Search results for: teaching and learning english
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9401

Search results for: teaching and learning english

2141 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program

Authors: Secil Kaya Gulen

Abstract:

Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.

Keywords: distance education, virtual classrooms, higher education, e-learning

Procedia PDF Downloads 269
2140 Formal Stress Management Teaching Incorporated into the First Year of a Doctor's Practice: A Career Transition Study of British Foundation Year 1 Doctors

Authors: Edward Ridyard, Vinary Varadarajan

Abstract:

Background and Aims: The first year as a doctor in any country represents a major career transition in any physician's life. During this period, many physicians concentrate on obtaining clinical skills but may not obtain the important skills necessary to cope with stress. In this study we elucidate stress levels amongst FY1 doctors regarding the transitioning into specialty career choices, working in the NHS and anxiety about future career success. Methods: A prospective single blinded analysis of Foundation Year one (FY1) trainees using a non-mandatory online questionnaire was distributed. No exclusion criteria were applied. The only inclusion criteria was the doctor was in a full-time FY1 post and this was their first job in the UK. A total of n= 22 doctors were included in the study. After data collection, statistical analysis using chi-squared testing was applied. Results: The large majority of FY1 doctors (72.7%) already knew what specialty they wished to pursue (p=0.0001). With regards to their future careers 45.5% of FY1 doctors stated "above average" stress levels. The majority of FY1 doctors (64.3%) stated their stress levels working in the NHS were either "above average" or "high". Finally, 81.8% of respondents know colleagues who have been put off from pursuing specialties due to the stress of competition. Conclusions: A large majority of FY1 doctors already know at this early stage what area they would like to specialise in. With this in mind, a large proportion have above "average" levels of stress with regards to securing this future career path. The most worrying finding is that 64.3% of FY1s stated they had "above average" or "high" stress levels working in the NHS. We therefore recommend formal stress management education to be incorporated into the foundation programme curriculum.

Keywords: stress, anxiety, junior doctor, education

Procedia PDF Downloads 371
2139 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 47
2138 Narratives in Science as Covert Prestige Indicators

Authors: Zinaida Shelkovnikova

Abstract:

The language in science is changing and meets the demands of the society. We shall argue that in the varied modern world there are important reasons for the integration of narratives into scientific discourse. As far as nowadays scientists are faced with extremely prompt science development and progress; modern scientific society lives in the conditions of tough competition. The integration of narratives into scientific discourse is thus a good way to prompt scientific experience to different audiences and to express covert prestige of the discourse. Narratives also form the identity of the persuasive narrator. Using the narrative approach to the scientific discourse analysis we reveal the sociocultural diversity of the scientists. If you want to attract audience’s attention to your scientific research, narratives should be integrated into your scientific discourse. Those who understand this consistent pattern are considered the leading scientists. Taking into account that it is prestigious to be renowned, celebrated in science, it is a covert prestige to write narratives in science. We define a science narrative as the intentional, consequent, coherent, event discourse or a discourse fragment, which contains the author creativity, in some cases intrigue, and gives mostly qualitative information (compared with quantitative data) in order to provide maximum understanding of the research. Science narratives also allow the effective argumentation and consequently construct the identity of the persuasive narrator. However, skills of creating appropriate scientific discourse reflect the level of prestige. In order to teach postgraduate students to be successful in English scientific writing and to be prestigious in the scientific society, we have defined the science narrative and outlined its main features and characteristics. Narratives contribute to audience’s involvement with the narrator and his/her narration. In general, the way in which a narrative is performed may result in (limited or greater) contact with the audience. To gain these aim authors use emotional fictional elements; descriptive elements: adjectives; adverbs; comparisons and so on; author’s evaluative elements. Thus, the features of science narrativity are the following: descriptive tools; authors evaluation; qualitative information exceeds the quantitative data; facts take the event status; understandability; accessibility; creativity; logics; intrigue; esthetic nature; fiction. To conclude, narratives function covert prestige of the scientific discourse and shape the identity of the persuasive scientist.

Keywords: covert prestige, narrativity, scientific discourse, scientific narrative

Procedia PDF Downloads 399
2137 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques

Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail

Abstract:

Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.

Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation

Procedia PDF Downloads 181
2136 A Framework for ERP Project Evaluation Based on BSC Model: A Study in Iran

Authors: Mohammad Reza Ostad Ali Naghi Kashani, Esfanji Elia

Abstract:

Nowadays, the amounts of companies which tend to have an Enterprise Resource Planning (ERP) application are increasing particularly in developing countries like Iran. ERP projects are expensive, time consuming, and complex, in addition the failure rate is high among these projects. It is important to know whether these projects could meet their goals or not. Furthermore, the area which should be improved should be identified. In this paper we made a framework to evaluate ERP projects success implementation. First, based on literature review we made a framework based on BSC model, financial, customer, processes, learning and knowledge, because of the importance of change management it was added to model. Then an organization was divided in three layers. We choose corporate, managerial, and operational levels. Then to find criteria to assess each aspect, we use Delphi method in two rounds. And for the second round we made a questionnaire and did some statistical tasks on them. Based on the statistical results some of them are accepted and others are rejected.

Keywords: ERP, BSC, ERP project evaluation, IT projects

Procedia PDF Downloads 322
2135 Interdisciplinary Teaching for Nursing Students: A Key to Understanding Teamwork

Authors: Ilana Margalith, Yaron Niv

Abstract:

One of the most important factors of professional health treatment is teamwork, in which each discipline contributes its expert knowledge, thus ensuring quality and a high standard of care as well as efficient communication (one of the International Patient Safety Goals). However, in most countries, students are educated separately by each health discipline. They are exposed to teamwork only during their clinical experience, which in some cases is short and skill-oriented. In addition, health organizations in most countries are hierarchical and although changes have occurred in the hierarchy of the medical system, there are still disciplines that underrate the unique contributions of other health professionals, thus, young graduates of health professions develop and base their perception of their peers from other disciplines on insufficient knowledge. In order to establish a wide-ranging perception among nursing students as to the contribution of different health professionals to the health of their patients, students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel, participated in an interdisciplinary clinical discussion with students from several different professions, other than nursing, who were completing their clinical experience at Rabin Medical Center in medicine, health psychology, social work, audiology, physiotherapy and occupational therapy. The discussion was led by a medical-surgical nursing instructor. Their tutors received in advance, a case report enabling them to prepare the students as to how to present their professional theories and interventions regarding the case. Mutual stimulation and acknowledgment of the unique contribution of each part of the team enriched the nursing students' understanding as to how their own nursing interventions could be integrated into the entire process towards a safe and speedy recovery of the patient.

Keywords: health professions' students, interdisciplinary clinical discussion, nursing education, patient safety

Procedia PDF Downloads 172
2134 A Systematic Review of Situational Awareness and Cognitive Load Measurement in Driving

Authors: Aly Elshafei, Daniela Romano

Abstract:

With the development of autonomous vehicles, a human-machine interaction (HMI) system is needed for a safe transition of control when a takeover request (TOR) is required. An important part of the HMI system is the ability to monitor the level of situational awareness (SA) of any driver in real-time, in different scenarios, and without any pre-calibration. Presenting state-of-the-art machine learning models used to measure SA is the purpose of this systematic review. Investigating the limitations of each type of sensor, the gaps, and the most suited sensor and computational model that can be used in driving applications. To the author’s best knowledge this is the first literature review identifying online and offline classification methods used to measure SA, explaining which measurements are subject or session-specific, and how many classifications can be done with each classification model. This information can be very useful for researchers measuring SA to identify the most suited model to measure SA for different applications.

Keywords: situational awareness, autonomous driving, gaze metrics, EEG, ECG

Procedia PDF Downloads 119
2133 Experiences on the Application of WIKI Based Coursework in a Fourth-Year Engineering Module

Authors: D. Hassell, D. De Focatiis

Abstract:

This paper presents work on the application of wiki based coursework for a fourth-year engineering module delivered as part of both a MEng and MSc programme in Chemical Engineering. The module was taught with an equivalent structure simultaneously on two separate campuses, one in the United Kingdom (UK) and one in Malaysia, and the subsequent results were compared. Student feedback was sought via questionnaires, with 45 respondents from the UK and 49 from Malaysia. Results include discussion on; perceived difficulty; student enjoyment and experiences; differences between MEng and MSc students; differences between cohorts on different campuses. The response of students to the use of wiki-based coursework was found to vary based on their experiences and background, with UK students being generally more positive on its application than those in Malaysia.

Keywords: engineering education, student differences, student learning, web based coursework

Procedia PDF Downloads 296
2132 Surface to the Deeper: A Universal Entity Alignment Approach Focusing on Surface Information

Authors: Zheng Baichuan, Li Shenghui, Li Bingqian, Zhang Ning, Chen Kai

Abstract:

Entity alignment (EA) tasks in knowledge graphs often play a pivotal role in the integration of knowledge graphs, where structural differences often exist between the source and target graphs, such as the presence or absence of attribute information and the types of attribute information (text, timestamps, images, etc.). However, most current research efforts are focused on improving alignment accuracy, often along with an increased reliance on specific structures -a dependency that inevitably diminishes their practical value and causes difficulties when facing knowledge graph alignment tasks with varying structures. Therefore, we propose a universal knowledge graph alignment approach that only utilizes the common basic structures shared by knowledge graphs. We have demonstrated through experiments that our method achieves state-of-the-art performance in fair comparisons.

Keywords: knowledge graph, entity alignment, transformer, deep learning

Procedia PDF Downloads 45
2131 Effects of Intergenerational Social Mobility on General Health, Oral Health and Physical Function among Older Adults in England

Authors: Alejandra Letelier, Anja Heilmann, Richard G. Watt, Stephen Jivraj, Georgios Tsakos

Abstract:

Background: Socioeconomic position (SEP) influences adult health. People who experienced material disadvantages in childhood or adulthood tend to have higher adult disease levels than their peers from more advantaged backgrounds. Even so, life is a dynamic process and contains a series of transitions that could lead people through different socioeconomic paths. Research on social mobility takes this into account by adopting a trajectory approach, thereby providing a long-term view of the effect of SEP on health. Aim: The aim of this research examines the effects of intergenerational social mobility on adult general health, oral health and functioning in a population aged 50 and over in England. Methods: This study is based on the secondary analysis of data from the English Longitudinal Study of Ageing (ELSA). Using cross-sectional data, nine social trajectories were created based on parental and adult occupational socio-economic position. Regression models were used to estimate the associations between social trajectories and the following outcomes: adult self-rated health, self-rated oral health, oral health related quality of life, total tooth loss and grip strength; while controlling for socio-economic background and health related behaviours. Results: Associations with adult SEP were generally stronger than with childhood SEP, suggesting a stronger influence of proximal rather than distal SEP on health and oral health. Compared to the stable high group, being in the low SEP groups in childhood and adulthood was associated with poorer health and oral health for all examined outcome measures. For adult self-rated health and edentulousness, graded associations with social mobility trajectories were observed. Conclusion: Intergenerational social mobility was associated with self-rated health and total tooth loss. Compared to only those who remained in a low SEP group over time reported worse self-rated oral health and oral health related quality of life, and had lower grip strength measurements. Potential limitations in relation to data quality will be discussed.

Keywords: social determinants of oral health, social mobility, socioeconomic position and oral health, older adults oral health

Procedia PDF Downloads 275
2130 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
2129 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network

Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba

Abstract:

Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.

Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network

Procedia PDF Downloads 234
2128 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination

Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq

Abstract:

Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.

Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing

Procedia PDF Downloads 90
2127 Histopathological Spectrum of Skin Lesions in the Elderly: Experience from a Tertiary Hospital in Southeast Nigeria

Authors: Ndukwe, Chinedu O.

Abstract:

Background: There are only a few epidemiological studies published on skin disorders in the elderly within the Nigerian context and none from the Southeast Region of the country. In addition, none of these studies has considered the pattern and frequency of histopathologically diagnosed geriatric skin lesions. Hence, we attempted to determine the frequency as well as the age and gender distributions of histologically diagnosed dermatological diseases in the geriatric population from skin biopsies submitted to the histopathology department of a tertiary care hospital in Southeast Nigeria. Material and methods: This is a cross-sectional retrospective hospital-based study involving all skin biopsies of patients 60 years and above, received at the Department of Histopathology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria from January 2004 to December 2019. Results: During the study period, 751 skin biopsies were received in the histopathology department. Of these, 142 were from patients who were older than 60 years. Thus, the overall share of geriatric patients was 18.9%. The mean age at presentation was 71.1 ± 8.6 years. The M: F was 1:1 and most of the patients belonged to the age group of 60–69 years (69 cases, 48.6%). The mean age of the male patients was 72.1±9.5 years. In the female patients, it was 70.1±7.5 years. The commonest disease category was neoplasms (91, 64.1%). Most neoplasms were malignant. There were 67/142 (47.2%) malignant lesions. Commonest was Squamous cell carcinoma (SCC) (30 cases) which is 21.1% of all geriatric skin biopsies and 44.8% of malignant skin biopsies. This is closely followed by melanoma (29 cases). Conclusion: Malignant neoplasms, benign neoplasms and papulosquamous disorders are the three commonest histologically diagnosed skin lesions in our geriatric population. The commonest skin malignancies in this group of patients are squamous cell carcinoma and malignant melanoma.

Keywords: geriatric, skin, Nigeria, histopathology

Procedia PDF Downloads 172
2126 In the Valley of the Shadow of Death: Gossip, God, and Scapegoating in Susannah, an American Opera by Carlisle Floyd

Authors: Shirl H. Terrell

Abstract:

In the telling of mythologies, stories of cultural and religious histories, the creative arts provide an archetypal lens through which the personal and collective unconscious are viewed, thus revealing mysteries of the unknown psyche. To that end, the author of this paper, using the hermeneutic approach, proves that Carlisle Floyd’s (1955) English language opera Susannah illuminates humanity’s instinctual nature and behaviors through music, libretto, and drama. While impressive musical works such as Wagner’s Ring Cycle and Webber’s Phantom of the Opera have received extensive Jungian analyses, critics and scholars often ignore lesser esteemed works, such as Susannah, notwithstanding the fact that they have been consistently performed on the theater circuit. Such pieces, when given notice, allow viewers to grasp the soul-making depth and timeless quality of productions which may otherwise go unrecognized as culturally or psychologically significant. Although Susannah has sometimes been described as unsophisticated and simple in scope, the author demonstrates why Floyd’s 'little' opera, set in New Hope Valley, Appalachia, a cultural region in the Eastern United States known for its prevailing myths and distortions of isolation, temperament, and the judgmentally conservative behavior of its inhabitants, belongs to opera’s hallmark works. Its approach to powerful underlying archetypal themes, which give rise to the poignant and haunting depictions of the darker and destructive side of the human soul, the Shadow, provides crucial significance to the work. The Shadow’s manifestation in the form of the scapegoating complex is central to the plot of Susannah; the church’s meting out of rules, judgment, and reparation for sins point to the foreboding aspects of human behavior that evoke their intrinsic nature. The scapegoating complex is highlighted in an eight-step process gleaned from the works of Kenneth Burke and Rene Girard. In summary, through depth psychological terms and mythological motifs, the author provides an insightful approach to perceiving instinctual behaviors as they play out in an American opera that has been staged over eight-hundred times, yet, unfortunately, remains in the shadows. Susannah’s timelessness is now.

Keywords: archetypes, mythology, opera, scapegoating, Shadow, Susannah

Procedia PDF Downloads 150
2125 Psychometric Examination of the QUEST-25: An Online Assessment of Intellectual Curiosity and Scientific Epistemology

Authors: Matthew J. Zagumny

Abstract:

The current study reports an examination of the QUEST-25 (Q-Assessment of Undergraduate Epistemology and Scientific Thinking) online version for assessing the dispositional attitudes toward scientific thinking and intellectual curiosity among undergraduate students. The QUEST-25 consists of scientific thinking (SIQ-25) and intellectual curiosity (ICIQ-25), which were correlated in hypothesized directions with the Religious Commitment Inventory, Curiosity and Exploration Inventory, Belief in Science scale, and measures of academic self-efficacy. Additionally, concurrent validity was established by the resulting significant differences between those identifying the centrality of religious belief in their lives and those who do not self-identify as being guided daily by religious beliefs. This study demonstrates the utility of the QUEST-25 for research, evaluation, and theory development.

Keywords: guided-inquiry learning, intellectual curiosity, psychometric assessment, scientific thinking

Procedia PDF Downloads 262
2124 A Retrospective Cross Sectional Study of Blood Culture Results in a Tertiary Hospital, Ekiti, Nigeria

Authors: S. I. Nwadioha, M. S. Odimayo, J. A. Omotayo, A. Olu Taiwo, O. E. Olabiyi

Abstract:

The current study was conducted to determine the epidemiology and antibiotic sensitivity pattern of bacteria isolated from blood of septicemic patients for improved antibiotic therapy. A three-year descriptive study has been carried out at Microbiology Laboratory, Ekiti State University Teaching Hospital, Ado Ekiti, from April 2012 to April 2015. Information compiled from patients’ records includes age, sex, isolated organisms and antibiotic susceptibility patterns. Three hundred and thirteen blood cultures were collected from neonatology and pediatrics wards, Out Patients’ Department (OPD) and from other adult patients. Forty-one cultures yielded mono microbial growth (no polymicrobial growth), giving an incidence of 13.1% positive blood culture (N=41/313). There were 58.4% Gram-negative bacilli and 41.6% Gram-positive cocci in the microbial growth. Bacteria isolated were Staphylococcus aureus 34%(14/41), Klebsiella species22% (9/41), Enterococci 17%(7/41), Proteus species12%(5/41), Escherichia coli 7%(3/41) and Streptococcal pneumoniae 7%(3/41). There was a (35%) higher occurrence of septicemia in neonates than in any other age groups in the hospital. Bacterial sensitivity to 13 antibiotic agents was determined by antibiotics disc diffusion using modified Kirby Bauer’s method. Gram-positive organisms showed a higher antibiotic sensitivity ranging from 14- 100% than the Gram-negative bacteria (11-80%). Staphylococcus aureus and Klebsiella species are the most prevalent organisms. The third generation Cephalosporins (Ceftriaxone) and Floroquinolone(Levofloxacin, Ofloxacin) have proved reliable for management of these blood infections.

Keywords: blood cultures, septicemia, antibiogram, Nigeria

Procedia PDF Downloads 233
2123 Comprehensive Studio Tables: Improving Performance and Quality of Student's Work in Architecture Studio

Authors: Maryam Kalkatechi

Abstract:

Architecture students spent most of their qualitative time in studios during their years of study. The studio table’s importance as furniture in the studio is that it elevates the quality of the projects and positively influences the student’s productivity. This paper first describes the aspects considered in designing comprehensive studio table and later details on each aspect. Comprehensive studio tables are meant to transform the studio space to an efficient yet immense place of learning, collaboration, and participation. One aspect of these tables is that the surface transforms to a place of accommodation for design conversations, the other aspect of these tables is the efficient interactive platform of the tools. The discussion factors of the comprehensive studio include; the comprehensive studio setting of workspaces, the arrangement of the comprehensive studio tables, the collaboration aspects in the studio, the studio display and lightings shaped by the tables and lighting of the studio.

Keywords: studio tables, student performance, productivity, hologram, 3D printer

Procedia PDF Downloads 188
2122 Models Development of Graphical Human Interface Using Fuzzy Logic

Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares

Abstract:

Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory.

Keywords: software development models, software quality, supervision software, fuzzy logic

Procedia PDF Downloads 373
2121 eTransformation Framework for the Cognitive Systems

Authors: Ana Hol

Abstract:

Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.

Keywords: system implementations, AI supported systems, cognitive systems, eTransformation

Procedia PDF Downloads 238
2120 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine

Procedia PDF Downloads 200
2119 Entrepreneurship in Pakistan: Opportunities and Challenges

Authors: Bushra Jamil, Nudrat Baqri, Muhammad Hassan Saeed

Abstract:

Entrepreneurship is creating or setting up a business not only for the purpose of generating profit but also for providing job opportunities. Entrepreneurs are problem solvers and product developers. They use their financial asset for hiring a professional team and combine the innovation, knowledge, and leadership leads to a successful startup or a business. To be a successful entrepreneur, one should be people-oriented and have perseverance. One must have the ability to take risk, believe in his/her potential, and have the courage to move forward in all circumstances. Most importantly, have the ability to take risk and can assess the risk. For STEM students, entrepreneurship is of specific importance and relevance as it helps them not just to be able to solve real life existing complications but to be able to recognize and identify emerging needs and glitches. It is becoming increasingly apparent that in today’s world, there is a need as well as a desire for STEM and entrepreneurship to work together. In Pakistan, entrepreneurship is slowly emerging, yet we are far behind. It is high time that we should introduce modern teaching methods and inculcate entrepreneurial initiative in students. A course on entrepreneurship can be included in the syllabus, and we must invite businessmen and policy makers to motivate young minds for entrepreneurship. This must be pitching competitions, opportunities to win seed funding, and facilities of incubation centers. In Pakistan, there are many good public sector research institutes, yet there is a void gap in the private sector. Only few research institute are meant for research and development. BJ Micro Lab is one of them. It is SECP registered company and is working in academia to promote and facilitate research in STEM. BJ Micro Lab is a women led initiative, and we are trying to promote research as a passion, not as an arduous burden. For this, we are continuously arranging training workshops and sessions. More than 100 students have been trained in ten different workshops arranged at BJ Micro Lab.

Keywords: entrepreneurship, STEM, challenges, oppurtunties

Procedia PDF Downloads 129
2118 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks

Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof

Abstract:

An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.

Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature

Procedia PDF Downloads 176
2117 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 147
2116 The Importance of Jewish Influence on Foundation of Manichaean Philosophical and Religious System

Authors: Tatyana Suvorkina

Abstract:

It is indisputable that the problem of the origin of Manichaeism is very complex. Manichaeism is characterized as a syncretic religion, which was influenced by many teachings, but it is difficult to define one which can be called fundamental. The aim of this paper is an attempt to regard Jewish apocalyptic tradition as one of the most defining source of formation of Manichaean systems. To realize this aim a comparison of the Manichean texts and the Jewish apocryphal literature is made. Consideration is given first to the Coptic Manichaean treatise Kephalaia, The Cologne Mani Codex and to books of Enoch. Under the article it is not denied that Manichaeism was influenced by different doctrines and, passed through centuries, it could adapt and strengthen this influence at an even deeper level. But the fact that the Judeo-Christian environment where Mani grew up and where the first sprouts of his teaching were formed had impact on future prophet seems obvious. Nevertheless, attempts to analyze the system of Mani within the Jewish tradition are quite rare, although such studies were carried out for Gnosticism. But Manichaeism, despite the Gnostic features it contains, is not 'one of the Gnostics' to place it under this term among the rest. Frequently, gnostic currents are pointed out as the main sources for the formation of Mani’s teachings. But it seems possible that Mani's interest in Gnosticism was motivated by the fact that he considered it as something close to that interpretation of Hebrew texts, which he aspired to undertake. The question of understanding the Manichaean system is connected not only with Manichaeism but also with other dualistic teachings, which were recognized by contemporaries as Manichaean. It is seen that polemics between Manicheans and Hellenized Christianity separated from Judaism and continued to separate with every century, were polemics between adherents of initially two different worldviews who had, however, a common source. Therefore an analysis of the controversy in the context of interpretations of this common source by disputing parties is seen very important for further study.

Keywords: dualism, Jewish apocalypticism, Manichaeism, syncretism

Procedia PDF Downloads 186
2115 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 262
2114 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: education institutions, human capital, innovation systems, Mpumalanga Province

Procedia PDF Downloads 380
2113 A Conceptual Framework for Integrating Musical Instrument Digital Interface Composition in the Music Classroom

Authors: Aditi Kashi

Abstract:

While educational technologies have taken great strides, especially in Musical Instrument Digital Interface (MIDI) composition, teachers across the world are still adjusting to incorporate such technology into their curricula. While using MIDI in the classroom has become more common, limited class time and a strong focus on performance have made composition a lesser priority. The balance between music theory, performance time, and composition learning is delicate and difficult to maintain for many music educators. This makes including MIDI in the classroom. To address this issue, this paper aims to outline a general conceptual framework centered around a key element of music theory to integrate MIDI composition into the music classroom to not only introduce students to digital composition but also enhance their understanding of music theory and its applicability.

Keywords: educational framework, education technology, MIDI, music education

Procedia PDF Downloads 86
2112 Towards a Model of Support in the Areas of Services of Educational Assistance and Mentoring in Middle Education in Mexico

Authors: Margarita Zavala, Gabriel Chavira, José González, Jorge Orozco, Julio Rolón, Roberto Pichardo

Abstract:

Adolescence is a neuralgic stage in the formation of every human being, generally this stage is when the middle school level is studied. In 2006, Mexico incorporated 'mentoring' space to assist students in their integration and participation in life. In public middle schools, it is sometimes difficult to be aware of situations that affect students because of the number of them and traditional records management. With this, they lose the opportunity to provide timely support as a preventive way. In order to provide this support, it is required to know the students by detecting the relevant information that has greater impact on their learning process. This research is looking to check if it is possible to identify student’s relevant information to detect when it is at risk, and then to propose a model to manage in a proper way such information.

Keywords: adolescence, mentoring, middle school students, mentoring system support

Procedia PDF Downloads 480