, the torques produced and an increase of 3% in power due to the optimized profiles. Therefore, the results show that the sensitivity analysis optimization process can assist to increment the wind turbine power.Keywords: blade element momentum, blade, fluid structure interaction, horizontal axis wind turbine, profile design
Procedia PDF Downloads 2593143 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method
Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah
Abstract:
LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping
Procedia PDF Downloads 2873142 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study
Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno
Abstract:
The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.Keywords: consolidation, hard sludge, secondary circuit, steam generator
Procedia PDF Downloads 1913141 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture
Authors: Osama Al-Sehail
Abstract:
This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.Keywords: biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability
Procedia PDF Downloads 3123140 Understanding Integrated Removal of Heavy Metals, Organic Matter and Nitrogen in a Constructed Wetland System Receiving Simulated Landfill Leachate
Authors: A. Mohammed, A. Babatunde
Abstract:
This study investigated the integrated removal of heavy metals, organic matter and nitrogen from landfill leachate using a novel laboratory scale constructed wetland system. The main objectives of this study were: (i) to assess the overall effectiveness of the constructed wetland system for treating landfill leachate; (ii) to examine the interactions and impact of key leachate constituents (heavy metals, organic matter and nitrogen) on the overall removal dynamics and efficiency. The constructed wetland system consisted of four stages operated in tidal flow and anoxic conditions. Results obtained from 215 days of operation have demonstrated extraordinary heavy metals removal up to 100%. Analysis of the physico- chemical data reveal that the controlling factors for metals removal were the anoxic condition and the use of the novel media (dewatered ferric sludge which is a by-product of drinking water treatment process) as the main substrate in the constructed wetland system. Results show that the use of the ferric sludge enhanced heavy metals removal and brought more flexibility to simultaneous nitrification and denitrification which occurs within the microbial flocs. Furthermore, COD and NH4-N were effectively removed in the system and this coincided with enhanced aeration in the 2nd and 3rd stages of the constructed wetland system. Overall, the results demonstrated that the ferric dewatered sludge constructed wetland system would be an effective solution for integrated removal of pollutants from landfill leachates.Keywords: constructed wetland, ferric dewatered sludge, heavy metals, landfill leachate
Procedia PDF Downloads 2573139 Analysis of Geotechnical Parameters from Geophysical Information
Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac
Abstract:
In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.Keywords: characterize, environment, geophysical, geotechnical, regression
Procedia PDF Downloads 3703138 Inherited Intergenerational Trauma – The Society for Black People in South Central Los Angeles
Authors: Kevin R. Collins Sr.
Abstract:
In South Central Los Angeles, Black people have endured various forms of trauma that spans across generations. This includes the horrors of slavery and the aftermaths of the Jim Crow Laws, institutionalized racism, and legislative segregation, just to name a few. The individuals born from the 1900’s until today have continued to transmit the traumas experienced across generations. Parents unconsciously transmit the hidden trauma, and the children take these experiences and apply it to the society they live in. Although there are some who attempt to break the cycle of transmitted trauma, the remninsce still remain and play a huge role in how they interact with others. The attempt of this discussion is to bring these traumatic experiences to the surface and attack them head on. It is important that we do this to allow not only the suffering individuals but the suffering society to heal. As a society, looking at the humane side of it and attempting to stop the racial injustice placed on black people to relieve them of the stress that some. If not all,, endure in this great United States of America. Changing the behavior as a country to create an improved since of common unity within. If we solve our own racial and social issues within this country, maybe we can solve these same issues that have been the footstool to the many wars we see around the world. Thus, breaking the cycle of inherited intergenerational trauma.Keywords: intergenerational trauma, inherited trauma, transmission of trauma, blacks in South central LA, black trauma in America
Procedia PDF Downloads 973137 Electrokinetic Regulation of Flow in Microcrack Reservoirs
Authors: Aslanova Aida Ramiz
Abstract:
One of the important aspects of rheophysical problems in oil and gas extraction is the regulation of thermohydrodynamic properties of liquid systems using physical and physicochemical methods. It is known that the constituent parts of real fluid systems in oil and gas production are practically non-conducting, non-magnetically active components. Real heterogeneous hydrocarbon systems, from the structural point of view, consist of an infinite number of microscopic local ion-electrostatic cores distributed in the volume of the dispersion medium. According to Cohen's rule, double electric layers are formed at the contact boundaries of components in contact (oil-gas, oil-water, water-condensate, etc.) in a heterogeneous system, and as a result, each real fluid system can be represented as a complex composition of a set of local electrostatic fields. The electrokinetic properties of this structure are characterized by a certain electrode potential. Prof. F.H. Valiyev called this potential the α-factor and came up with the idea that many natural and technological rheophysical processes (effects) are essentially electrokinetic in nature, and by changing the α-factor, it is possible to adjust the physical properties of real hydraulic systems, including thermohydrodynamic parameters. Based on this idea, extensive research work was conducted, and the possibility of reducing hydraulic resistances and improving rheological properties was experimentally discovered in real liquid systems by reducing the electrical potential with various physical and chemical methods.Keywords: microcracked, electrode potential, hydraulic resistance, Newtonian fluid, rheophysical properties
Procedia PDF Downloads 773136 Assessing the Effect of Freezing and Thawing of Coverzone of Ground Granulated Blast-Furnace Slag Concrete
Authors: Abdulkarim Mohammed Iliyasu, Mahmud Abba Tahir
Abstract:
Freezing and thawing are considered to be one of the major causes of concrete deterioration in the cold regions. This study aimed at assessing the freezing and thawing of concrete within the cover zone by monitoring the formation of ice and melting at different temperatures using electrical measurement technique. A multi-electrode array system was used to obtain the resistivity of ice formation and melting at discrete depths within the cover zone of the concrete. A total number of four concrete specimens (250 mm x 250 mm x 150 mm) made of ordinary Portland cement concrete and ordinary Portland cement replaced by 65% ground granulated blast furnace slag (GGBS) is investigated. Water/binder ratios of 0.35 and 0.65 were produced and ponded with water to ensure full saturation and then subjected to freezing and thawing process in a refrigerator within a temperature range of -30 0C and 20 0C over a period of time 24 hours. The data were collected and analysed. The obtained results show that the addition of GGBS changed the pore structure of the concrete which resulted in the decrease in conductance. It was recommended among others that, the surface of the concrete structure should be protected as this will help to prevent the instantaneous propagation of ice trough the rebar and to avoid corrosion and subsequent damage.Keywords: concrete, conductance, deterioration, freezing and thawing
Procedia PDF Downloads 4173135 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar
Authors: B. S. Al-Tulaian, M. J. Al-Shannag, A. M. Al-Hozaimy
Abstract:
The development of new construction materials using recycled plastic is important to both the construction and the plastic recycling industries. Manufacturing of fibers from industrial or post-consumer plastic waste is an attractive approach with such benefits as concrete performance enhancement, and reduced needs for land filling. The main objective of this study is to investigate the effect of plastic fibers obtained locally from recycled waste on plastic shrinkage cracking of ordinary cement based mortar. Parameters investigated include: Fiber length ranging from 20 to 50 mm, and fiber volume fraction ranging from 0% to 1.5% by volume. The test results showed significant improvement in crack arresting mechanism and substantial reduction in the surface area of cracks for the mortar reinforced with recycled plastic fibers compared to plain mortar. Furthermore, test results indicated that there was a slight decrease in compressive strength of mortar reinforced with different lengths and contents of recycled fibers compared to plain mortar. This study suggests that adding more than 1% of RP fibers to mortar, can be used effectively for controlling plastic shrinkage cracking of cement based mortar, and thus results in waste reduction and resources conservation.Keywords: mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers
Procedia PDF Downloads 4093134 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils
Authors: Ali Sinan Soğancı
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipment by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, a laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be say that stabilization of expansive soils with polypropylene fiber is an effective method.Keywords: expansive soils, polypropylene fiber, stabilization, swelling percent
Procedia PDF Downloads 5193133 Effects of Local Ground Conditions on Site Response Analysis Results in Hungary
Authors: Orsolya Kegyes-Brassai, Zsolt Szilvágyi, Ákos Wolf, Richard P. Ray
Abstract:
Local ground conditions have a substantial influence on the seismic response of structures. Their inclusion in seismic hazard assessment and structural design can be realized at different levels of sophistication. However, response results based on more advanced calculation methods e.g. nonlinear or equivalent linear site analysis tend to show significant discrepancies when compared to simpler approaches. This project's main objective was to compare results from several 1-D response programs to Eurocode 8 design spectra. Data from in-situ site investigations were used for assessing local ground conditions at several locations in Hungary. After discussion of the in-situ measurements and calculation methods used, a comprehensive evaluation of all major contributing factors for site response is given. While the Eurocode spectra should account for local ground conditions based on soil classification, there is a wide variation in peak ground acceleration determined from 1-D analyses versus Eurocode. Results show that current Eurocode 8 design spectra may not be conservative enough to account for local ground conditions typical for Hungary.Keywords: 1-D site response analysis, multichannel analysis of surface waves (MASW), seismic CPT, seismic hazard assessment
Procedia PDF Downloads 2463132 Comprehensive Regional Drought Assessment Index
Authors: A. Zeynolabedin, M. A. Olyaei, B. Ghiasi
Abstract:
Drought is an inevitable part of the earth’s climate. It occurs regularly with no clear warning and without recognizing borders. In addition, its impact is cumulative and not immediately discernible. Iran is located in a semi-arid region where droughts occur periodically as natural hazard. Standardized Precipitation Index (SPI), Surface Water Supply Index (SWSI), and Palmer Drought Severity Index (PDSI) are three well-known indices which describe drought severity; each has its own advantages and disadvantages and can be used for specific types of drought. These indices take into account some factors such as precipitation, reservoir storage and discharge, temperature, and potential evapotranspiration in determining drought severity. In this paper, first all three indices are calculated in Aharchay river watershed located in northwestern part of Iran in East Azarbaijan province. Next, based on two other important parameters which are groundwater level and solar radiation, two new indices are defined. Finally, considering all five aforementioned indices, a combined drought index (CDI) is presented and calculated for the region. This combined index is based on all the meteorological, hydrological, and agricultural features of the region. The results show that the most severe drought condition in Aharchay watershed happened in Jun, 2004. The result of this study can be used for monitoring drought and prepare for the drought mitigation planning.Keywords: drought, GIS, intensity index, regional assessment, variation maps
Procedia PDF Downloads 2493131 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber
Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim
Abstract:
The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.Keywords: rubber, silane coupling agent, synthesis, water-soluble
Procedia PDF Downloads 2933130 Performance of BLDC Motor under Kalman Filter Sensorless Drive
Authors: Yuri Boiko, Ci Lin, Iluju Kiringa, Tet Yeap
Abstract:
The performance of a BLDC motor controlled by the Kalman filter-based position-sensorless drive is studied in terms of its dependence on the system’s parameters' variations. The effects of system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is a closed-loop control scheme with a Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals Δθ of rotor’s angular position θᵢ, i.e., keeping Δθ=const. In case (2), the data collection time points tᵢ are separated by equal sampling time intervals Δt=const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the torque ripples, switching spikes, torque load balancing. It is specifically shown that an efficient suppression of commutation induced torque ripples is achievable selection of the sampling rate in the Kalman filter settings above certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.Keywords: BLDC motor, Kalman filter, sensorless drive, state variables, torque ripples reduction, sampling rate
Procedia PDF Downloads 1483129 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method
Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov
Abstract:
The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME.Keywords: copper-manganese catalysts, CO, VOCs oxidation, exhaust gases
Procedia PDF Downloads 4133128 Enhancement Production and Development of Hot Dry Rock System by Using Supercritical CO2 as Working Fluid Instead of Water to Advance Indonesia's Geothermal Energy
Authors: Dhara Adhnandya Kumara, Novrizal Novrizal
Abstract:
Hot Dry Rock (HDR) is one of geothermal energy which is abundant in many provinces in Indonesia. Heat exploitation from HDR would need a method which injects fluid to subsurface to crack the rock and sweep the heat. Water is commonly used as the working fluid but known to be less effective in some ways. The new research found out that Supercritical CO2 (SCCO2) can be used to replace water as the working fluid. By studying heat transfer efficiency, pumping power, and characteristics of the returning fluid, we might decide how effective SCCO2 to replace water as working fluid. The method used to study those parameters quantitatively could be obtained from pre-existing researches which observe the returning fluids from the same reservoir with same pumping power. The result shows that SCCO2 works better than water. For cold and hot SCCO2 has lower density difference than water, this results in higher buoyancy in the system that allows the fluid to circulate with lower pumping power. Besides, lower viscosity of SCCO2 impacts in higher flow rate in circulation. The interaction between SCCO2 and minerals in reservoir could induce dehydration of the minerals and enhancement of rock porosity and permeability. While the dissolution and transportation of minerals by SCCO2 are unlikely to occur because of the nature of SCCO2 as poor solvent, and this will reduce the mineral scaling in the system. Under those conditions, using SCCO2 as working fluid for HDR extraction would give great advantages to advance geothermal energy in Indonesia.Keywords: geothermal, supercritical CO2, injection fluid, hot dry rock
Procedia PDF Downloads 2173127 Improved Thermal Comfort in Cabin Aircraft with in-Seat Microclimate Conditioning Module
Authors: Mathieu Le Cam, Tejaswinee Darure, Mateusz Pawlucki
Abstract:
Climate control of cabin aircraft is traditionally conditioned as a single unit by the environmental control system. Cabin temperature is controlled by the crew while passengers of the aircraft have control on the gaspers providing fresh air from the above head area. The small nozzles are difficult to reach and adjust to meet the passenger’s needs in terms of flow and direction. More dedicated control over the near environment of each passenger can be beneficial in many situations. The European project COCOON, funded under Clean Sky 2, aims at developing and demonstrating a microclimate conditioning module (MCM) integrated into a standard economy 3-seat row. The system developed will lead to improved passenger comfort with more control on their personal thermal area. This study focuses on the assessment of thermal comfort of passengers in the cabin aircraft through simulation on the TAITherm modelling platform. A first analysis investigates thermal comfort and sensation of passengers in varying cabin environmental conditions: from cold to very hot scenarios, with and without MCM installed in the seats. The modelling platform is also used to evaluate the impact of different physiologies of passengers on their thermal comfort as well as different seat locations. Under the current cabin conditions, a passenger of a 50th percentile body size is feeling uncomfortably cool due to the high velocity cabin air ventilation. The simulation shows that the in-seat MCM developed in COCOON project improves the thermal comfort of the passenger.Keywords: cabin aircraft, in-seat HVAC, microclimate conditioning module, thermal comfort
Procedia PDF Downloads 200