Search results for: tracking systems
3011 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach
Authors: Shital Suresh Borse, Vijayalaxmi Kadroli
Abstract:
E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN
Procedia PDF Downloads 1133010 Gallbladder Amyloidosis Causing Gangrenous Cholecystitis: A Case Report
Authors: Christopher Leung, Guillermo Becerril-Martinez
Abstract:
Amyloidosis is a rare systemic disease where abnormal proteins invade various organs and impede their function. Occasionally, they can manifest in a solidary organ such as the heart, lung, and nervous systems; rarely do they manifest in the gallbladder. Diagnosis often requires biopsy of the affected area and histopathology shows deposition of abnormally folded globular proteins called amyloid proteins. This case presents a 69-year-old male with a 3-month history of RUQ pain, diarrhea and non-specific symptoms of tiredness, etc. On imaging, both his US and CT abdomen showed gallbladder wall thickening and pericholecystic fluid, which may represent acute cholecystitis with hypodense lesions around the gallbladder, possibly representing liver abscesses. Given his symptoms of abdominal pain and imaging findings, this gentleman eventually had a laparoscopic cholecystectomy showing a gangrenous gallbladder with a mass on the liver bed. On histopathology, it showed amorphous hyaline eosinophilic material, which Congo-stained confirmed amyloidosis. Amyloidosis explained his non-specific symptoms, he avoided further biopsy, and he was commenced immediately on Lenalidomide. Involvement of the gallbladder is extremely rare, with less than 30 cases around the world. Half of the cases are reported as primary amyloidosis. This case adds to the current literature regarding primary gallbladder amyloidosis. Importantly, this case highlights how laparoscopic cholecystectomy can help with the diagnosis of gallbladder amyloidosis.Keywords: amyloidosis, cholecystitis, gangrenous cholecystitis, gallbladder, systemic amyloidosis
Procedia PDF Downloads 2073009 Vitamin D Deficiency and Insufficiency in Postmenopausal Women with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk, Oksana Ivanyk
Abstract:
Deficiency and insufficiency of Vitamin D is a pandemic of the 21st century. Obesity patients have a lower level of vitamin D, but the literature data are contradictory. The purpose of this study is to investigate deficiency and insufficiency vitamin D in postmenopausal women with obesity. We examined 1007 women aged 50-89 years. Mean age was 65.74±8.61 years; mean height was 1.61±0.07 m; mean weight was 70.65±13.50 kg; mean body mass index was 27.27±4.86 kg/m2, and mean 25(OH) D levels in serum was 26.00±12.00 nmol/l. The women were divided into the following six groups depending on body mass index: I group – 338 women with normal body weight, II group – 16 women with insufficient body weight, III group – 382 women with excessive body weight, IV group – 199 women with obesity of class I, V group – 60 women with obesity of class II, and VI group – 12 women with obesity of class III. Level of 25(OH)D in serum was measured by means of an electrochemiluminescent method - Elecsys 2010 analyzer (Roche Diagnostics, Germany) and cobas test-systems. 34.4% of the examined women have deficiency of vitamin D and 31.4% insufficiency. Women with obesity of class I (23.60±10.24 ng/ml) and obese of class II (22.38±10.34 ng/ml) had significantly lower levels of 25 (OH) D compared to women with normal body weight (28.24±12.99 ng/ml), p=0.00003. In women with obesity, BMI significantly influences vitamin D level, and this influence does not depend on the season.Keywords: obesity, body mass index, vitamin D deficiency, vitamin D insufficiency, postmenopausal women, age
Procedia PDF Downloads 1813008 Compact Optical Sensors for Harsh Environments
Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi
Abstract:
Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.Keywords: optical MEMS, temperature sensor, accelerometer, remote sensing, harsh environment
Procedia PDF Downloads 3673007 Impact of Microbial Pathogen on Aquatic Environment
Authors: Muhammad Younis Laghari
Abstract:
Global climate change has had many effects on the aquatic environment, and the major issue is pollution. Along with the other pollutants, there are a significant number of human microbial pathogens that pollute the water bodies. Another concern about the water quality is that the major aquatic resources bring water-borne pathogens and other related diseases. These resources include industrial effluent, untreated domestic sewage, acid mine drainage, etc. However, these water discharges through various routes may have treatment to eliminate the pathogenic microbes. Therefore, it is essential to control the leakage from sewer systems, residential discharge, and agricultural run-off. These pathogenic microbes have been implicated in the lives of water health (fishes), which is harmful and causes diseases. Mostly, the mortality of aquatic species results because of catastrophic floods due to poor water waste treatment and sanitation that introduce pathogenic bacteria into rivers. Pathogens survive in rivers and remain poorly known but essential to control water-borne diseases. The presence of bacteria in watercourses is diverse and constitutes a complicated subject. Many species are autochthonous and play an important role in aquatic ecosystems, while many others arise from untreated or poorly treated waste from industrial and domestic sources. Further, more investigation is required to know the induction of water-borne pathogens in various water resources and the potential impacts of water resource development on pathogen contamination.Keywords: microbial pathogens, contamination, water resources, river water body
Procedia PDF Downloads 763006 MHD Chemically Reacting Viscous Fluid Flow towards a Vertical Surface with Slip and Convective Boundary Conditions
Authors: Ibrahim Yakubu Seini, Oluwole Daniel Makinde
Abstract:
MHD chemically reacting viscous fluid flow towards a vertical surface with slip and convective boundary conditions has been conducted. The temperature and the chemical species concentration of the surface and the velocity of the external flow are assumed to vary linearly with the distance from the vertical surface. The governing differential equations are modeled and transformed into systems of ordinary differential equations, which are then solved numerically by a shooting method. The effects of various parameters on the heat and mass transfer characteristics are discussed. Graphical results are presented for the velocity, temperature, and concentration profiles whilst the skin-friction coefficient and the rate of heat and mass transfers near the surface are presented in tables and discussed. The results revealed that increasing the strength of the magnetic field increases the skin-friction coefficient and the rate of heat and mass transfers toward the surface. The velocity profiles are increased towards the surface due to the presence of the Lorenz force, which attracts the fluid particles near the surface. The rate of chemical reaction is seen to decrease the concentration boundary layer near the surface due to the destructive chemical reaction occurring near the surface.Keywords: boundary layer, surface slip, MHD flow, chemical reaction, heat transfer, mass transfer
Procedia PDF Downloads 5393005 Dynamic Compensation for Environmental Temperature Variation in the Coolant Refrigeration Cycle as a Means of Increasing Machine-Tool Precision
Authors: Robbie C. Murchison, Ibrahim Küçükdemiral, Andrew Cowell
Abstract:
Thermal effects are the largest source of dimensional error in precision machining, and a major proportion is caused by ambient temperature variation. The use of coolant is a primary means of mitigating these effects, but there has been limited work on coolant temperature control. This research critically explored whether CNC-machine coolant refrigeration systems adapted to actively compensate for ambient temperature variation could increase machining accuracy. Accuracy data were collected from operators’ checklists for a CNC 5-axis mill and statistically reduced to bias and precision metrics for observations of one day over a sample period of 27 days. Temperature data were collected using three USB dataloggers in ambient air, the chiller inflow, and the chiller outflow. The accuracy and temperature data were analysed using Pearson correlation, then the thermodynamics of the system were described using system identification with MATLAB. It was found that 75% of thermal error is reflected in the hot coolant temperature but that this is negligibly dependent on ambient temperature. The effect of the coolant refrigeration process on hot coolant outflow temperature was also found to be negligible. Therefore, the evidence indicated that it would not be beneficial to adapt coolant chillers to compensate for ambient temperature variation. However, it is concluded that hot coolant outflow temperature is a robust and accessible source of thermal error data which could be used for prevention strategy evaluation or as the basis of other thermal error strategies.Keywords: CNC manufacturing, machine-tool, precision machining, thermal error
Procedia PDF Downloads 893004 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 263003 Energy Conservation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
Energy conservation is one of the major concerns in the modern high tech era due to the limited amount of energy resources and the increasing cost of energy. Predicting an efficient use of energy in thermal systems like heat exchangers can only be achieved if the second law of thermodynamics is accounted for. The performance of heat exchangers can be substantially improved by many passive heat transfer augmentation techniques. These letters permit to improve heat transfer rate and to increase exchange surface, but on the other side, they also increase the friction factor associated with the flow. This raises the question of how to employ these passive techniques in order to minimize the useful energy. The objective of this present study is to use a porous substrate attached to the walls as a passive enhancement technique in heat exchangers and to find the compromise between the hydrodynamic and thermal performances under turbulent flow conditions, by using a second law approach. A modified k- ε model is used to simulating the turbulent flow in the porous medium and the turbulent shear flow is accounted for in the entropy generation equation. A numerical modeling, based on the finite volume method is employed for discretizing the governing equations. Effects of several parameters are investigated such as the porous substrate properties and the flow conditions. Results show that under certain conditions of the porous layer thickness, its permeability, and its effective thermal conductivity the minimum rate of entropy production is obtained.Keywords: second law approach, annular heat exchanger, turbulent flow, porous medium, modified model, numerical analysis
Procedia PDF Downloads 2883002 3D Object Detection for Autonomous Driving: A Comprehensive Review
Authors: Ahmed Soliman Nagiub, Mahmoud Fayez, Heba Khaled, Said Ghoniemy
Abstract:
Accurate perception is a critical component in enabling autonomous vehicles to understand their driving environment. The acquisition of 3D information about objects, including their location and pose, is essential for achieving this understanding. This survey paper presents a comprehensive review of 3D object detection techniques specifically tailored for autonomous vehicles. The survey begins with an introduction to 3D object detection, elucidating the significance of the third dimension in perceiving the driving environment. It explores the types of sensors utilized in this context and the corresponding data extracted from these sensors. Additionally, the survey investigates the different types of datasets employed, including their formats, sizes, and provides a comparative analysis. Furthermore, the paper categorizes and thoroughly examines the perception methods employed for 3D object detection based on the diverse range of sensors utilized. Each method is evaluated based on its effectiveness in accurately detecting objects in a three-dimensional space. Additionally, the evaluation metrics used to assess the performance of these methods are discussed. By offering a comprehensive overview of 3D object detection techniques for autonomous vehicles, this survey aims to advance the field of perception systems. It serves as a valuable resource for researchers and practitioners, providing insights into the techniques, sensors, and evaluation metrics employed in 3D object detection for autonomous vehicles.Keywords: computer vision, 3D object detection, autonomous vehicles, deep learning
Procedia PDF Downloads 623001 Evaluation of Real Time PCR Methods for Food Safety
Authors: Ergun Sakalar, Kubra Bilgic
Abstract:
In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes.Keywords: fluorescent dye, food safety, molecular probes, nucleic acid analogues
Procedia PDF Downloads 2563000 Reducing Hazardous Materials Releases from Railroad Freights through Dynamic Trip Plan Policy
Authors: Omar A. Abuobidalla, Mingyuan Chen, Satyaveer S. Chauhan
Abstract:
Railroad transportation of hazardous materials freights is important to the North America economics that supports the national’s supply chain. This paper introduces various extensions of the dynamic hazardous materials trip plan problems. The problem captures most of the operational features of a real-world railroad transportations systems that dynamically initiates a set of blocks and assigns each shipment to a single block path or multiple block paths. The dynamic hazardous materials trip plan policies have distinguishing features that are integrating the blocking plan, and the block activation decisions. We also present a non-linear mixed integer programming formulation for each variant and present managerial insights based on a hypothetical railroad network. The computation results reveal that the dynamic car scheduling policies are not only able to take advantage of the capacity of the network but also capable of diminishing the population, and environment risks by rerouting the active blocks along the least risky train services without sacrificing the cost advantage of the railroad. The empirical results of this research illustrate that the issue of integrating the blocking plan, and the train makeup of the hazardous materials freights must receive closer attentions.Keywords: dynamic car scheduling, planning and scheduling hazardous materials freights, airborne hazardous materials, gaussian plume model, integrated blocking and routing plans, box model
Procedia PDF Downloads 2052999 The Impact of Institutional and Organizational Change on Social Housing Organizations and Their Stakeholders
Authors: Farnoosh Faal
Abstract:
Institutional and organizational change in social housing organizations can have a significant impact on both the organizations themselves and their stakeholders. This paper provides an overview of the impact of institutional and organizational change on social housing organizations and their stakeholders, including tenants, employees, and other community members. The paper examines the different types of institutional and organizational change that can occur in social housing organizations, such as changes in management structure, funding models, and service delivery methods. It also explores the potential benefits and drawbacks of these changes, including changes in efficiency, service quality, and tenant satisfaction. The paper further discusses the impact of institutional and organizational change on social housing organization stakeholders, including the effects on employee morale, tenant engagement, and community relationships. The paper highlights the importance of effective stakeholder engagement and communication in ensuring a smooth transition to new organizational models and systems. Finally, the paper discusses the challenges and opportunities presented by institutional and organizational change in social housing organizations and provides recommendations for organizations looking to navigate these changes successfully. These recommendations include prioritizing stakeholder engagement, investing in staff training and development, and maintaining a focus on the needs and priorities of tenants and communities. Overall, this paper emphasizes the importance of considering the impact of institutional and organizational change on social housing organizations and their stakeholders and highlights strategies for managing these changes in a way that maximizes benefits and minimizes negative impacts.Keywords: social housing organizations, stakeholder engagement, institutional change, challenges, opportunities
Procedia PDF Downloads 862998 Classification of Barley Varieties by Artificial Neural Networks
Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran
Abstract:
In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.Keywords: physical properties, artificial neural networks, barley, classification
Procedia PDF Downloads 1782997 IOT Based Process Model for Heart Monitoring Process
Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed
Abstract:
Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.Keywords: IoT, process model, remote patient monitoring system, smart watch
Procedia PDF Downloads 3332996 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues
Authors: Amirhossein Chambari
Abstract:
This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I
Procedia PDF Downloads 5832995 The Arts in Medicine and Health: A Necessity for Evidence-Based Health Systems
Authors: Alan S. Weber
Abstract:
This contribution reviews the current biomedical and qualitative arts research on arts-in-health interventions to improve both individual and population health outcomes. Arts therapies–for example, music therapy with roots in Aristoxenus’s Ἁρμονικὰ στοιχεῖα and the Pythagorean sect–have long been employed in therapeutic contexts. However, the 20th century witnessed the increasing use of the visual and plastic arts (drawing, painting, sculpting), performing arts (drama and dance), and other expressive arts modalities into occupational therapy, well-being medicine, and psychological and psychiatric counselling, diagnosis, and treatment. A significant body of peer-reviewed evidence in the medical and neurological sciences on the role of arts-in-health has developed, and specifically, research on music and art therapy has led to their inclusion within the current biomedical paradigm of evidence-based practice. The arts cannot only aid in public and population health promotion (promoting healthy behaviors and lifestyles, preventing disease onset) but also in addressing psychological issues (regulation of emotion; stress, anxiety, and depression reduction), behavioural issues (basic life skills, coping), and physiological response (immune system function, hormonal regulation, homeostatis). Working as a cross-disciplinary researcher in the arts in an American medical college, the author has developed several successful arts-in-health programs at the national and international level.Keywords: arts-in-health, evidence based medicine, arts for health, expressive arts therapies
Procedia PDF Downloads 702994 Reversibility of Photosynthetic Activity and Pigment-protein Complexes Expression During Seed Development of Soybean and Black Soybean
Authors: Tzan-Chain Lee
Abstract:
Seeds are non-leaves green tissues. Photosynthesis begins with light absorption by chlorophyll and then the energy transfer between two pigment-protein complexes (PPC). Most studies of photosynthesis and PPC expression were focused on leaves; however, during seeds’ development were rare. Developed seeds from beginning pod (stage R3) to dried seed (stage R8), and the dried seed after sowing for 1-4 day, were analyzed for their chlorophyll contents. Thornber and MARS gel systems analysis compositions of PPC. Chlorophyll fluorescence was used to detect maximal photosynthetic efficiency (Fv/Fm). During soybean and black soybean seeds development (stages R3-R6), Fv/Fm up to 0.8, and then down-regulated after full seed (stage R7). In dried seed (stage R8), the two plant seeds lost photosynthetic activity (Fv/Fm=0), but chlorophyll degradation only occurred in soybean after full seed. After seeds sowing for 4 days, chlorophyll drastically increased in soybean seeds, and Fv/Fm recovered to 0.8 in the two seeds. In PPC, the two soybean seeds contained all PPC during seeds development (stages R3-R6), including CPI, CPII, A1, AB1, AB2, and AB3. However, many proteins A1, AB1, AB2, and CPI were totally missing in the two dried seeds (stage R8). The deficiency of these proteins in dried seeds might be caused by the incomplete photosynthetic activity. After seeds germination and seedling exposed to light for 4 days, all PPC were recovered, suggesting that completed PPC took place in the two soybean seeds. This study showed the reversibility of photosynthetic activity and pigment-protein complexes during soybean and black soybean seeds development.Keywords: light-harvesting complex, pigment–protein complexes, soybean cotyledon, grana development
Procedia PDF Downloads 1492993 Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors
Authors: Sheng Huang, Xin Zhao, Xiaofeng Gao, Tao Zhou, Shijin Dai, Youcai Zhao
Abstract:
Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems.Keywords: adsorption mechanism, industrial construction waste, metals, pesticide, runoff
Procedia PDF Downloads 4672992 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation
Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo
Abstract:
This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology
Procedia PDF Downloads 762991 Framework for Decision Support Tool for Quality Control and Management in Botswana Manufacturing Companies
Authors: Mogale Sabone, Thabiso Ntlole
Abstract:
The pressure from globalization has made manufacturing organizations to move towards three major competitive arenas: quality, cost, and responsiveness. Quality is a universal value and has become a global issue. In order to survive and be able to provide customers with good products, manufacturing organizations’ supporting systems, tools, and structures it uses must grow or evolve. The majority of quality management concepts and strategies that are practiced recently are aimed at detecting and correcting problems which already exist and serve to limit losses. In agile manufacturing environment there is no room for defect and error so it needs a quality management which is proactively directed at problem prevention. This proactive quality management avoids losses by focusing on failure prevention, virtual elimination of the possibility of premature failure, mistake-proofing, and assuring consistently high quality in the definition and design of creation processes. To achieve this, a decision support tool for quality control and management is suggested. Current decision support tools/methods used by most manufacturing companies in Botswana for quality management and control are not integrated, for example they are not consistent since some tests results data is recorded manually only whilst others are recorded electronically. It is only a set of procedures not a tool. These procedures cannot offer interactive decision support. This point brings to light the aim of this research which is to develop a framework which will help manufacturing companies in Botswana build a decision support tool for quality control and management.Keywords: decision support tool, manufacturing, quality control, quality management
Procedia PDF Downloads 5662990 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 2522989 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances (µEDM)
Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann
Abstract:
The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, the initial gap, has been studied. This analysis helps to improve the machining performances, such: the workpiece surface condition and the lateral crater's gap.Keywords: craters, electrical discharges, micro-electrical discharge machining (µEDM), microsystems
Procedia PDF Downloads 962988 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition
Authors: D. Geringswald, B. Hintze
Abstract:
The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.Keywords: ALD, high aspect ratio, PE-MOCVD, TiN
Procedia PDF Downloads 3002987 Development and Characterization of Synthetic Non-Woven for Sound Absorption
Authors: P. Sam Vimal Rajkumar, K. Priyanga
Abstract:
Acoustics is the scientific study of sound which includes the effect of reflection, refraction, absorption, diffraction and interference. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles of the medium are temporarily displaced in a direction parallel to energy transport and then return to their original position. The vibration in a medium produces alternating waves of relatively dense and sparse particles –compression and rarefaction respectively. The resultant variation to normal ambient pressure is translated by the ear and perceived as sound. Today much importance is given to the acoustical environment. The noise sources are increased day by day and annoying level is strongly violated in different locations by traffic, sound systems, and industries. There is simple evidence showing that the high noise levels cause sleep disturbance, hearing loss, decrease in productivity, learning disability, lower scholastic performance and increase in stress related hormones and blood pressure. Therefore, achieving a pleasing and noise free environment is one of the endeavours of many a research groups. This can be obtained by using various techniques. One such technique is by using suitable materials with good sound absorbing properties. The conventionally used materials that possess sound absorbing properties are rock wool or glass wool. In this work, an attempt is made to use synthetic material in both fibrous and sheet form and use it for manufacturing of non-woven for sound absorption.Keywords: acoustics, fibre, non-woven, noise, sound absorption properties, sound absorption coefficient
Procedia PDF Downloads 3012986 Legal Feminism, Modernity and Their Impact on Some African Countries
Authors: Umulisa Linda, Andy Cons Matata
Abstract:
The origin of legal feminism can be attributed to an attempt to provide a safe space for women such as voting, parental, and inheritance rights, among others. It was also a rebellion against male supremacy. However, with the development of technology and especially in the era of the internet, it appears that both legal feminism and the modernism are losing their luster. While these movements had their origin either in the United States of America or western Europe, their impacts have been felt as far as Africa, Asia, and Latin America. In Africa, different countries have different levels of penetration of these movements. This study, therefore, had its focus on how legal feminism and modernism have influenced legal developments in Kenya and Rwanda. The study adopted a qualitative approach with the respondents being asked about their feelings and perceptions on how the two movements had affected legal developments in their countries. In order to gauge the opinion of different categories of people such as the youth, middle-aged and the elderly people as well as being gender-sensitive, the study adopted a purpose method of sampling. The questionnaires and the focus group discussions were employed as the main tools for data gathering. From the questionnaires, the focus group discussions, and the data analysis that followed, the study concluded that both legal feminism and modernity had penetrated the legal systems of both Kenya and Rwanda so deeply. The study further found that the proponents of the two movements were mostly urban based and educated women. The men were generally opposed to the movements.Keywords: legal development, legal feminsim, modernism, voting, parental and inheritance rights
Procedia PDF Downloads 1432985 Integration from Laboratory to Industrialization for Hybrid Printed Electronics
Authors: Ahmed Moulay, Mariia Zhuldybina, Mirko Torres, Mike Rozel, Ngoc Duc Trinh, Chloé Bois
Abstract:
Hybrid printed electronics technology (HPE) provides innovative opportunities to enhance conventional electronics applications, which are often based on printed circuit boards (PCB). By combining the best of both performance from conventional electronic components and the flexibility from printed circuits makes it possible to manufacture HPE at high volumes using roll-to-roll printing processes. However, several challenges must be overcome in order to accurately integrate an electronic component on a printed circuit. In this presentation, we will demonstrate the integration process of electronic components from the lab scale to the industrialization. Both the printing quality and the integration technique must be studied to define the optimal conditions. To cover the parameters that influence the print quality of the printed circuit, different printing processes, flexible substrates, and conductive inks will be used to determine the optimized printing process/ink/substrate system. After the systems is selected, an electronic component of 2.5 mm2 chip size will be integrated to validate the functionality of the printed, electronic circuit. Critical information such as the conductive adhesive, the curing conditions, and the chip encapsulation will be determined. Thanks to these preliminary results, we are able to demonstrate the chip integration on a printed circuit using industrial equipment, showing the potential of industrialization, compatible using roll-to-roll printing and integrating processes.Keywords: flat bed screen-printing, hybrid printed electronics, integration, large-scale production, roll-to-roll printing, rotary screen printing
Procedia PDF Downloads 1772984 Upward Millennium: Enterprise Resource Planning (ERP) Development and Implementation in Pakistani Organizations
Authors: Sara Aziz, Madiha Arooj, Hira Rizwani, Wasim Irshad
Abstract:
Enterprise Resource Planning (ER) as component of Information Resource System has turned up as one of the most demanding software in market for the new millennium. ERP system automates the core activities of any organization such as finance, manufacturing and supply chain management, human resource etc. to generate an access to the information in real time environment. Despite this fact many of the organizations globally particularly in developing country Pakistan are unaware and avoid adopting it. The development and implementation of ERP system is a complex and challenging process. This research was aimed to explore the benefits and coping strategies (with reference to end user reaction) of organizations those have implemented ERP. The problems addressed in this study focused the challenges and key success factors regarding implementing ERP Pakistani Organizations. Secondly, it has explored the stumbling blocks and business integration of those organizations that are not implementing ERP. The public and corporate sector organizations in Pakistan were selected to collect the data. The research finding shows that the organizational culture, openness towards adoption and learning, deployment and development, top management commitment and change systems, business processes and compatibility and user acceptance and reaction are contributing factors for successful implementation and development of ERP system. This research is thus an addition to enhance knowledge and understanding of implementation of ERP system in Pakistan.Keywords: ERP system, user acceptance and involvement, change management, organizational culture
Procedia PDF Downloads 2822983 COVID-19: The Dark Side of an Unprecedented Social Isolation in the Elderly
Authors: L. Paulino Ferreira, M. Gomes Neto, M. Duarte, S. Serra
Abstract:
Objectives: COVID-19 pandemic has caused older adults to experience a degree of social isolation and loneliness that is unprecedented. Our aim is to review state of the art regarding the consequences of social isolation due to COVID-19 in elderly people. Methods: The authors conducted a search on Medscape and PubMed with the keywords mentioned below, and the most relevant articles were selected. Results: Social isolation leads many elderlies to experience loneliness, anxiety, depression, alcohol abuse, and feelings of abandonment with a perception of being a burden on society. Thus, social isolation has increased the risk for suicide in older people. It is also noteworthy that the exacerbation of psychiatric disorders (such as depression, anxiety, and post-traumatic stress disorder) without correct treatment and follow-up also increases suicide risk. Loneliness is also associated with accelerated cognitive deterioration and dementia. Besides that, during social isolation, it could be more difficult for older people to get medication as well as proper health care. It is also noticed an increase in the risk of falls, poor nutrition, and lack of exercise. All this contributes to weakening elderlies’ immune systems leading to a higher risk of developing infections, cardiovascular events, and cancer, increasing hospitalization and morbimortality. Conclusion: Social isolation in the elderly has a significant impact on physical and mental health, as well as morbimortality and hospitalizations due to non-COVID causes. Nevertheless, further studies will be needed to assess the real dimension of the effects of social isolation due to COVID-19.Keywords: social isolation, COVID-19, elderly, mental health
Procedia PDF Downloads 942982 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence
Procedia PDF Downloads 119