Search results for: sound propagation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8103

Search results for: sound propagation models

1053 Associations between Sharing Bike Usage and Characteristics of Urban Street Built Environment in Wuhan, China

Authors: Miao Li, Mengyuan Xu

Abstract:

As a low-carbon travel mode, bicycling has drawn increasing political interest in the contemporary Chinese urban context, and the public sharing bikes have become the most popular ways of bike usage in China now. This research aims to explore the spatial-temporal relationship between sharing bike usage and different characteristics of the urban street built environment. In the research, street segments were used as the analytic unit of the street built environment defined by street intersections. The sharing bike usage data in the research include a total of 2.64 million samples that are the entire sharing bike distribution data recorded in two days in 2018 within a neighborhood of 185.4 hectares in the city of Wuhan, China. And these data are assigned to the 97 urban street segments in this area based on their geographic location. The built environment variables used in this research are categorized into three sections: 1) street design characteristics, such as street width, street greenery, types of bicycle lanes; 2) condition of other public transportation, such as the availability of metro station; 3) Street function characteristics that are described by the categories and density of the point of interest (POI) along the segments. Spatial Lag Models (SLM) were used in order to reveal the relationships of specific urban streets built environment characteristics and the likelihood of sharing bicycling usage in whole and different periods a day. The results show: 1) there is spatial autocorrelation among sharing bicycling usage of urban streets in case area in general, non-working day, working day and each period of a day, which presents a clustering pattern in the street space; 2) a statistically strong association between bike sharing usage and several different built environment characteristics such as POI density, types of bicycle lanes and street width; 3) the pattern that bike sharing usage is influenced by built environment characteristics depends on the period within a day. These findings could be useful for policymakers and urban designers to better understand the factors affecting bike sharing system and thus propose guidance and strategy for urban street planning and design in order to promote the use of sharing bikes.

Keywords: big data, sharing bike usage, spatial statistics, urban street built environment

Procedia PDF Downloads 145
1052 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression

Authors: Jiangang Shen

Abstract:

Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.

Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress

Procedia PDF Downloads 76
1051 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up

Procedia PDF Downloads 320
1050 Trip Reduction in Turbo Machinery

Authors: Pranay Mathur, Carlo Michelassi, Simi Karatha, Gilda Pedoto

Abstract:

Industrial plant uptime is top most importance for reliable, profitable & sustainable operation. Trip and failed start has major impact on plant reliability and all plant operators focussed on efforts required to minimise the trips & failed starts. The performance of these CTQs are measured with 2 metrics, MTBT(Mean time between trips) and SR (Starting reliability). These metrics helps to identify top failure modes and identify units need more effort to improve plant reliability. Baker Hughes Trip reduction program structured to reduce these unwanted trip 1. Real time machine operational parameters remotely available and capturing the signature of malfunction including related boundary condition. 2. Real time alerting system based on analytics available remotely. 3. Remote access to trip logs and alarms from control system to identify the cause of events. 4. Continuous support to field engineers by remotely connecting with subject matter expert. 5. Live tracking of key CTQs 6. Benchmark against fleet 7. Break down to the cause of failure to component level 8. Investigate top contributor, identify design and operational root cause 9. Implement corrective and preventive action 10. Assessing effectiveness of implemented solution using reliability growth models. 11. Develop analytics for predictive maintenance With this approach , Baker Hughes team is able to support customer in achieving their Reliability Key performance Indicators for monitored units, huge cost savings for plant operators. This Presentation explains these approach while providing successful case studies, in particular where 12nos. of LNG and Pipeline operators with about 140 gas compressing line-ups has adopted these techniques and significantly reduce the number of trips and improved MTBT

Keywords: reliability, availability, sustainability, digital infrastructure, weibull, effectiveness, automation, trips, fail start

Procedia PDF Downloads 76
1049 To Identify the Importance of Telemedicine in Diabetes and Its Impact on Hba1c

Authors: Sania Bashir

Abstract:

A promising approach to healthcare delivery, telemedicine makes use of communication technology to reach out to remote regions of the world, allowing for beneficial interactions between diabetic patients and healthcare professionals as well as the provision of affordable and easily accessible medical care. The emergence of contemporary care models, fueled by the pervasiveness of mobile devices, provides better information, offers low cost with the best possible outcomes, and is known as digital health. It involves the integration of collected data using software and apps, as well as low-cost, high-quality outcomes. The goal of this study is to assess how well telemedicine works for diabetic patients and how it impacts their HbA1c levels. A questionnaire-based survey of 300 diabetics included 150 patients in each of the groups receiving usual care and via telemedicine. A descriptive and observational study that lasted from September 2021 to May 2022 was conducted. HbA1c has been gathered for both categories every three months. A remote monitoring tool has been used to assess the efficacy of telemedicine and continuing therapy instead of the customary three monthly meetings like in-person consultations. The patients were (42.3) 18.3 years old on average. 128 men were outnumbered by 172 women (57.3% of the total). 200 patients (66.6%) have type 2 diabetes, compared to over 100 (33.3%) candidates for type 1. Despite the average baseline BMI being within normal ranges at 23.4 kg/m², the mean baseline HbA1c (9.45 1.20) indicates that glycemic treatment is not well-controlled at the time of registration. While patients who use telemedicine experienced a mean percentage change of 10.5, those who visit the clinic experienced a mean percentage change of 3.9. Changes in HbA1c are dependent on several factors, including improvements in BMI (61%) after 9 months of research and compliance with healthy lifestyle recommendations for diet and activity. More compliance was achieved by the telemedicine group. It is an undeniable reality that patient-physician communication is crucial for enhancing health outcomes and avoiding long-term issues. Telemedicine has shown its value in the management of diabetes and holds promise as a novel technique for improved clinical-patient communication in the twenty-first century.

Keywords: diabetes, digital health, mobile app, telemedicine

Procedia PDF Downloads 90
1048 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 33
1047 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field

Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot

Abstract:

The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.

Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management

Procedia PDF Downloads 132
1046 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence

Authors: Weber-Lewerenz Bianca

Abstract:

Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.

Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation

Procedia PDF Downloads 247
1045 Assessing the Survival Time of Hospitalized Patients in Eastern Ethiopia During 2019–2020 Using the Bayesian Approach: A Retrospective Cohort Study

Authors: Chalachew Gashu, Yoseph Kassa, Habtamu Geremew, Mengestie Mulugeta

Abstract:

Background and Aims: Severe acute malnutrition remains a significant health challenge, particularly in low‐ and middle‐income countries. The aim of this study was to determine the survival time of under‐five children with severe acute malnutrition. Methods: A retrospective cohort study was conducted at a hospital, focusing on under‐five children with severe acute malnutrition. The study included 322 inpatients admitted to the Chiro hospital in Chiro, Ethiopia, between September 2019 and August 2020, whose data was obtained from medical records. Survival functions were analyzed using Kaplan‒Meier plots and log‐rank tests. The survival time of severe acute malnutrition was further analyzed using the Cox proportional hazards model and Bayesian parametric survival models, employing integrated nested Laplace approximation methods. Results: Among the 322 patients, 118 (36.6%) died as a result of severe acute malnutrition. The estimated median survival time for inpatients was found to be 2 weeks. Model selection criteria favored the Bayesian Weibull accelerated failure time model, which demonstrated that age, body temperature, pulse rate, nasogastric (NG) tube usage, hypoglycemia, anemia, diarrhea, dehydration, malaria, and pneumonia significantly influenced the survival time of severe acute malnutrition. Conclusions: This study revealed that children below 24 months, those with altered body temperature and pulse rate, NG tube usage, hypoglycemia, and comorbidities such as anemia, diarrhea, dehydration, malaria, and pneumonia had a shorter survival time when affected by severe acute malnutrition under the age of five. To reduce the death rate of children under 5 years of age, it is necessary to design community management for acute malnutrition to ensure early detection and improve access to and coverage for children who are malnourished.

Keywords: Bayesian analysis, severe acute malnutrition, survival data analysis, survival time

Procedia PDF Downloads 47
1044 Design and Analysis for a 4-Stage Crash Energy Management System for Railway Vehicles

Authors: Ziwen Fang, Jianran Wang, Hongtao Liu, Weiguo Kong, Kefei Wang, Qi Luo, Haifeng Hong

Abstract:

A 4-stage crash energy management (CEM) system for subway rail vehicles used by Massachusetts Bay Transportation Authority (MBTA) in the USA is developed in this paper. The 4 stages of this new CEM system include 1) energy absorbing coupler (draft gear and shear bolts), 2) primary energy absorbers (aluminum honeycomb structured box), 3) secondary energy absorbers (crush tube), and 4) collision post and corner post. A sliding anti-climber and a fixed anti-climber are designed at the front of the vehicle cooperating with the 4-stage CEM to maximize the energy to be absorbed and minimize the damage to passengers and crews. In order to investigate the effectiveness of this CEM system, both finite element (FE) methods and crashworthiness test have been employed. The whole vehicle consists of 3 married pairs, i.e., six cars. In the FE approach, full-scale railway car models are developed and different collision cases such as a single moving car impacting a rigid wall, two moving cars into a rigid wall, two moving cars into two stationary cars, six moving cars into six stationary cars and so on are investigated. The FE analysis results show that the railway vehicle incorporating this CEM system has a superior crashworthiness performance. In the crashworthiness test, a simplified vehicle front end including the sliding anti-climber, the fixed anti-climber, the primary energy absorbers, the secondary energy absorber, the collision post and the corner post is built and impacted to a rigid wall. The same test model is also analyzed in the FE and the results such as crushing force, stress, and strain of critical components, acceleration and velocity curves are compared and studied. FE results show very good comparison to the test results.

Keywords: railway vehicle collision, crash energy management design, finite element method, crashworthiness test

Procedia PDF Downloads 402
1043 Developing Medical Leaders: A Realistic Evaluation Study for Improving Patient Safety and Maximising Medical Engagement

Authors: Lisa Fox, Jill Aylott

Abstract:

There is a global need to identify ways to engage doctors in non-clinical matters such as medical leadership, service improvement and health system transformation. Using the core principles of Realistic Evaluation (RE), this study examined what works, for doctors of different grades, specialities and experience in an acute NHS Hospital Trust in the UK. Realistic Evaluation is an alternative to more traditional cause and effect evaluation models and seeks to understand the interdependencies of Context, Mechanism and Outcome proposing that Context (C) + Mechanism (M) = Outcome (O). In this study, the context, mechanism and outcome were examined from within individual medical leaders to determine what enables levels of medical engagement in a specific improvement project to reduce hospital inpatient mortality. Five qualitative case studies were undertaken with consultants who had regularly completed mortality reviews over a six month period. The case studies involved semi-structured interviews to test the theory behind the drivers for medical engagement. The interviews were analysed using a theory-driven thematic analysis to identify CMO configurations to explain what works, for whom and in what circumstances. The findings showed that consultants with a longer length of service became more engaged if there were opportunities to be involved in the beginning of an improvement project, with more opportunities to affect the design. Those that are new to a consultant role were more engaged if they felt able to apply any learning directly into their own settings or if they could use it as an opportunity to understand more about the organisation they are working in. This study concludes that RE is a useful methodology for better understanding the complexities of motivation and consultant engagement in a trust wide service improvement project. The study showed that there should be differentiated and bespoke training programmes to maximise each individual doctor’s propensity for medical engagement. The RE identified that there are different ways to ensure that doctors have the right skills to feel confident in service improvement projects.

Keywords: realistic evaluation, medical leadership, medical engagement, patient safety, service improvement

Procedia PDF Downloads 216
1042 Contextual SenSe Model: Word Sense Disambiguation using Sense and Sense Value of Context Surrounding the Target

Authors: Vishal Raj, Noorhan Abbas

Abstract:

Ambiguity in NLP (Natural language processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential am-biguities. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a novel method to create an affinity matrix to calculate the affinity be-tween any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an al-gorithm to create the sense clusters of tokens using affinity matrix under hierar-chy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contex-tual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and chal-lenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.

Keywords: word sense disambiguation (wsd), contextual sense model (csm), most frequent sense (mfs), part of speech (pos), natural language processing (nlp), oov (out of vocabulary), lemma_pos (a token where lemma and pos of word are joined by underscore), information retrieval (ir), machine translation (mt)

Procedia PDF Downloads 107
1041 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia

Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono

Abstract:

Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.

Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length

Procedia PDF Downloads 214
1040 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 234
1039 A Dissipative Particle Dynamics Study of a Capsule in Microfluidic Intracellular Delivery System

Authors: Nishanthi N. S., Srikanth Vedantam

Abstract:

Intracellular delivery of materials has always proved to be a challenge in research and therapeutic applications. Usually, vector-based methods, such as liposomes and polymeric materials, and physical methods, such as electroporation and sonoporation have been used for introducing nucleic acids or proteins. Reliance on exogenous materials, toxicity, off-target effects was the short-comings of these methods. Microinjection was an alternative process which addressed the above drawbacks. However, its low throughput had hindered its adoption widely. Mechanical deformation of cells by squeezing them through constriction channel can cause the temporary development of pores that would facilitate non-targeted diffusion of materials. Advantages of this method include high efficiency in intracellular delivery, a wide choice of materials, improved viability and high throughput. This cell squeezing process can be studied deeper by employing simple models and efficient computational procedures. In our current work, we present a finite sized dissipative particle dynamics (FDPD) model to simulate the dynamics of the cell flowing through a constricted channel. The cell is modeled as a capsule with FDPD particles connected through a spring network to represent the membrane. The total energy of the capsule is associated with linear and radial springs in addition to constraint of the fixed area. By performing detailed simulations, we studied the strain on the membrane of the capsule for channels with varying constriction heights. The strain on the capsule membrane was found to be similar though the constriction heights vary. When strain on the membrane was correlated to the development of pores, we found higher porosity in capsule flowing in wider channel. This is due to localization of strain to a smaller region in the narrow constriction channel. But the residence time of the capsule increased as the channel constriction narrowed indicating that strain for an increased time will cause less cell viability.

Keywords: capsule, cell squeezing, dissipative particle dynamics, intracellular delivery, microfluidics, numerical simulations

Procedia PDF Downloads 140
1038 Rooibos Extract Antioxidants: In vitro Models to Assess Their Bioavailability

Authors: Ntokozo Dambuza, Maryna Van De Venter, Trevor Koekemoer

Abstract:

Oxidative stress contributes to the pathogenesis of many diseases and consequently antioxidant therapy has attracted much attention as a potential therapeutic strategy. Regardless of the quantities ingested, antioxidants need to reach the diseased tissues at concentrations sufficient to combat oxidative stress. Bioavailability is thus a defining criterion for the therapeutic efficacy of antioxidants. In addition, therapeutic antioxidants must possess biologically relevant characteristics which can target the specific molecular mechanisms responsible for disease related oxidative stress. While many chemical antioxidant assays are available to quantify antioxidant capacity, they relate poorly to the biological environment and provide no information as to the bioavailability. The present comparative study thus aims to characterise green and fermented rooibos extracts, well recognized for their exceptional antioxidant capacity, in terms of antioxidant bioavailability and efficacy in a disease relevant cellular setting. Chinese green tea antioxidant activity was also evaluated. Chemical antioxidant assays (FRAP, DPPH and ORAC) confirmed the potent antioxidant capacity of both green and fermented rooibos, with green rooibos possessing antioxidant activity superior to that of fermented rooibos and Chinese green tea. Bioavailability was assessed using the PAMPA assay and the results indicate that green and fermented rooibos have a permeation coefficient of 5.7 x 10-6 and 6.9 x 10-6 cm/s, respectively. Chinese green tea permeability coefficient was 8.5 x 10-6 cm/s. These values were comparable to those of rifampicin, which is known to have a high permeability across intestinal epithelium with a permeability coefficient of 5 x 10 -6 cm/s. To assess the antioxidant efficacy in a cellular context, U937 and red blood cells were pre-treated with rooibos and Chinese green tea extracts in the presence of a dye DCFH-DA and then exposed to oxidative stress. Green rooibos exhibited highest activity with an IC50 value of 29 μg/ml and 70 μg/ml, when U937 and red blood cells were exposed oxidative stress, respectively. Fermented rooibos and Chinese green tea had IC50 values of 61 μg/ml and 57 μg/ml for U937, respectively, and 221 μg/ml and 405 μg/ml for red blood cells, respectively. These results indicate that fermented and green rooibos extracts were able to permeate the U937 cells and red blood cell membrane and inhibited oxidation of DCFH-DA to a fluorescent DCF within the cells.

Keywords: rooibos, antioxidants, permeability, bioavailability

Procedia PDF Downloads 317
1037 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust

Authors: Sardar Khana, Zar Ali Khana

Abstract:

Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.

Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake

Procedia PDF Downloads 130
1036 Customer Segmentation Revisited: The Case of the E-Tailing Industry in Emerging Market

Authors: Sanjeev Prasher, T. Sai Vijay, Chandan Parsad, Abhishek Banerjee, Sahakari Nikhil Krishna, Subham Chatterjee

Abstract:

With rapid rise in internet retailing, the industry is set for a major implosion. Due to the little difference among competitors, companies find it difficult to segment and target the right shoppers. The objective of the study is to segment Indian online shoppers on the basis of the factors – website characteristics and shopping values. Together, these cover extrinsic and intrinsic factors that affect shoppers as they visit web retailers. Data were collected using questionnaire from 319 Indian online shoppers, and factor analysis was used to confirm the factors influencing the shoppers in their selection of web portals. Thereafter, cluster analysis was applied, and different segments of shoppers were identified. The relationship between income groups and online shoppers’ segments was tracked using correspondence analysis. Significant findings from the study include that web entertainment and informativeness together contribute more than fifty percent of the total influence on the web shoppers. Contrary to general perception that shoppers seek utilitarian leverages, the present study highlights the preference for fun, excitement, and entertainment during browsing of the website. Four segments namely Information Seekers, Utility Seekers, Value Seekers and Core Shoppers were identified and profiled. Value seekers emerged to be the most dominant segment with two-fifth of the respondents falling for hedonic as well as utilitarian shopping values. With overlap among the segments, utilitarian shopping value garnered prominence with more than fifty-eight percent of the total respondents. Moreover, a strong relation has been established between the income levels and the segments of Indian online shoppers. Web shoppers show different motives from being utility seekers to information seekers, core shoppers and finally value seekers as income levels increase. Companies can strategically use this information for target marketing and align their web portals accordingly. This study can further be used to develop models revolving around satisfaction, trust and customer loyalty.

Keywords: online shopping, shopping values, effectiveness of information content, web informativeness, web entertainment, information seekers, utility seekers, value seekers, core shoppers

Procedia PDF Downloads 195
1035 Computational Modelling of Epoxy-Graphene Composite Adhesive towards the Development of Cryosorption Pump

Authors: Ravi Verma

Abstract:

Cryosorption pump is the best solution to achieve clean, vibration free ultra-high vacuum. Furthermore, the operation of cryosorption pump is free from the influence of electric and magnetic fields. Due to these attributes, this pump is used in the space simulation chamber to create the ultra-high vacuum. The cryosorption pump comprises of three parts (a) panel which is cooled with the help of cryogen or cryocooler, (b) an adsorbent which is used to adsorb the gas molecules, (c) an epoxy which holds the adsorbent and the panel together thereby aiding in heat transfer from adsorbent to the panel. The performance of cryosorption pump depends on the temperature of the adsorbent and hence, on the thermal conductivity of the epoxy. Therefore we have made an attempt to increase the thermal conductivity of epoxy adhesive by mixing nano-sized graphene filler particles. The thermal conductivity of epoxy-graphene composite adhesive is measured with the help of indigenously developed experimental setup in the temperature range from 4.5 K to 7 K, which is generally the operating temperature range of cryosorption pump for efficiently pumping of hydrogen and helium gas. In this article, we have presented the experimental results of epoxy-graphene composite adhesive in the temperature range from 4.5 K to 7 K. We have also proposed an analytical heat conduction model to find the thermal conductivity of the composite. In this case, the filler particles, such as graphene, are randomly distributed in a base matrix of epoxy. The developed model considers the complete spatial random distribution of filler particles and this distribution is explained by Binomial distribution. The results obtained by the model have been compared with the experimental results as well as with the other established models. The developed model is able to predict the thermal conductivity in both isotropic regions as well as in anisotropic region over the required temperature range from 4.5 K to 7 K. Due to the non-empirical nature of the proposed model, it will be useful for the prediction of other properties of composite materials involving the filler in a base matrix. The present studies will aid in the understanding of low temperature heat transfer which in turn will be useful towards the development of high performance cryosorption pump.

Keywords: composite adhesive, computational modelling, cryosorption pump, thermal conductivity

Procedia PDF Downloads 89
1034 Capacities of Early Childhood Education Professionals for the Prevention of Social Exclusion of Children

Authors: Dejana Bouillet, Vlatka Domović

Abstract:

Both policymakers and researchers recognize that participating in early childhood education and care (ECEC) is useful for all children, especially for those who are exposed to the high risk of social exclusion. Social exclusion of children is understood as a multidimensional construct including economic, social, cultural, health, and other aspects of disadvantage and deprivation, which individually or combined can have an unfavorable effect on the current life and development of a child, as well as on the child’s development and on disadvantaged life chances in adult life. ECEC institutions should be able to promote educational approaches that portray developmental, cultural, language, and other diversity amongst children. However, little is known about the ways in which Croatian ECEC institutions recognize and respect the diversity of children and their families and how they respond to their educational needs. That is why this paper is dedicated to the analysis of the capacities of ECEC professionals to respond to the demands of educational needs of this very diverse group of children and their families. The results obtained in the frame of the project “Models of response to educational needs of children at risk of social exclusion in ECEC institutions,” funded by the Croatian Science Foundation, will be presented. The research methodology arises from explanations of educational processes and risks of social exclusion as a complex and heterogeneous phenomenon. The preliminary results of the qualitative data analysis of educational practices regarding capacities to identify and appropriately respond to the requirements of children at risk of social exclusion will be presented. The data have been collected by interviewing educational staff in 10 Croatian ECEC institutions (n = 10). The questions in the interviews were related to various aspects of inclusive institutional policy, culture, and practices. According to the analysis, it is possible to conclude that Croatian ECEC professionals are still faced with great challenges in the process of implementation of inclusive policies, culture, and practices. There are several baselines of this conclusion. The interviewed educational professionals are not familiar enough with the whole complexity and diversity of needs of children at risk of social exclusion, and the ECEC institutions do not have enough resources to provide all interventions that these children and their families need.

Keywords: children at risk of social exclusion, ECEC professionals, inclusive policies, culture and practices, quallitative analysis

Procedia PDF Downloads 114
1033 Worldbuilding as Critical Architectural Pedagogy

Authors: Jesse Rafeiro

Abstract:

This paper discusses worldbuilding as a pedagogical approach to the first-year architectural design studio. The studio ran for three consecutive terms between 2016-2018. Taking its departure from the fifty-five city narratives in Italo Calvino’s Invisible Cities, students collectively designed in a “nowhere” space where intersecting and diverging narratives could be played out. Along with Calvino, students navigated between three main exercises and their imposed limits to develop architectural insight at three scales simulating the considerations of architectural practice: detail, building, and city. The first exercise asked each student to design and model a ruin based on randomly assigned incongruent fragments. Each student was given one plan fragment and two section fragments from different Renaissance Treatises. The students were asked to translate these in alternating axonometric projection and model-making explorations. Although the fragments themselves were imposed, students were free to interpret how the drawings fit together by imagining new details and atypical placements. An undulating terrain model was introduced in the second exercise to ground the worldbuilding exercises. Here, students were required to negotiate with one another to design a city of ruins. Free to place their models anywhere on the site, the students were restricted by the negotiation of territories marked by other students and the requirement to provide thresholds, open spaces, and corridors. The third exercise introduced new life into the ruined city through a series of design interventions. Each student was assigned an atypical building program suggesting a place for an activity, human or nonhuman. The atypical nature of the programs challenged the triviality of functional planning through explorations in spatial narratives free from preconceived assumptions. By contesting, playing out, or dreaming responses to realities taught in other coursework, this third exercise actualized learnings that are too often self-contained in the silos of differing course agendas. As such, the studio fostered an initial worldbuilding space within which to sharpen sensibility and criticality for subsequent years of education.

Keywords: architectural pedagogy, critical pedagogy, Italo Calvino, worldbuilding

Procedia PDF Downloads 131
1032 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds

Authors: Zeina Merabi, Arij Dao

Abstract:

The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.

Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration

Procedia PDF Downloads 65
1031 Accessibility of Institutional Credit and Its Impact on Agricultural Output: A Case Study

Authors: Showkat Ahmad Bhat, M. S. Bhatt

Abstract:

The study evaluates the ex-post impact of institutional credit on agricultural output. It first examines the key factors that influence the accessibility of institutional credit by farm households. For quantitative analysis both program participant and non-participant respondents were drawn and cross-sectional survey data were collected from 412 households in Pulwama District of Jammu & Kashmir (India). Propensity Score Matching Method was employed to analyze the impact of the institutional credit on agricultural output. Results show that institutional credit has a positive and significant impact on the agricultural output measured in terms of farm income and crop productivity. To estimate the accessibility of credit, an examination of both demand side and supply side factors were carried out. The demand for credit was measured with respect to respondents who applied for credit. Supply side credit allocation measured in terms of the proportion of ‘credit amount’ farmers obtained. Logit and Two-limit Tobit Regression Models were used to investigate the determinants that influence the accessibility of formal credit for Demand for and supply of credit respectively. The estimated results suggested that the demand for credit is positively and significantly affected by the factors such as: age of the household head, formal education, membership, cash crop grown, farm size and saving account. All the variables were found significantly increasing the household’s likelihood to demand for and supply of credit from banks. However, the impact of these factors varies considerably across the credit markets. Factors which were found negatively and significantly influencing the accessibility of credit were: ‘square of the age’, household assets and rate of interest. The credit constraints analysis suggested that square of the age; household assets and rate of interest were the three most important factors that increased the probability of being constrained. The study finally discusses these results in detail and draws some recommendations.

Keywords: institutional credit, agriculture, propensity score matching logit model, Tobit model

Procedia PDF Downloads 312
1030 Decolonial Theorization of Epistemic Agency in Language Policy Management: Case of Plurinational Ecuador

Authors: Magdalena Madany-Saá

Abstract:

This paper compares the language management of two language policies in plurinational Ecuador: (1) mandatory English language teaching that uses Western standards of quality, and (2) indigenous educación intercultural bilingüe, which promotes ancestral knowledge and the indigenous languages of Ecuador. The data are from a comparative institutional ethnography conducted between 2018 and 2022 in English and Kichwa teacher preparation programs in an Ecuadorian teachers’ college. Specifically, the paper explores frameworks of knowledge promoted by different educational actors in both teacher education programs and the ways in which the Ecuadorian transformation towards a knowledge-based economy is intertwined with the country’s linguistic policies. Focusing on the specific role of language advocates and their discursive role in knowledge production, the paper elaborates on the notion of agency in Language Policy and Planning (LPP), referred to as epistemic agency. Specifically, the epistemic agency is conceptualized through the analysis of English language epistemic advocates who participate in empowering English language policies and endorse knowledge production in that language. By proposing an epistemic agency, this paper argues that in the context of knowledge-based societies, advocates are key in transferring the policies from the political to the epistemic realm – where decisions about what counts as legitimate knowledge are made. The study uses the decolonial option as its analytical framework for critiquing the hegemonic perpetuation of modernity and its knowledge-based models in Latin America derived from the colonial matrix of power. Through this theoretical approach, it is argued that if indigenous stakeholders are only viewed as political actors and not as knowledge producers, the hegemony of Global English will reinforce a knowledge-based society constructed upon Global North modernity. In the absence of strong epistemic advocates for indigenous language policies, powerful Global English advocates occupy such vacancies at the language management level, thus dominating the ecology of knowledge in a plurinational and plurilingual Ecuador.

Keywords: educación intercultural bilingüe, English language teaching, epistemic agency, language advocates, plurinationality

Procedia PDF Downloads 36
1029 Documenting the 15th Century Prints with RTI

Authors: Peter Fornaro, Lothar Schmitt

Abstract:

The Digital Humanities Lab and the Institute of Art History at the University of Basel are collaborating in the SNSF research project ‘Digital Materiality’. Its goal is to develop and enhance existing methods for the digital reproduction of cultural heritage objects in order to support art historical research. One part of the project focuses on the visualization of a small eye-catching group of early prints that are noteworthy for their subtle reliefs and glossy surfaces. Additionally, this group of objects – known as ‘paste prints’ – is characterized by its fragile state of preservation. Because of the brittle substances that were used for their production, most paste prints are heavily damaged and thus very hard to examine. These specific material properties make a photographic reproduction extremely difficult. To obtain better results we are working with Reflectance Transformation Imaging (RTI), a computational photographic method that is already used in archaeological and cultural heritage research. This technique allows documenting how three-dimensional surfaces respond to changing lighting situations. Our first results show that RTI can capture the material properties of paste prints and their current state of preservation more accurately than conventional photographs, although there are limitations with glossy surfaces because the mathematical models that are included in RTI are kept simple in order to keep the software robust and easy to use. To improve the method, we are currently developing tools for a more detailed analysis and simulation of the reflectance behavior. An enhanced analytical model for the representation and visualization of gloss will increase the significance of digital representations of cultural heritage objects. For collaborative efforts, we are working on a web-based viewer application for RTI images based on WebGL in order to make acquired data accessible to a broader international research community. At the ICDH Conference, we would like to present unpublished results of our work and discuss the implications of our concept for art history, computational photography and heritage science.

Keywords: art history, computational photography, paste prints, reflectance transformation imaging

Procedia PDF Downloads 275
1028 Investigating the Antimicrobial Activity of Essential Oil Derived from Pistacia atlantica Gum against Extensively Drug-Resistant Gram-Negative Acinetobacter baumannii

Authors: Zhala Ahmad, Zainab Lazim, Haider Hamzah

Abstract:

Bacterial resistance is a pressing global health issue, with multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) strains to pose a serious threat. In this context, researchers are investigating effective, safe, and affordable metabolites to combat these pathogens. This study focuses on gum essential oil (GEO) extracted from Pistacia atlantica and its activity and the mechanism of action against XDR Gram-negative Acinetobacter baumannii. GEO was extracted by hydrodistillation and analyzed using GC-MS. Eleven A. baumannii isolates were collected from the ward environment of Burn and Plastic Surgery Hospital in Al Sulaymaniyah City, Iraq. They were identified using the VITEK 2 system, 16S rRNA gene, and confirmed with the blaₒₓₐ₋₅₁ gene; A. baumannii ATCC 19606 was used as a reference strain. The isolates were identified as resistant to twelve different antibiotics spanning six distinct antibiotic classes while showing susceptibility to tetracycline and trimethoprim. Over 40 chemical constituents were detected in the gum's essential oils, with α-pinene being the most abundant. GEO was found to inhibit the growth of A. baumannii isolates; the minimum inhibitory concentration (MIC) of GEO was 2.5 µl/ml. GEO induced protein leakage, phosphate, and potassium ion efflux, distorted cell morphology, and cell death in the tested bacteria. GEO exhibited bacterial clearance and anti-adhesion activity using Band-Aids. This study's findings suggest that GEO could be used as a potential alternative treatment for infectious diseases caused by XRD pathogens, shedding further light on the importance of GEO in biomedical applications. Future studies must focus on generating clinically feasible sources of GEO for testing in small animal models before proceeding to human trials, ensuring safe and effective translation from the laboratory to the clinic.

Keywords: antibiotic resistance, Acinetobacter baumannii, essential oils, Pistacia atlantica, alpha-pinene

Procedia PDF Downloads 71
1027 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 319
1026 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: curing, epoxy insulation, numerical simulations, recycling

Procedia PDF Downloads 278
1025 Occupant Behaviour Change in Post-Pandemic Australia

Authors: Yan Zhang, Felix Kin Peng Hui, Colin Duffield, Caroline X. Gao

Abstract:

In post-pandemic Australia, it is unclear how building occupant have changed their behaviour in their interaction with buildings and other occupants. This research provides information on occupant behaviour change compared to before the pandemic and examines the predictors for those behaviour changes. This paper analyses survey responses from 2298 building occupants in Melbourne to investigate occupant behaviour change and determinants for those changes one year after the pandemic in Australia. The behaviour changes were grouped into three categories based on respiratory infection routes: (1) fomite: hand-shaking and hand hygiene behaviours; (2) airborne: individual interventions to indoor air quality such as face masking, window openings for occupants working in naturally ventilated space; (3) droplets: social distancing, reducing working hours in the workplace. The survey shows that the pandemic has significantly changed occupants' behaviour in all three categories compared to before the pandemic. The changes are significantly associated with occupants' perceived indoor air quality, indoor environmental cleanliness, and occupant density, demonstrating their growing awareness of respiratory infection risk that influences their health behaviours. The two most significant factors identified from multivariate regressions to drive the behaviour change include occupant risk perception of respiratory infections at the workplace and their observed co-worker's behaviour change. Based on the survey results, the paper provides adjusted estimates for related occupant behaviour parameters. The study also discusses alternatives for managing window operations in naturally ventilated buildings to improve occupant satisfaction. This paper could help Building Managers, and Building Designers understand occupant behaviour change to improve building operations and new building design to enhance occupant experience. Also, building energy modellers and risk assessors may use the findings to adjust occupant behaviour-related parameters to improve the models. The findings contribute to the knowledge of Human-Building Interaction.

Keywords: human-building interaction, risk perception, occupant behaviour, IAQ, COVID-19

Procedia PDF Downloads 69
1024 Synthesis and Characterization of PH Sensitive Hydrogel and Its Application in Controlled Drug Release of Tramadol

Authors: Naima Bouslah, Leila Bounabi, Farid Ouazib, Nabila Haddadine

Abstract:

Conventional release dosage forms are known to provide an immediate release of the drug. Controlling the rate of drug release from polymeric matrices is very important for a number of applications, particularly in the pharmaceutical area. Hydrogels are polymers in three-dimensional network arrangement, which can absorb and retain large amounts of water without dissolution. They have been frequently used to develop controlled released formulations for oral administration because they can extend the duration of drug release and thus reduce dose to be administrated improving patient compliance. Tramadol is an opioid pain medication used to treat moderate to moderately severe pain. When taken as an immediate-release oral formulation, the onset of pain relief usually occurs within about an hour. In the present work, we synthesized pH-responsive hydrogels of (hydroxyl ethyl methacrylate-co-acrylic acid), (HEMA-AA) for control drug delivery of tramadol in the gastro-intestinal tractus. The hydrogels with different acrylic acid content, were synthesized by free radical polymerization and characterized by FTIR spectroscopy, X ray diffraction analysis (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). FTIR spectroscopy has shown specific hydrogen bonding interactions between the carbonyl groups of the hydrogels and hydroxyl groups of tramadol. Both the XRD and DSC studies revealed that the introduction of tramadol in the hydrogel network induced the amorphization of the drug. The swelling behaviour, absorptive kinetics and the release kinetics of tramadol in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 7.4) were also investigated. The hydrogels exhibited pH-responsive behavior in the swelling study. The (HEMA-AA) hydrogel swelling was much higher in pH =7.4 medium. The tramadol release was significantly increased when pH of the medium was changed from simulated gastric fluid (pH 1.2) to simulated intestinal fluid (pH 7.4). Using suitable mathematical models, the apparent diffusional coefficients and the corresponding kinetic parameters have been calculated.

Keywords: biopolymres, drug delivery, hydrogels, tramadol

Procedia PDF Downloads 357