Search results for: experimental liver cirrhosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7932

Search results for: experimental liver cirrhosis

732 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke

Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan

Abstract:

The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.

Keywords: ellagic acid, lung, rat, tobacco smoke

Procedia PDF Downloads 214
731 Controlled Doping of Graphene Monolayer

Authors: Vedanki Khandenwal, Pawan Srivastava, Kartick Tarafder, Subhasis Ghosh

Abstract:

We present here the experimental realization of controlled doping of graphene monolayers through charge transfer by trapping selected organic molecules between the graphene layer and underlying substrates. This charge transfer between graphene and trapped molecule leads to controlled n-type or p-type doping in monolayer graphene (MLG), depending on whether the trapped molecule acts as an electron donor or an electron acceptor. Doping controllability has been validated by a shift in corresponding Raman peak positions and a shift in Dirac points. In the transfer characteristics of field effect transistors, a significant shift of Dirac point towards positive or negative gate voltage region provides the signature of p-type or n-type doping of graphene, respectively, as a result of the charge transfer between graphene and the organic molecules trapped within it. In order to facilitate the charge transfer interaction, it is crucial for the trapped molecules to be situated in close proximity to the graphene surface, as demonstrated by findings in Raman and infrared spectroscopies. However, the mechanism responsible for this charge transfer interaction has remained unclear at the microscopic level. Generally, it is accepted that the dipole moment of adsorbed molecules plays a crucial role in determining the charge-transfer interaction between molecules and graphene. However, our findings clearly illustrate that the doping effect primarily depends on the reactivity of the constituent atoms in the adsorbed molecules rather than just their dipole moment. This has been illustrated by trapping various molecules at the graphene−substrate interface. Dopant molecules such as acetone (containing highly reactive oxygen atoms) promote adsorption across the entire graphene surface. In contrast, molecules with less reactive atoms, such as acetonitrile, tend to adsorb at the edges due to the presence of reactive dangling bonds. In the case of low-dipole moment molecules like toluene, there is a lack of substantial adsorption anywhere on the graphene surface. Observation of (i) the emergence of the Raman D peak exclusively at the edges for trapped molecules without reactive atoms and throughout the entire basal plane for those with reactive atoms, and (ii) variations in the density of attached molecules (with and without reactive atoms) to graphene with their respective dipole moments provides compelling evidence to support our claim. Additionally, these observations were supported by first principle density functional calculations.

Keywords: graphene, doping, charge transfer, liquid phase exfoliation

Procedia PDF Downloads 65
730 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 118
729 Composition Dependence of Ni 2p Core Level Shift in Fe1-xNix Alloys

Authors: Shakti S. Acharya, V. R. R. Medicherla, Rajeev Rawat, Komal Bapna, Deepnarayan Biswas, Khadija Ali, K. Maiti

Abstract:

The discovery of invar effect in 35% Ni concentration Fe1-xNix alloy has stimulated enormous experimental and theoretical research. Elemental Fe and low Ni concentration Fe1-xNix alloys which possess body centred cubic (bcc) crystal structure at ambient temperature and pressure transform to hexagonally close packed (hcp) phase at around 13 GPa. Magnetic order was found to be absent at 11K for Fe92Ni8 alloy when subjected to a high pressure of 26 GPa. The density functional theoretical calculations predicted substantial hyperfine magnetic fields, but were not observed in Mossbaur spectroscopy. The bulk modulus of fcc Fe1-xNix alloys with Ni concentration more than 35%, is found to be independent of pressure. The magnetic moment of Fe is also found be almost same in these alloys from 4 to 10 GPa pressure. Fe1-xNix alloys exhibit a complex microstructure which is formed by a series of complex phase transformations like martensitic transformation, spinodal decomposition, ordering, mono-tectoid reaction, eutectoid reaction at temperatures below 400°C. Despite the existence of several theoretical models the field is still in its infancy lacking full knowledge about the anomalous properties exhibited by these alloys. Fe1-xNix alloys have been prepared by arc melting the high purity constituent metals in argon ambient. These alloys have annealed at around 3000C in vacuum sealed quartz tube for two days to make the samples homogeneous. These alloys have been structurally characterized by x-ray diffraction and were found to exhibit a transition from bcc to fcc for x > 0.3. Ni 2p core levels of the alloys have been measured using high resolution (0.45 eV) x-ray photoelectron spectroscopy. Ni 2p core level shifts to lower binding energy with respect to that of pure Ni metal giving rise to negative core level shifts (CLSs). Measured CLSs exhibit a linear dependence in fcc region (x > 0.3) and were found to deviate slightly in bcc region (x < 0.3). ESCA potential model fails correlate CLSs with site potentials or charges in metallic alloys. CLSs in these alloys occur mainly due to shift in valence bands with composition due to intra atomic charge redistribution.

Keywords: arc melting, core level shift, ESCA potential model, valence band

Procedia PDF Downloads 380
728 Effects of Lower and Upper Body Plyometric Training on Electrocardiogram Parameters of University Athletes

Authors: T. N. Uzor, C. O. Akosile, G. O. Emeahara

Abstract:

Plyometric training is a form of specialised strength training that uses fast muscular contractions to improve power and speed in sports conditioning by coaches and athletes. Despite its useful role in sports conditioning programme, the information about plyometric training on the athletes cardiovascular health especially Electrocardiogram (ECG) has not been established in the literature. The purpose of the study was to determine the effects of lower and upper body plyometric training on ECG of athletes. The study was guided by three null hypotheses. Quasi–experimental research design was adopted for the study. Seventy-two university male athletes constituted the population of the study. Thirty male athletes aged 18 to 24 years volunteered to participate in the study, but only twenty-three completed the study. The volunteered athletes were apparently healthy, physically active and free of any lower and upper extremity bone injuries for past one year and they had no medical or orthopedic injuries that may affect their participation in the study. Ten subjects were purposively assigned to one of the three groups: lower body plyometric training (LBPT), upper body plyometric training (UBPT), and control (C). Training consisted of six plyometric exercises: lower (ankle hops, squat jumps, tuck jumps) and upper body plyometric training (push-ups, medicine ball-chest throws and side throws) with moderate intensity. The general data were collated and analysed using Statistical Package for Social Science (SPSS version 22.0). The research questions were answered using mean and standard deviation, while paired samples t-test was also used to test for the hypotheses. The results revealed that athletes who were trained using LBPT had reduced ECG parameters better than those in the control group. The results also revealed that athletes who were trained using both LBPT and UBPT indicated lack of significant differences following ten weeks plyometric training than those in the control group in the ECG parameters except in Q wave, R wave and S wave (QRS) complex. Based on the findings of the study, it was recommended among others that coaches should include both LBPT and UBPT as part of athletes’ overall training programme from primary to tertiary institution to optimise performance as well as reduce the risk of cardiovascular diseases and promotes good healthy lifestyle.

Keywords: concentric, eccentric, electrocardiogram, plyometric

Procedia PDF Downloads 143
727 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 259
726 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 203
725 The Numerical Model of the Onset of Acoustic Oscillation in Pulse Tube Engine

Authors: Alexander I. Dovgyallo, Evgeniy A. Zinoviev, Svetlana O. Nekrasova

Abstract:

The most of works applied for the pulse tube converters contain the workflow description implemented through the use of mathematical models on stationary modes. However, the study of the thermoacoustic systems unsteady behavior in the start, stop, and acoustic load changes modes is in the particular interest. The aim of the present study was to develop a mathematical thermal excitation model of acoustic oscillations in pulse tube engine (PTE) as a small-scale scheme of pulse tube engine operating at atmospheric air. Unlike some previous works this standing wave configuration is a fully closed system. The improvements over previous mathematical models are the following: the model allows specifying any values of porosity for regenerator, takes into account the piston weight and the friction in the cylinder and piston unit, and determines the operating frequency. The numerical method is based on the relation equations between the pressure and volume velocity variables at the ends of each element of PTE which is recorded through the appropriate transformation matrix. A solution demonstrates that the PTE operation frequency is the complex value, and it depends on the piston mass and the dynamic friction due to its movement in the cylinder. On the basis of the determined frequency thermoacoustically induced heat transport and generation of acoustic power equations were solved for channel with temperature gradient on its ends. The results of numerical simulation demonstrate the features of the initialization process of oscillation and show that that generated acoustic power more than power on the steady mode in a factor of 3…4. But doesn`t mean the possibility of its further continuous utilizing due to its existence only in transient mode which lasts only for a 30-40 sec. The experiments were carried out on small-scale PTE. The results shows that the value of acoustic power is in the range of 0.7..1.05 W for the defined frequency range f = 13..18 Hz and pressure amplitudes 11..12 kPa. These experimental data are satisfactorily correlated with the numerical modeling results. The mathematical model can be straightforwardly applied for the thermoacoustic devices with variable temperatures of thermal reservoirs and variable transduction loads which are expected to occur in practical implementations of portable thermoacoustic engines.

Keywords: nonlinear processes, pulse tube engine, thermal excitation, standing wave

Procedia PDF Downloads 376
724 Acetic Acid Adsorption and Decomposition on Pt(111): Comparisons to Ni(111)

Authors: Lotanna Ezeonu, Jason P. Robbins, Ziyu Tang, Xiaofang Yang, Bruce E. Koel, Simon G. Podkolzin

Abstract:

The interaction of organic molecules with metal surfaces is of interest in numerous technological applications, such as catalysis, bone replacement, and biosensors. Acetic acid is one of the main products of bio-oils produced from the pyrolysis of hemicellulosic feedstocks. However, their high oxygen content makes them unsuitable for use as fuels. Hydrodeoxygenation is a proven technique for catalytic deoxygenation of bio-oils. An understanding of the energetics and control of the bond-breaking sequences of biomass-derived oxygenates on metal surfaces will enable a guided optimization of existing catalysts and the development of more active/selective processes for biomass transformations to fuels. Such investigations have been carried out with the aid of ultrahigh vacuum and its concomitant techniques. The high catalytic activity of platinum in biomass-derived oxygenate transformations has sparked a lot of interest. We herein exploit infrared reflection absorption spectroscopy(IRAS), temperature-programmed desorption(TPD), and density functional theory(DFT) to study the adsorption and decomposition of acetic acid on a Pt(111) surface, which was then compared with Ni(111), a model non-noble metal. We found that acetic acid adsorbs molecularly on the Pt(111) surface, interacting through the lone pair of electrons of one oxygen atomat 90 K. At 140 K, the molecular form is still predominant, with some dissociative adsorption (in the form of acetate and hydrogen). Annealing to 193 K led to complete dehydrogenation of molecular acetic acid species leaving adsorbed acetate. At 440 K, decomposition of the acetate species occurs via decarbonylation and decarboxylation as evidenced by desorption peaks for H₂,CO, CO₂ and CHX fragments (x=1, 2) in theTPD.The assignments for the experimental IR peaks were made using visualization of the DFT-calculated vibrational modes. The results showed that acetate adsorbs in a bridged bidentate (μ²η²(O,O)) configuration. The coexistence of linear and bridge bonded CO was also predicted by the DFT results. Similar molecular acid adsorption energy was predicted in the case of Ni(111) whereas a significant difference was found for acetate adsorption.

Keywords: acetic acid, platinum, nickel, infared-absorption spectrocopy, temperature programmed desorption, density functional theory

Procedia PDF Downloads 108
723 Treating Voxels as Words: Word-to-Vector Methods for fMRI Meta-Analyses

Authors: Matthew Baucum

Abstract:

With the increasing popularity of fMRI as an experimental method, psychology and neuroscience can greatly benefit from advanced techniques for summarizing and synthesizing large amounts of data from brain imaging studies. One promising avenue is automated meta-analyses, in which natural language processing methods are used to identify the brain regions consistently associated with certain semantic concepts (e.g. “social”, “reward’) across large corpora of studies. This study builds on this approach by demonstrating how, in fMRI meta-analyses, individual voxels can be treated as vectors in a semantic space and evaluated for their “proximity” to terms of interest. In this technique, a low-dimensional semantic space is built from brain imaging study texts, allowing words in each text to be represented as vectors (where words that frequently appear together are near each other in the semantic space). Consequently, each voxel in a brain mask can be represented as a normalized vector sum of all of the words in the studies that showed activation in that voxel. The entire brain mask can then be visualized in terms of each voxel’s proximity to a given term of interest (e.g., “vision”, “decision making”) or collection of terms (e.g., “theory of mind”, “social”, “agent”), as measured by the cosine similarity between the voxel’s vector and the term vector (or the average of multiple term vectors). Analysis can also proceed in the opposite direction, allowing word cloud visualizations of the nearest semantic neighbors for a given brain region. This approach allows for continuous, fine-grained metrics of voxel-term associations, and relies on state-of-the-art “open vocabulary” methods that go beyond mere word-counts. An analysis of over 11,000 neuroimaging studies from an existing meta-analytic fMRI database demonstrates that this technique can be used to recover known neural bases for multiple psychological functions, suggesting this method’s utility for efficient, high-level meta-analyses of localized brain function. While automated text analytic methods are no replacement for deliberate, manual meta-analyses, they seem to show promise for the efficient aggregation of large bodies of scientific knowledge, at least on a relatively general level.

Keywords: FMRI, machine learning, meta-analysis, text analysis

Procedia PDF Downloads 448
722 Detection of Powdery Mildew Disease in Strawberry Using Image Texture and Supervised Classifiers

Authors: Sultan Mahmud, Qamar Zaman, Travis Esau, Young Chang

Abstract:

Strawberry powdery mildew (PM) is a serious disease that has a significant impact on strawberry production. Field scouting is still a major way to find PM disease, which is not only labor intensive but also almost impossible to monitor disease severity. To reduce the loss caused by PM disease and achieve faster automatic detection of the disease, this paper proposes an approach for detection of the disease, based on image texture and classified with support vector machines (SVMs) and k-nearest neighbors (kNNs). The methodology of the proposed study is based on image processing which is composed of five main steps including image acquisition, pre-processing, segmentation, features extraction and classification. Two strawberry fields were used in this study. Images of healthy leaves and leaves infected with PM (Sphaerotheca macularis) disease under artificial cloud lighting condition. Colour thresholding was utilized to segment all images before textural analysis. Colour co-occurrence matrix (CCM) was introduced for extraction of textural features. Forty textural features, related to a physiological parameter of leaves were extracted from CCM of National television system committee (NTSC) luminance, hue, saturation and intensity (HSI) images. The normalized feature data were utilized for training and validation, respectively, using developed classifiers. The classifiers have experimented with internal, external and cross-validations. The best classifier was selected based on their performance and accuracy. Experimental results suggested that SVMs classifier showed 98.33%, 85.33%, 87.33%, 93.33% and 95.0% of accuracy on internal, external-I, external-II, 4-fold cross and 5-fold cross-validation, respectively. Whereas, kNNs results represented 90.0%, 72.00%, 74.66%, 89.33% and 90.3% of classification accuracy, respectively. The outcome of this study demonstrated that SVMs classified PM disease with a highest overall accuracy of 91.86% and 1.1211 seconds of processing time. Therefore, overall results concluded that the proposed study can significantly support an accurate and automatic identification and recognition of strawberry PM disease with SVMs classifier.

Keywords: powdery mildew, image processing, textural analysis, color co-occurrence matrix, support vector machines, k-nearest neighbors

Procedia PDF Downloads 120
721 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 362
720 Antiangiogenic and Pro-Apoptotic Properties of Shemamruthaa: An Herbal Preparation in Experimental Mammary Carcinoma-Bearing Rats and Breast Cancer Cell Line In vitro

Authors: Nandhakumar Elumalai, Purushothaman Ayyakannu, Sachidanandam T. Panchanatham

Abstract:

Background: Understanding the basic mechanisms and factors underlying the tumor growth and invasion has gained attention in recent times. The processes of angiogenesis and apoptosis are known to play a vital role in various stages of cancer. The vascular endothelial growth factor (VEGF) is well established as one of the key regulators of tumor angiogenesis while MMPs are known for their exclusive ability to degrade ECM. Objective: The present study was designed to evaluate the pro apoptotic and anti angiogenic activity of the herbal formulation Shemamruthaa. The anticancer activity of Shemamruthaa was tested in breast cancer cell line (MCF-7). Results of MTT, trypan blue and flow cytometric analysis of apoptotis suggested that Shemamruthaa can induce cytotoxicity in cancer cells, in a concentration- and time dependent manner and induce apoptosis. With these results, we further evaluated the antiangiogenic and pro-apoptotic activities of Shemamruthaa in DMBA induced mammary carcinoma in Sprague Dawley rats. Flavono tumour was induced in 8-week-old Sprague-Dawley rats by gastric intubation of 25 mg DMBA in 1ml olive oil. After 90 days of induction period, the rats were orally administered with Shemamruthaa (400 mg/kg body wt) for 45 days. Treatment with the drug SM significantly modulated the expression of p53, MMP-2, MMP-3, MMP-9 and VEGF by means of its anti angiogenic and protease inhibiting activity. Conclusion: Based on these results, it might be concluded that the formulation, Shemamruthaa, constituted of dried flowers of Hibiscus rosa-sinensis, fruits of Emblica officinalis, and honey has been found to exhibit pronounced antiproliferative and apoptotic effects. This enhanced anticancer effect of Shemamruthaa might be attributed to the synergistic action of polyphenols such as flavonoids, tannins, alkaloids, glycosides, saponins, steroids, terpenoids, vitamin C, niacin, pyrogallol, hydroxymethylfurfural, trilinolein, and other compounds present in the formulation. Collectively, these results demonstrate that Shemamruthaa holds potential to be developed as a potent chemotherapeutic agent against mammary carcinoma.

Keywords: Shemamruthaa, flavonoids, MCF-7 cell line, mammary cancer

Procedia PDF Downloads 252
719 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings

Authors: Chen Wang, Jared Evans, Yan Asmann

Abstract:

With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.

Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing

Procedia PDF Downloads 257
718 Non-Invasive Viscosity Determination of Liquid Organic Hydrogen Carriers by Alteration of Temperature and Flow Velocity Using Cavity Based Permittivity Measurement

Authors: I. Wiemann, N. Weiß, E. Schlücker, M. Wensing, A. Kölpin

Abstract:

Chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC) is a very promising alternative to compression or cryogenics. These carriers have high energy density and allow at the same time efficient and safe storage of hydrogen under ambient conditions and without leakage losses. Another benefit of LOHC is the possibility to transport it using already available infrastructure for transport of fossil fuels. Efficient use of LOHC is related to a precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and represents simultaneously the modification in chemical structure of the carrier molecules. This variation can be detected in different physical properties like viscosity, permittivity or density. Thereby, each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. Avoiding invasive measurements has several severe advantages. Efforts are currently taken to provide a precise, non-invasive measurement method with equal or higher precision of the obtained results. This study investigates a method for determination of the viscosity of LOHC. Since the viscosity can retroactively derived from the degree of loading, permittivity is a target parameter as it is a suitable for determining the hydrogenation degree. This research analyses the influence of common physical properties on permittivity. The permittivity measurement system is based on a cavity resonator, an electromagnetic resonant structure, whose resonation frequency depends on its dimensions as well as the permittivity of the medium inside. For known resonator dimensions, the resonation frequency directly characterizes the permittivity. In order to determine the dependency of the permittivity on temperature and flow velocity, an experimental setup with heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were measured in the hundredths of the GHz range.

Keywords: liquid organic hydrogen carriers, measurement, permittivity, viscosity., temperature, flow process

Procedia PDF Downloads 100
717 Constructed Wetlands with Subsurface Flow for Nitrogen and Metazachlor Removal from Tile Drainage: First Year Results

Authors: P. Fucik, J. Vymazal, M. Seres

Abstract:

Pollution from agricultural drainage is a severe issue for water quality, and it is a major reason for the failure in accomplishment of 'good chemical status' according to Water Framework Directive, especially due to high nitrogen and pesticide burden of receiving waters. Constructed wetlands were proposed as a suitable measure for removal of nitrogen from agricultural drainage in the early 1990s. Until now, the vast majority of constructed wetlands designed to treat tile drainage were free-surface constructed wetlands. In 2018, three small experimental constructed wetlands with horizontal subsurface flow were built in Czech Highlands to treat tile drainage from 15.73 ha watershed. The wetlands have a surface area of 79, 90 and 98 m² and were planted with Phalaris arundinacea and Glyceria maxima in parallel bands. The substrate in the first two wetlands is gravel (4-8 mm) mixed with birch woodchips (10:1 volume ratio). In one of those wetlands, the water level is kept 10 cm above the surface; in the second one, the water is kept below the surface. The third wetland has 20 cm layer of birch woodchips on top of gravel. The drainage outlet, as well as wetland outlets, are equipped with automatic discharge-gauging devices, temperature probes, as well as automatic water samplers (Teledyne ISCO). During the monitored period (2018-2019), the flows were unexpectedly low due to a drop of the shallow ground water level, being the main source of water for the monitored drainage system, as experienced at many areas of the Czech Republic. The mean water residence time was analyzed in the wetlands (KBr), which was 16, 9 and 27 days, respectively. The mean total nitrogen concentration eliminations during one-year period were 61.2%, 62.6%, and 70.9% for wetlands 1, 2, and 3, respectively. The average load removals amounted to 0.516, 0.323, and 0.399 g N m-2 d-1 or 1885, 1180 and 1457 kg ha-1 yr-1 in wetlands 1, 2 and 3, respectively. The plant uptake and nitrogen sequestration in aboveground biomass contributed only marginally to the overall nitrogen removal. Among the three variants, the one with shallow water on the surface was revealed to be the most effective for removal of nitrogen from drainage water. In August 2019, herbicide Metazachlor was experimentally poured in time of 2 hours at drainage outlet in a concentration of 250 ug/l to find out the removal rates of the aforementioned wetlands. Water samples were taken the first day every six hours, and for the next nine days, every day one water sample was taken. The removal rates were as follows 94, 69 and 99%; when the most effective wetland was the one with the longest water residence time and the birch woodchip-layer on top of gravel.

Keywords: constructed wetlands, metazachlor, nitrogen, tile drainage

Procedia PDF Downloads 149
716 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 144
715 Effect of Packing Ratio on Fire Spread across Discrete Fuel Beds: An Experimental Analysis

Authors: Qianqian He, Naian Liu, Xiaodong Xie, Linhe Zhang, Yang Zhang, Weidong Yan

Abstract:

In the wild, the vegetation layer with exceptionally complex fuel composition and heterogeneous spatial distribution strongly affects the rate of fire spread (ROS) and fire intensity. Clarifying the influence of fuel bed structure on fire spread behavior is of great significance to wildland fire management and prediction. The packing ratio is one of the key physical parameters describing the property of the fuel bed. There is a threshold value of the packing ratio for ROS, but little is known about the controlling mechanism. In this study, to address this deficiency, a series of fire spread experiments were performed across a discrete fuel bed composed of some regularly arranged laser-cut cardboards, with constant wind speed and different packing ratios (0.0125-0.0375). The experiment aims to explore the relative importance of the internal and surface heat transfer with packing ratio. The dependence of the measured ROS on the packing ratio was almost consistent with the previous researches. The data of the radiative and total heat fluxes show that the internal heat transfer and surface heat transfer are both enhanced with increasing packing ratio (referred to as ‘Stage 1’). The trend agrees well with the variation of the flame length. The results extracted from the video show that the flame length markedly increases with increasing packing ratio in Stage 1. Combustion intensity is suggested to be increased, which, in turn, enhances the heat radiation. The heat flux data shows that the surface heat transfer appears to be more important than the internal heat transfer (fuel preheating inside the fuel bed) in Stage 1. On the contrary, the internal heat transfer dominates the fuel preheating mechanism when the packing ratio further increases (referred to as ‘Stage 2’) because the surface heat flux keeps almost stable with the packing ratio in Stage 2. As for the heat convection, the flow velocity was measured using Pitot tubes both inside and on the upper surface of the fuel bed during the fire spread. Based on the gas velocity distribution ahead of the flame front, it is found that the airflow inside the fuel bed is restricted in Stage 2, which can reduce the internal heat convection in theory. However, the analysis indicates not the influence of inside flow on convection and combustion, but the decreased internal radiation of per unit fuel is responsible for the decrease of ROS.

Keywords: discrete fuel bed, fire spread, packing ratio, wildfire

Procedia PDF Downloads 142
714 Extraction of Biodiesel from Microalgae Using the Solvent Extraction Process, Typically Soxhlet Extraction Method

Authors: Gracious Tendai Matayaya

Abstract:

The world is facing problems in finding alternative resources to offset the decline in global petroleum reserves. The use of fossil fuels has prompted biofuel development, particularly in the transportation sector. In these circumstances, looking for alternative renewable energy sources makes sense. Petroleum-based fuels also result in a lot of carbon dioxide being released into the environment causing global warming. Replacing petroleum and fossil fuel-based fuels with biofuels has the advantage of reducing undesirable aspects of these fuels, which are mostly the production of greenhouse gas and dependence on unstable foreign suppliers. Algae refer to a group of aquatic microorganisms that produce a lot of lipids up to 60% of their total weight. This project aims to exploit the large amounts of oil produced by these microorganisms in the Soxhlet extraction to make biodiesel. Experiments were conducted to establish the cultivability of algae, harvesting methods, the oil extraction process, and the transesterification process. Although there are various methods for producing algal oil, the Soxhlet extraction method was employed for this particular research. After extraction, the oil was characterized before being used in the transesterification process that used methanol and hydrochloric acid as the process reactants. The properties of the resulting biodiesel were then determined. Because there is a requirement to dry wet algae, the experimental findings showed that Soxhlet extraction was the optimum way to produce a higher yield of microalgal oil. Upon cultivating algae, Compound D fertilizer was added as a source of nutrients (Phosphorous and Nitrogen), and the highest growth of algae was observed at 6 days (using 2 g of fertilizer), after which it started to decrease. Butanol, hexane, heptane and acetone have been experimented with as solvents, and heptane gave the highest amount of oil (89ml of oil) when 300 ml of solvent was used. This was compared to 73.21ml produced by butanol, 81.90 produced by hexane and 69.57ml produced by acetone, and as a result, heptane was used for the rest of the experiments, which included a variation of the mass of dried algae and time of extraction. This meant that the oil composition of algae was higher than other oil sources like peanuts, soybean etc. Algal oil was heated at 150℃ for 150 minutes in the presence of methanol (reactant) and hydrochloric acid (HCl), which was used as a catalyst. A temperature of 200℃ produced 93.64%, and a temperature of 250℃ produced 92.13 of biodiesel at 150 minutes.

Keywords: microalgae, algal oil, biodiesel, soxhlet extraction

Procedia PDF Downloads 82
713 Training Volume and Myoelectric Responses of Lower Body Muscles with Differing Foam Rolling Periods

Authors: Humberto Miranda, Haroldo G. Santana, Gabriel A. Paz, Vicente P. Lima, Jeffrey M. Willardson

Abstract:

Foam rolling is a practice that has increased in popularity before and after strength training. The purpose of this study was to compare the acute effects of different foam rolling periods for the lower body muscles on subsequent performance (total repetitions and training volume), myoelectric activity and rating of perceived exertion in trained men. Fourteen trained men (26.2 ± 3.2 years, 178 ± 0.04 cm height, 82.2 ± 10 kg weight and body mass index 25.9 ± 3.3kg/m2) volunteered for this study. Four repetition maximum (4-RM) loads were determined for hexagonal bar deadlift and 45º angled leg press during test and retest sessions over two nonconsecutive days. Five experimental protocols were applied in a randomized design, which included: a traditional protocol (control)—a resistance training session without prior foam rolling; or resistance training sessions performed following one (P1), two (P2), three (P3), or four (P4) sets of 30 sec. foam rolling for the lower extremity musculature. Subjects were asked to roll over the medial and lateral aspects of each muscle group with as much pressure as possible. All foam rolling was completed at a cadence of 50 bpm. These procedures were performed on both sides unilaterally as described below. Quadriceps: between the apex of the patella and the ASIS; Hamstring: between the gluteal fold and popliteal fossa; Triceps surae: between popliteal fossa and calcaneus tendon. The resistance training consisted of five sets with 4-RM loads and two-minute rest intervals between sets, and a four-minute rest interval between the hexagonal bar deadlift and the 45º angled leg press. The number of repetitions completed, the myoelectric activity of vastus lateralis (VL), vastus medialis oblique (VMO), semitendinosus (SM) and medial gastrocnemius (GM) were recorded, as well as the rating of perceived exertion for each protocol. There were no differences between the protocols in the total repetitions for the hexagonal bar deadlift (Control - 16.2 ± 5.9; P1 - 16.9 ± 5.5; P2 - 19.2 ± 5.7; P3 - 19.4 ± 5.2; P4 - 17.2 ± 8.2) (p > 0.05) and 45º angled leg press (Control - 23.3 ± 9.7; P1 - 25.9 ± 9.5; P2 - 29.1 ± 13.8; P3 - 28.0 ± 11.7; P4 - 30.2 ± 11.2) exercises. Similar results between protocols were also noted for myoelectric activity (p > 0.05) and rating of perceived exertion (p > 0.05). Therefore, the results of the present study indicated no deleterious effects on performance, myoelectric activity and rating of perceived exertion responses during lower body resistance training.

Keywords: self myofascial release, foam rolling, electromyography, resistance training

Procedia PDF Downloads 225
712 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design

Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi

Abstract:

Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.

Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect

Procedia PDF Downloads 107
711 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 142
710 Electron Density Discrepancy Analysis of Energy Metabolism Coenzymes

Authors: Alan Luo, Hunter N. B. Moseley

Abstract:

Many macromolecular structure entries in the Protein Data Bank (PDB) have a range of regional (localized) quality issues, be it derived from x-ray crystallography, Nuclear Magnetic Resonance (NMR) spectroscopy, or other experimental approaches. However, most PDB entries are judged by global quality metrics like R-factor, R-free, and resolution for x-ray crystallography or backbone phi-psi distribution statistics and average restraint violations for NMR. Regional quality is often ignored when PDB entries are re-used for a variety of structurally based analyses. The binding of ligands, especially ligands involved in energy metabolism, is of particular interest in many structurally focused protein studies. Using a regional quality metric that provides chemically interpretable information from electron density maps, a significant number of outliers in regional structural quality was detected across x-ray crystallographic PDB entries for proteins bound to biochemically critical ligands. In this study, a series of analyses was performed to evaluate both specific and general potential factors that could promote these outliers. In particular, these potential factors were the minimum distance to a metal ion, the minimum distance to a crystal contact, and the isotropic atomic b-factor. To evaluate these potential factors, Fisher’s exact tests were performed, using regional quality criteria of outlier (top 1%, 2.5%, 5%, or 10%) versus non-outlier compared to a potential factor metric above versus below a certain outlier cutoff. The results revealed a consistent general effect from region-specific normalized b-factors but no specific effect from metal ion contact distances and only a very weak effect from crystal contact distance as compared to the b-factor results. These findings indicate that no single specific potential factor explains a majority of the outlier ligand-bound regions, implying that human error is likely as important as these other factors. Thus, all factors, including human error, should be considered when regions of low structural quality are detected. Also, the downstream re-use of protein structures for studying ligand-bound conformations should screen the regional quality of the binding sites. Doing so prevents misinterpretation due to the presence of structural uncertainty or flaws in regions of interest.

Keywords: biomacromolecular structure, coenzyme, electron density discrepancy analysis, x-ray crystallography

Procedia PDF Downloads 130
709 Evaluation of Neuroprotective Potential of Olea europaea and Malus domestica in Experimentally Induced Stroke Rat Model

Authors: Humaira M. Khan, Kanwal Asif

Abstract:

Ischemic stroke is a neurological disorder with a complex pathophysiology associated with motor, sensory and cognitive deficits. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. The objectives of this study were to evaluate the neuroprotective and anti-thrombolytic effects of Olea europaea (olive oil) and Malus domestica (apple cider vinegar) and their combination in rat stroke model. Furthermore, histopathological analysis was also performed to assess the severity of ischemia among treated and reference groups. Male albino rats (12 months age) weighing 300- 350gm were acclimatized and subjected to middle cerebral artery occlusion method for stroke induction. Olea europaea and Malus domestica was administered orally in dose of 0.75ml/kg and 3ml/kg and combination was administered at dose of 0.375ml/kg and 1.5ml/kg prophylactically for consecutive 21 days. Negative control group was dosed with normal saline whereas piracetam (250mg/kg) was administered as reference. Neuroprotective activity of standard piracetam, Olea europaea, Malus domestica and their combination was evaluated by performing functional outcome tests i.e. Cylinder, pasta, ladder run, pole and water maize tests. Rats were subjected to surgery after 21 days of treatment for analysis from stroke recovery. Olea europaea and Malus domestica in individual doses of 0.75ml/kg and 3ml/kg respectively showed neuroprotection by significant improvement in ladder run test (121.6± 0.92;128.2 ± 0.73) as compare to reference (125.4 ± 0.74). Both test doses showed significant neuroprotection as compare to reference (9.60 ± 0.50) in pasta test (8.40 ± 0.24;9.80 ± 0.37) whereas with cylinder test, experimental groups showed significant increase in movements (6.60 ± 0.24; 8.40 ± 0.24) in contrast to reference (7.80 ± 0.37).There was a decrease in percentage time taken f to reach the hidden maize in water maize test (56.80 ± 0.58;61.80 ± 0.66) at doses 0.75ml/kg and 3ml/kg respectively as compare to piracetam (59.40 ± 1.07). Olea europaea and Malus domestica individually showed significant reduction in duration of mobility (127.0 ± 0.44; 123.0 ± 0.44) in pole test as compare to piracetam (124.0 ± 0.70). Histopathological analysis revealed the significant extent of protection from ischemia after prophylactic treatments. Hence it is concluded that Olea europaea and Malus domestica are effective neuroprotective agents alone as compare to their combination.

Keywords: ischemia, Malus domestica, neuroprotection, Olea europaea

Procedia PDF Downloads 126
708 Evaluation of Buckwheat Genotypes to Different Planting Geometries and Fertility Levels in Northern Transition Zone of Karnataka

Authors: U. K. Hulihalli, Shantveerayya

Abstract:

Buckwheat (Fagopyrum esculentum Moench) is an annual crop belongs to family Poligonaceae. The cultivated buckwheat species are notable for their exceptional nutritive values. It is an important source of carbohydrates, fibre, macro, and microelements such as K, Ca, Mg, Na and Mn, Zn, Se, and Cu. It also contains rutin, flavonoids, riboflavin, pyridoxine and many amino acids which have beneficial effects on human health, including lowering both blood lipid and sugar levels. Rutin, quercetin and some other polyphenols are potent carcinogens against colon and other cancers. Buckwheat has significant nutritive value and plenty of uses. Cultivation of buckwheat in Sothern part of India is very meager. Hence, a study was planned with an objective to know the performance of buckwheat genotypes to different planting geometries and fertility levels. The field experiment was conducted at Main Agriculture Research Station, University of Agriculture Sciences, Dharwad, India, during 2017 Kharif. The experiment was laid-out in split-plot design with three replications having three planting geometries as main plots, two genotypes as sub plots and three fertility levels as sub-sub plot treatments. The soil of the experimental site was vertisol. The standard procedures are followed to record the observations. The planting geometry of 30*10 cm was recorded significantly higher seed yield (893 kg/ha⁻¹), stover yield (1507 kg ha⁻¹), clusters plant⁻¹ (7.4), seeds clusters⁻¹ (7.9) and 1000 seed weight (26.1 g) as compared to 40*10 cm and 20*10 cm planting geometries. Between the genotypes, significantly higher seed yield (943 kg ha⁻¹) and harvest index (45.1) was observed with genotype IC-79147 as compared to PRB-1 genotype (687 kg ha⁻¹ and 34.2, respectively). However, the genotype PRB-1 recorded significantly higher stover yield (1344 kg ha⁻¹) as compared to genotype IC-79147 (1173 kg ha⁻¹). The genotype IC-79147 was recorded significantly higher clusters plant⁻¹ (7.1), seeds clusters⁻¹ (7.9) and 1000 seed weight (24.5 g) as compared PRB-1 (5.4, 5.8 and 22.3 g, respectively). Among the fertility levels tried, the fertility level of 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (845 kg ha-1) and stover yield (1359 kg ha⁻¹) as compared to 40:20 NP kg ha-1 (808 and 1259 kg ha⁻¹ respectively) and 20:10 NP kg ha-1 (793 and 1144 kg ha⁻¹ respectively). Within the treatment combinations, IC 79147 genotype having 30*10 cm planting geometry with 60:30 NP kg ha⁻¹ recorded significantly higher seed yield (1070 kg ha⁻¹), clusters plant⁻¹ (10.3), seeds clusters⁻¹ (9.9) and 1000 seed weight (27.3 g) compared to other treatment combinations.

Keywords: buckwheat, planting geometry, genotypes, fertility levels

Procedia PDF Downloads 175
707 Calcein Release from Liposomes Mediated by Phospholipase A₂ Activity: Effect of Cholesterol and Amphipathic Di and Tri Blocks Copolymers

Authors: Marco Soto-Arriaza, Eduardo Cena-Ahumada, Jaime Melendez-Rojel

Abstract:

Background: Liposomes have been widely used as a model of lipid bilayer to study the physicochemical properties of biological membrane, encapsulation, transport and release of different molecules. Furthermore, extensive research has focused on improving the efficiency in the transport of drugs, developing tools that improve the release of the encapsulated drug from liposomes. In this context, the enzymatic activity of PLA₂, despite having been shown to be an effective tool to promote the release of drugs from liposomes, is still an open field of research. Aim: The aim of the present study is to explore the effect of cholesterol (Cho) and amphipathic di- and tri-block copolymers, on calcein release mediated by enzymatic activity of PLA2 in Dipalmitoylphosphatidylcholine (DPPC) liposomes under physiological conditions. Methods: Different dispersions of DPPC, cholesterol, di-block POE₄₅-PCL₅₂ or tri-block PCL₁₂-POE₄₅-PCL₁₂ were prepared by the extrusion method after five freezing/thawing cycles; in Phosphate buffer 10mM pH 7.4 in presence of calcein. DPPC liposomes/Calcein were centrifuged at 15000rpm 10 min to separate free calcein. Enzymatic activity assays of PLA₂ were performed at 37°C using the TBS buffer pH 7.4. The size distribution, polydispersity, Z-potential and Calcein encapsulation of DPPC liposomes was monitored. Results: PLA₂ activity showed a slower kinetic of calcein release up to 20 mol% of cholesterol, evidencing a minimum at 10 mol% and then a maximum at 18 mol%. Regardless of the percentage of cholesterol, up to 18 mol% a one-hundred percentage release of calcein was observed. At higher cholesterol concentrations, PLA₂ showed to be inefficient or not to be involved in calcein release. In assays where copolymers were added in a concentration lower than their cmc, a similar behavior to those showed in the presence of Cho was observed, that is a slower kinetic in calcein release. In both experimental approaches, a one-hundred percentage of calcein release was observed. PLA₂ was shown to be sensitive to the 4-(4-Octadecylphenyl)-4-oxobutenoic acid inhibitor and calcium, reducing the release of calcein to 0%. Cell viability of HeLa cells decreased 7% in the presence of DPPC liposomes after 3 hours of incubation and 17% and 23% at 5 and 15 hours, respectively. Conclusion: Calcein release from DPPC liposomes, mediated by PLA₂ activity, depends on the percentage of cholesterol and the presence of copolymers. Both, cholesterol up to 20 mol% and copolymers below it cmc could be applied to the regulation of the kinetics of antitumoral drugs release without inducing cell toxicity per se.

Keywords: amphipathic copolymers, calcein release, cholesterol, DPPC liposome, phospholipase A₂

Procedia PDF Downloads 163
706 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 70
705 Cover Layer Evaluation in Soil Organic Matter of Mixing and Compressed Unsaturated

Authors: Nayara Torres B. Acioli, José Fernando T. Jucá

Abstract:

The uncontrolled emission of gases in urban residues' embankment located near urban areas is a social and environmental problem, common in Brazilian cities. Several environmental impacts in the local and global scope may be generated by atmospheric air contamination by the biogas resulted from the decomposition of solid urban materials. In Brazil, the cities of small size figure mostly with 90% of all cities, with the population smaller than 50,000 inhabitants, according to the 2011 IBGE' census, most of the landfill covering layer is composed of clayey, pure soil. The embankments undertaken with pure soil may reach up to 60% of retention of methane, for the other 40% it may be dispersed into the atmosphere. In face of this figures the oxidative covering layer is granted some space of study, envisaging to reduce this perceptual available in the atmosphere, releasing, in spite of methane, carbonic gas which is almost 20 times as less polluting than Methane. This paper exposes the results of studies on the characteristics of the soil used for the oxidative coverage layer of the experimental embankment of Solid Urban Residues (SUR), built in Muribeca-PE, Brazil, supported of the Group of Solid Residues (GSR), located at Federal University of Pernambuco, through laboratory vacuum experiments (determining the characteristics curve), granularity, and permeability, that in soil with saturation over 85% offers dramatic drops in the test of permeability to the air, by little increments of water, based in the existing Brazilian norm for this procedure. The suction was studied, as in the other tests, from the division of prospection of an oxidative coverage layer of 60cm, in the upper half (0.1 m to 0.3 m) and lower half (0.4 m to 0.6 m). Therefore, the consequences to be presented from the lixiviation of the fine materials after 5 years of finalization of the embankment, what made its permeability increase. Concerning its humidity, it is most retained in the upper part, that comprises the compound, with a difference in the order of 8 percent the superior half to inferior half, retaining the least suction from the surface. These results reveal the efficiency of the oxidative coverage layer in retaining the rain water, it has a lower cost when compared to the other types of layer, offering larger availability of this layer as an alternative for a solution for the appropriate disposal of residues.

Keywords: oxidative coverage layer, permeability, suction, saturation

Procedia PDF Downloads 289
704 Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail

Authors: William Waddington, M. Jahir Rizvi

Abstract:

Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same.

Keywords: CFD, drag, sailing vessel, thrust, traditional sail, wing sail

Procedia PDF Downloads 279
703 Validation of a Placebo Method with Potential for Blinding in Ultrasound-Guided Dry Needling

Authors: Johnson C. Y. Pang, Bo Peng, Kara K. L. Reeves, Allan C. L. Fud

Abstract:

Objective: Dry needling (DN) has long been used as a treatment method for various musculoskeletal pain conditions. However, the evidence level of the studies was low due to the limitations of the methodology. Lack of randomization and inappropriate blinding is potentially the main sources of bias. A method that can differentiate clinical results due to the targeted experimental procedure from its placebo effect is needed to enhance the validity of the trial. Therefore, this study aimed to validate the method as a placebo ultrasound(US)-guided DN for patients with knee osteoarthritis (KOA). Design: This is a randomized controlled trial (RCT). Ninety subjects (25 males and 65 females) aged between 51 and 80 (61.26 ± 5.57) with radiological KOA were recruited and randomly assigned into three groups with a computer program. Group 1 (G1) received real US-guided DN, Group 2 (G2) received placebo US-guided DN, and Group 3 (G3) was the control group. Both G1 and G2 subjects received the same procedure of US-guided DN, except the US monitor was turned off in G2, blinding the G2 subjects to the incorporation of faux US guidance. This arrangement created the placebo effect intended to permit comparison of their results to those who received actual US-guided DN. Outcome measures, including the visual analog scale (VAS) and Knee injury and Osteoarthritis Outcome Score (KOOS) subscales of pain, symptoms, and quality of life (QOL), were analyzed by repeated measures analysis of covariance (ANCOVA) for time effects and group effects. The data regarding the perception of receiving real US-guided DN or placebo US-guided DN were analyzed by the chi-squared test. The missing data were analyzed with the intention-to-treat (ITT) approach if more than 5% of the data were missing. Results: The placebo US-guided DN (G2) subjects had the same perceptions as the use of real US guidance in the advancement of DN (p<0.128). G1 had significantly higher pain reduction (VAS and KOOS-pain) than G2 and G3 at 8 weeks (both p<0.05) only. There was no significant difference between G2 and G3 at 8 weeks (both p>0.05). Conclusion: The method with the US monitor turned off during the application of DN is credible for blinding the participants and allowing researchers to incorporate faux US guidance. The validated placebo US-guided DN technique can aid in investigations of the effects of US-guided DN with short-term effects of pain reduction for patients with KOA. Acknowledgment: This work was supported by the Caritas Institute of Higher Education [grant number IDG200101].

Keywords: ultrasound-guided dry needling, dry needling, knee osteoarthritis, physiotheraphy

Procedia PDF Downloads 119