Search results for: Oka Aryawan I. Gede Made
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7277

Search results for: Oka Aryawan I. Gede Made

407 Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density

Authors: Mohammed Makha, Jakob Heier, Frank Nüesch, Roland Hany

Abstract:

Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions.

Keywords: organic photovoltaics, ternary phase diagram, ternary organic solar cells, transparent solar cell, lamination

Procedia PDF Downloads 263
406 How Whatsappization of the Chatbot Affects User Satisfaction, Trust, and Acceptance in a Drive-Sharing Task

Authors: Nirit Gavish, Rotem Halutz, Liad Neta

Abstract:

Nowadays, chatbots are gaining more and more attention due to the advent of large language models. One of the important considerations in chatbot design is how to create an interface to achieve high user satisfaction, trust, and acceptance. Since WhatsApp conversations sometimes substitute for face-to-face communication, we studied whether WhatsAppization of the chatbot -making the conversation resemble a WhatsApp conversation more- will improve user satisfaction, trust, and acceptance, or whether the opposite will occur due to the Uncanny Valley (UV) effect. The task was a drive-sharing task, in which participants communicated with a textual chatbot via WhatsApp and could decide whether to participate in a ride to college with a driver suggested by the chatbot. WhatsAppization of the chatbot was done in two ways: By a dialog-style conversation (Dialog versus No Dialog), and by adding WhatsApp indicators – “Last Seen”, “Connected”, “Read Receipts”, and “Typing…” (Indicators versus No Indicators). Our 120 participants were randomly assigned to one of the four 2 by 2 design groups, with 30 participants in each. They interacted with the WhatsApp chatbot and then filled out a questionnaire. The results demonstrated that, as expected from the manipulation, the interaction with the chatbot was longer for the dialog condition compared to the no dialog. This extra interaction, however, did not lead to higher acceptance -quite the opposite, since participants in the dialog condition were less willing to implement the decision made at the end of the conversation with the chatbot and continue the interaction with the driver they chose. The results are even more striking when considering the Indicators condition. Both for the satisfaction measures and the trust measures, participants’ ratings were lower in the Indicators condition compared to the No Indicators. Participants in the Indicators condition felt that the ride search process was harder to operate, and slower (even though the actual interaction time was similar). They were less convinced that the chatbot suggested real trips and they trusted the person offering the ride and referred to them by the chatbot less. These effects were more evident for participants who preferred to share their rides using WhatsApp compared to participants who preferred chatbots for that purpose. Considering our findings, we can say that the WhatsAppization of the chatbot was detrimental. This is true for the both chatbot WhatsAppization methods – by making the conversation more a dialog and adding WhatsApp indicators. For the chosen drive-sharing task, the results were, in addition to lower satisfaction, less trust in the chatbot’s suggestion and even in the driver suggested by the chatbot, and lower willingness to actually undertake the suggested ride. In addition, it seems that the most problematic WhatsAppization method was using WhatsApp’s indicators during the interaction with the chatbot. The current study suggests that a conversation with an artificial agent should also not imitate a WhatsApp conversation very closely. With the proliferation of WhatsApp use, the emotional and social aspect of face-to face commination are moving to WhatsApp communication. Based on the current study’s findings, it is possible that the UV effect also occurs in WhatsAppization, and not only in humanization, of the chatbot, with a similar feeling of eeriness, and is more pronounced for people who prefer to use WhatsApp over chatbots. The current research can serve as a starting point to study the very interesting and important topic of chatbots WhatsAppization. More methods of WhatsAppization and other tasks could be the focus of further studies.

Keywords: chatbot, WhatsApp, humanization, Uncanny Valley, drive sharing

Procedia PDF Downloads 48
405 Ahmad Sabzi Balkhkanloo, Motahareh Sadat Hashemi, Seyede Marzieh Hosseini, Saeedeh Shojaee-Aliabadi, Leila Mirmoghtadaie

Authors: Elyria Kemp, Kelly Cowart, My Bui

Abstract:

According to the National Institute of Mental Health, an estimated 31.9% of adolescents have had an anxiety disorder. Several environmental factors may help to contribute to high levels of anxiety and depression in young people (i.e., Generation Z, Millennials). However, as young people negotiate life on social media, they may begin to evaluate themselves using excessively high standards and adopt self-perfectionism tendencies. Broadly defined, self-perfectionism involves very critical evaluations of the self. Perfectionism may also come from others and may manifest as socially prescribed perfectionism, and young adults are reporting higher levels of socially prescribed perfectionism than previous generations. This rising perfectionism is also associated with anxiety, greater physiological reactivity, and a sense of social disconnection. However, theories from psychology suggest that improvement in emotion regulation can contribute to enhanced psychological and emotional well-being. Emotion regulation refers to the ways people manage how and when they experience and express their emotions. Cognitive reappraisal and expressive suppression are common emotion regulation strategies. Cognitive reappraisal involves changing the meaning of a stimulus that involves construing a potentially emotion-eliciting situation in a way that changes its emotional impact. By contrast, expressive suppression involves inhibiting the behavioral expression of emotion. The purpose of this research is to examine the efficacy of social marketing initiatives which promote emotion regulation strategies to help young adults regulate their emotions. In Study 1 a single factor (emotional regulation strategy: a cognitive reappraisal, expressive, control) between-subjects design was conducted using an online, non-student consumer panel (n=96). Sixty-eight percent of participants were male, and 32% were female. Study participants belonged to the Millennial and Gen Z cohort, ranging in age from 22 to 35 (M=27). Participants were first told to spend at least three minutes writing about a public speaking appearance which made them anxious. The purpose of this exercise was to induce anxiety. Next, participants viewed one of three advertisements (randomly assigned) which promoted an emotion regulation strategy—cognitive reappraisal, expressive suppression, or an advertisement non-emotional in nature. After being exposed to one of the ads, participants responded to a measure composed of two items to access their emotional state and the efficacy of the messages in fostering emotion management. Findings indicated that individuals in the cognitive reappraisal condition (M=3.91) exhibited the most positive feelings and more effective emotion regulation than the expressive suppression (M=3.39) and control conditions (M=3.72, F(1,92) = 3.3, p<.05). Results from this research can be used by institutions (e.g., schools) in taking a leadership role in attacking anxiety and other mental health issues. Social stigmas regarding mental health can be removed and a more proactive stance can be taken in promoting healthy coping behaviors and strategies to manage negative emotions.

Keywords: emotion regulation, anxiety, social marketing, generation z

Procedia PDF Downloads 205
404 The Impact of the Use of Some Multiple Intelligence-Based Teaching Strategies on Developing Moral Intelligence and Inferential Jurisprudential Thinking among Secondary School Female Students in Saudi Arabia

Authors: Sameerah A. Al-Hariri Al-Zahrani

Abstract:

The current study aims at getting acquainted with the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking among secondary school female students. The study has endeavored to answer the following questions: What is the impact of the use of some multiple intelligence-based teaching strategies on developing inferential jurisprudential thinking and moral intelligence among first-year secondary school female students? In the frame of this main research question, the study seeks to answer the following sub-questions: (i) What are the inferential jurisprudential thinking skills among first-year secondary school female students? (ii) What are the components of moral intelligence among first year secondary school female students? (iii) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on moral intelligence among first-year secondary school female students? (iv) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on developing the capacity for inferential jurisprudential thinking of juristic rules among first-year secondary school female students? The study has used the descriptive-analytical methodology in surveying, analyzing, and reviewing the literature on previous studies in order to benefit from them in building the tools of the study and the materials of experimental treatment. The study has also used the experimental method to study the impact of the independent variable (multiple intelligence strategies) on the two dependent variables (moral intelligence and inferential jurisprudential thinking) in first-year secondary school female students’ learning. The sample of the study is made up of 70 female students that have been divided into two groups: an experimental group consisting of 35 students who have been taught through multiple intelligence strategies, and a control group consisting of the other 35 students who have been taught normally. The two tools of the study (inferential jurisprudential thinking test and moral intelligence scale) have been implemented on the two groups as a pre-test. The female researcher taught the experimental group and implemented the two tools of the study. After the experiment, which lasted eight weeks, was over, the study showed the following results: (i) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the inferential jurisprudential thinking test (recognition of the evidence of jurisprudential rule, recognition of the motive for the jurisprudential rule, jurisprudential inferencing, analogical jurisprudence) in favor of the experimental group. (ii) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the components of the moral intelligence scale (sympathy, conscience, moral wisdom, tolerance, justice, respect) in favor of the experimental group. The study has, thus, demonstrated the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking.

Keywords: moral intelligence, teaching, inferential jurisprudential thinking, secondary school

Procedia PDF Downloads 159
403 Evaluation of Different Inoculation Methods of Entomopathogenic Fungi on Their Endophytism and Pathogenicity against Chilo partellus (Swinhoe)

Authors: Mubashar Iqbal, Iqra Anjum, Muhammad Dildar Gogi, Muhammad Jalal Arif

Abstract:

The present study was carried to screen out the effective entomopathogenic fungi (EPF) inoculation method in maize and to evaluate pathogenicity and oviposition-choice in C. partellus. Three entomopathogenic fungi (EPF) formulations Pacer® (Metarhizium anisopliae), Racer® (Beauveria bassiana) and Meailkil® (Verticillium lecanii) were evaluated at three concentrations (5000, 10000 and 20000 ppm) for their endophytism in maize and pathogenicity in C. partellus. The stock solution of the highest concentration (20,000 ppm) was prepared and next lower from stock solution. In the first experiment, three EPF was inoculated in maize plant by four methods, i.e., leaf-inoculation (LI), whorl-inoculation (WI), shoot-inoculation (SI) and root-inoculation (RI). Leaf-discs and stem-cutting were sampled in all four inoculation methods and placed on fungus growth media in Petri dishes. In the second experiment, pathogenicity, pupal formation, adult emergence, sex ratio, oviposition-choice, and growth index of C. partellus were calculated. The leaves and stem of the inoculated plants were given to the counted number of larvae of C. Partellus. The mortality of larvae was recorded on daily basis till the pupation. The result shows that maximum percent mortality (86.67%) was recorded at high concentration (20000ppm) of Beauveria bassiana by leaf inoculation method. For oviposition choice bioassay, the newly emerged adults were fed on diet (water, honey and yeast in 9:1:1) for 48 hours. One pair of C. Partellus were aspirated from the rearing cages and were detained in large test tube plugged with diet soaked cotton. A set of four plants for each treatment were prepared and randomized inside the large oviposition chamber. The test tubes were opened and fitted in the hole made in the wall of oviposition chamber in front of each treatment. The oviposition chamber was placed in a completely dark laboratory to eliminate the effect of light on moth’s behavior. The plants were removed from the oviposition chamber after the death of adults. The number of eggs deposited on the plant was counted. The results of 2nd experiment revealed that in all EPF and inoculation methods, the fecundity, egg fertility and growth index of C. partellus decreased with the increase in concentration being significantly higher at low concentration (5000ppm) and lower at higher concentration (20000ppm). Application of B. bassiana demonstrated that minimum fecundity (126.83), egg fertility (119.52) and growth index (15%) in C. partellus followed by M. anisopliae with fecundity (135.93), egg fertility (132.29) and growth index (17.50%) while V. lecanii show higher values of fecundity (137.37), egg fertility (1135.42) and growth index (20%). Overall leaf inoculation method showed least fecundity (123.89) with egg fertility (115.36) and growth index (14%) followed by whorl, shoot inoculation method and root inoculation method show higher values of fecundity, egg fertility and growth index.

Keywords: Beauveria bassiana, Chilo partellus, entomopathoganic, Metarhizium anisopliae, Verticillium lecanii

Procedia PDF Downloads 138
402 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 274
401 Superoleophobic Nanocellulose Aerogel Membrance as Bioinspired Cargo Carrier on Oil by Sol-Gel Method

Authors: Zulkifli, I. W. Eltara, Anawati

Abstract:

Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces—those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water—are extremely rare. In addition to chemical composition and roughened texture, a third parameter is essential to achieve superoleophobicity, namely, re-entrant surface curvature in the form of overhang structures. The overhangs can be realized as fibers. Superoleophobic surfaces are appealing for example, antifouling, since purely superhydrophobic surfaces are easily contaminated by oily substances in practical applications, which in turn will impair the liquid repellency. On the other studied have demonstrate that such aqueous nanofibrillar gels are unexpectedly robust to allow formation of highly porous aerogels by direct water removal by freeze-drying, they are flexible, unlike most aerogels that suffer from brittleness, and they allow flexible hierarchically porous templates for functionalities, e.g. for electrical conductivity. No crosslinking, solvent exchange nor supercritical drying are required to suppress the collapse during the aerogel preparation, unlike in typical aerogel preparations. The aerogel used in current work is an ultralight weight solid material composed of native cellulose nanofibers. The native cellulose nanofibers are cleaved from the self-assembled hierarchy of macroscopic cellulose fibers. They have become highly topical, as they are proposed to show extraordinary mechanical properties due to their parallel and grossly hydrogen bonded polysaccharide chains. We demonstrate that superoleophobic nanocellulose aerogels coating by sol-gel method, the aerogel is capable of supporting a weight nearly 3 orders of magnitude larger than the weight of the aerogel itself. The load support is achieved by surface tension acting at different length scales: at the macroscopic scale along the perimeter of the carrier, and at the microscopic scale along the cellulose nanofibers by preventing soaking of the aerogel thus ensuring buoyancy. Superoleophobic nanocellulose aerogels have recently been achieved using unmodified cellulose nanofibers and using carboxy methylated, negatively charged cellulose nanofibers as starting materials. In this work, the aerogels made from unmodified cellulose nanofibers were subsequently treated with fluorosilanes. To complement previous work on superoleophobic aerogels, we demonstrate their application as cargo carriers on oil, gas permeability, plastrons, and drag reduction, and we show that fluorinated nanocellulose aerogels are high-adhesive superoleophobic surfaces. We foresee applications including buoyant, gas permeable, dirt-repellent coatings for miniature sensors and other devices floating on generic liquid surfaces.

Keywords: superoleophobic, nanocellulose, aerogel, sol-gel

Procedia PDF Downloads 351
400 Psychosocial Experiences of Black Male Students in Public and Social Spaces on and around a Historically White South African Campus

Authors: Claudia P. Saunderson

Abstract:

Widening of participation in higher education globally has increased diversity of student populations. However, widening participation is more than mere access. Central to the debate about widening participation are social justice issues of authentic inclusion and appropriate support for success for all students in higher education (HE). Given the recent global campaign for 'Black Lives Matter' as well as the worldwide advocacy for justice in the George Floyd case, the importance of the experiences of Black men, were again poignantly foregrounded. The literature abounds with the negative experiences of Black male students in higher education. Much of this literature emanates from the Global North, with little systematic research on black male students' university experiences originating from the Global South. This research, therefore, explores the psychosocial experiences of Black male students at a historically white South African university. Not only are these students' educational or academic adjustment important, but so is their psychosocial adjustment to the institution. The psychosocial adjustment might include emotional well-being, motivation, as well as the student’s perception of how well he fits in or is made to feel welcome at the institution. The study draws on strands of critical race theory (CRT), co-cultural theory (CCT) as well as defining properties of micro-aggression theory (MAT). In the study, CRT, therefore, served as an overarching theory at the macro level, and it comments on the structural dynamics while MAT and CCT rather focussed on the impact of structural arrangements like racialization, at an individual and micro-level. These theories furthermore provided a coherent analytic framework for this study. Using a case study design, this qualitative study, employing focus groups and individual interviews, drew on the psychosocial experiences of twenty Black male students to explore how they navigate this specific historically white campus. The data were analyzed using thematic analysis that provided a systematic procedure for generating codes and themes from the qualitative data. The study found that the combination of race and gender-based micro-aggressions experienced by students included negative stereotyping, criminalization as well as racial profiling and that these experiences impede participants' ability to thrive at the institution. However, participants also shared positive perspectives about the institution. Some of the positive traits of the institution that the participants mentioned were well-aligned administration, good quality of education, as well as various funding opportunities. This study implies that if any HE institution values transformation, it necessitates the exploration and interrogation of potential aspects that are subtly hidden in the institutional culture and environment that might serve as barriers to the transformation process. This positioning is based on a social justice stance and believes that all students are equal and have the right to racially and culturally equitable and appropriate education and support.

Keywords: critical race theory, higher education transformation, micro-aggression, student experience

Procedia PDF Downloads 138
399 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 107
398 Development of a Miniature Laboratory Lactic Goat Cheese Model to Study the Expression of Spoilage by Pseudomonas Spp. In Cheeses

Authors: Abirami Baleswaran, Christel Couderc, Loubnah Belahcen, Jean Dayde, Hélène Tormo, Gwénaëlle Jard

Abstract:

Cheeses are often reported to be spoiled by Pseudomonas spp., responsible for defects in appearance, texture, taste, and smell, leading to their non-marketing and even their destruction. Despite preventive actions, problems linked to Pseudomonas spp. are difficult to control by the lack of knowledge and control of these contaminants during the cheese manufacturing. Lactic goat cheese producers are not spared by this problem and are looking for solutions to decrease the number of spoiled cheeses. To explore different hypotheses, experiments are needed. However, cheese-making experiments at the pilot scale are expensive and time consuming. Thus, there is a real need to develop a miniature cheeses model system under controlled conditions. In a previous study, several miniature cheese models corresponding to different type of commercial cheeses have been developed for different purposes. The models were, for example, used to study the influence of milk, starters cultures, pathogen inhibiting additives, enzymatic reactions, microflora, freezing process on cheese. Nevertheless, no miniature model was described on the lactic goat cheese. The aim of this work was to develop a miniature cheese model system under controlled laboratory conditions which resembles commercial lactic goat cheese to study Pseudomonas spp. spoilage during the manufacturing and ripening process. First, a protocol for the preparation of miniature cheeses (3.5 times smaller than a commercial one) was designed based on the cheese factorymanufacturing process. The process was adapted from “Rocamadour” technology and involves maturation of pasteurized milk, coagulation, removal of whey by centrifugation, moulding, and ripening in a little scale cellar. Microbiological (total bacterial count, yeast, molds) and physicochemical (pH, saltinmoisture, moisture in fat-free)analyses were performed on four key stages of the process (before salting, after salting, 1st day of ripening, and end of ripening). Factory and miniature cheeses volatilomewere also obtained after full scan Sift-MS cheese analysis. Then, Pseudomonas spp. strains isolated from contaminated cheeses were selected on their origin, their ability to produce pigments, and their enzymatic activities (proteolytic, lecithinasic, and lipolytic). Factory and miniature curds were inoculated by spotting selected strains on the cheese surface. The expression of cheese spoilage was evaluated by counting the level of Pseudomonas spp. during the ripening and by visual observation and under UVlamp. The physicochemical and microbiological compositions of miniature cheeses permitted to assess that miniature process resembles factory process. As expected, differences involatilomes were observed, probably due to the fact that miniature cheeses are made usingpasteurized milk to better control the microbiological conditions and also because the little format of cheese induced probably a difference during the ripening even if the humidity and temperature in the cellar were quite similar. The spoilage expression of Pseudomonas spp. was observed in miniature and factory cheeses. It confirms that the proposed model is suitable for the preparation of miniature cheese specimens in the spoilage study of Pseudomonas spp. in lactic cheeses. This kind of model could be deployed for other applications and other type of cheese.

Keywords: cheese, miniature, model, pseudomonas spp, spoilage

Procedia PDF Downloads 133
397 Effect of Supplementation with Fresh Citrus Pulp on Growth Performance, Slaughter Traits and Mortality in Guinea Pigs

Authors: Carlos Minguez, Christian F. Sagbay, Erika E. Ordoñez

Abstract:

Guinea pigs (Cavia porcellus) play prominent roles as experimental models for medical research and as pets. However, in developing countries like South America, the Philippines, and sub-Saharan Africa, the meat of guinea pigs is an economic source of animal protein for the poor and malnourished humans because guinea pigs are mainly fed with forage and do not compete directly with human beings for food resources, such as corn or wheat. To achieve efficient production of guinea pigs, it is essential to provide insurance against vitamin C deficiency. The objective of this research was to investigate the effect of the partial replacement of alfalfa with fresh citrus pulp (Citrus sinensis) in a diet of guinea pigs on the growth performance, slaughter traits and mortality during the fattening period (between 20 and 74 days of age). A total of 300 guinea pigs were housed in collective cages of about ten animals (2 x 1 x 0.4 m) and were distributed into two completely randomized groups. Guinea pigs in both groups were fed ad libitum, with a standard commercial pellet diet (10 MJ of digestible energy/kg, 17% crude protein, 11% crude fiber, and 4.5% crude fat). Control group was supplied with fresh alfalfa as forage. In the treatment group, 30% of alfalfa was replaced by fresh citrus pulp. Growth traits, including body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), were measured weekly. On day 74, the animals were slaughtered, and slaughter traits, including live weight at slaughter (LWS), full gastrointestinal tract weight (FGTW), hot carcass weight (with head; HCW), cold carcass weight (with head; CCW), drip loss percentage (DLP) and dressing out carcass yield percentage (DCY), were evaluated. Contrasts between groups were obtained by calculated generalized least squares values. Mortality was evaluated by Fisher's exact test due to low numbers in some cells. In the first week, there were significant differences in the growth traits BW, ADG, FI, and FCR, which were superior in control group. These differences may have been due to the origin of the young guinea pigs, which, before weaning, were all raised without fresh citrus pulp, and they were not familiarized with the new supplement. In the second week, treatment group had significantly increased ADG compared with control group, which may have been the result of a process of compensatory growth. During subsequent weeks, no significant differences were observed between animals raised in the two groups. Neither were any significant differences observed across the total fattening period. No significant differences in slaughter traits or mortality rate were observed between animals from the two groups. In conclusion, although there were no significant differences in growth performance, slaughter traits, or mortality, the use of fresh citrus pulp is recommended. Fresh citrus pulp is a by-product of orange juice industry and it is cheap or free. Forage made with fresh citrus pulp could reduce about of 30 % the quantity of alfalfa in guinea pig for meat and as consequence, reduce the production costs.

Keywords: fresh citrus, growth, Guinea pig, mortality

Procedia PDF Downloads 192
396 Coping Strategies and Characterization of Vulnerability in the Perspective of Climate Change

Authors: Muhammad Umer Mehmood, Muhammad Luqman, Muhammad Yaseen, Imtiaz Hussain

Abstract:

Climate change is an arduous fact, which could not be unheeded easily. It is a phenomenon which has brought a collection of challenges for the mankind. Scientists have found many of its negative impacts on the life of human being and the resources on which the life of humanity is dependent. There are many issues which are associated with the factor of prime importance in this study, 'climate change'. Whenever changes happen in nature, they strike the whole globe. Effects of these changes vary from region to region. Climate of every region of this globe is different from the other. Even within a state, country or the province has different climatic conditions. So it is mandatory that the response in that specific region and the coping strategy of this specific region should be according to the prevailing risk. In the present study, the objective was to assess the coping strategies and vulnerability of small landholders. So that a professional suggestion could be made to cope with the vulnerability factor of small farmers. The cross-sectional research design was used with the intervention of quantitative approach. The study was conducted in the Khanewal district, of Punjab, Pakistan. 120 small farmers were interviewed after randomized sampling from the population of respective area. All respondents were above the age of 15 years. A questionnaire was developed after keen observation of facts in the respective area. Content and face validity of the instrument was assessed with SPSS and experts in the field. Data were analyzed through SPSS using descriptive statistics. From the sample of 120, 81.67% of the respondents claimed that the environment is getting warmer and not fit for their present agricultural practices. 84.17% of the sample expressed serious concern that they are disturbed due to change in rainfall pattern and vulnerability towards the climatic effects. On the other hand, they expressed that they are not good at tackling the effects of climate change. Adaptation of coping strategies like change in cropping pattern, use of resistant varieties, varieties with minimum water requirement, intercropping and tree planting was low by more than half of the sample. From the sample 63.33% small farmers said that the coping strategies they adopt are not effective enough. The present study showed that subsistence farming, lack of marketing and overall infrastructure, lack of access to social security networks, limited access to agriculture extension services, inappropriate access to agrometeorological system, unawareness and access to scientific development and low crop yield are the prominent factors which are responsible for the vulnerability of small farmers. A comprehensive study should be conducted at national level so that a national policy could be formulated to cope with the dilemma in future with relevance to climate change. Mainstreaming and collaboration among the researchers and academicians could prove beneficiary in this regard the interest of national leaders’ does matter. Proper policies to avoid the vulnerability factors should be the top priority. The world is taking up this issue with full responsibility as should we, keeping in view the local situation.

Keywords: adaptation, coping strategies, climate change, Pakistan, small farmers, vulnerability

Procedia PDF Downloads 142
395 Microbiological and Physicochemical Evaluation of Traditional Greek Kopanisti Cheese Produced by Different Starter Cultures

Authors: M. Kazou, A. Gavriil, O. Kalagkatsi, T. Paschos, E. Tsakalidou

Abstract:

Kopanisti cheese is a Greek soft Protected Designation of Origin (PDO) cheese made of raw cow, sheep or goat milk, or mixtures of them, with similar organoleptic characteristics to that of Roquefort cheese. Traditional manufacturing of Kopanisti cheese is limited in small-scale dairies, without the addition of starter cultures. Instead, an amount of over-mature Kopanisti cheese, called Mana Kopanisti, is used to initiate ripening. Therefore, the selection of proper starter cultures and the understanding of the contribution of various microbial groups to its overall quality is crucial for the production of a high-quality final product with standardized organoleptic and physicochemical characteristics. Taking the above into account, the aim of the present study was the investigation of Kopanisti cheese microbiota and its role in cheese quality. For this purpose, four different types of Kopanisti were produced in triplicates, all with pasteurized cow milk, with the addition of (A) the typical mesophilic species Lactococcus lactis and Lactobacillus paracasei used as starters in the production of soft spread cheeses, (B) strains of Lactobacillus acidipiscis and Lactobacillus rennini previously isolated from Kopanisti and Mana Kopanisti, (C) all the species from (A) and (B) as inoculum, and finally (D) the species from (A) and Mana Kopanisti. Physicochemical and microbiological analysis was performed for milk and cheese samples during ripening. Enumeration was performed for major groups of lactic acid bacteria (LAB), total mesophilic bacteria, yeasts as well as hygiene indicator microorganisms. Bacterial isolates from all the different LAB groups, apart from enterococci, alongside yeasts isolates, were initially grouped using repetitive sequence-based polymerase chain reaction (rep-PCR) and then identified at the species level using 16S rRNA gene and internal transcribed spacer (ITS) DNA region sequencing, respectively. Sensory evaluation was also performed for final cheese samples at the end of the ripening period (35 days). Based on the results of the classical microbiological analysis, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, ranged between 7 and 10 log colony forming unit (CFU) g⁻¹, phychrotrophic bacteria, and yeast extract glucose chloramphenicol (YGC) isolates between 4 and 8 log CFU g⁻¹, while coliforms and enterococci up to 2 log CFU g⁻¹ throughout ripening in cheese samples A, C and D. In contrast, in cheese sample B, the average counts of the total mesophilic bacteria and LAB, apart from enterococci, phychrotrophic bacteria, and YGC isolates ranged between 0 and 10 log CFU g⁻¹ and coliforms and enterococci up to 2 log CFU g⁻¹. Although the microbial counts were not that different among samples, identification of the bacterial and yeasts isolates revealed the complex microbial community structure present in each cheese sample. Differences in the physicochemical characteristics among the cheese samples were also observed, with pH ranging from 4.3 to 5.3 and moisture from 49.6 to 58.0 % in the final cheese products. Interestingly, the sensory evaluation also revealed differences among samples, with cheese sample B ranking first based on the total score. Overall, the combination of these analyses highlighted the impact of different starter cultures on the Kopanisti microbiota as well as on the physicochemical and sensory characteristics of the final product.

Keywords: Kopanisti cheese, microbiota, classical microbiological analysis, physicochemical analysis

Procedia PDF Downloads 135
394 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 227
393 Measuring Firms’ Patent Management: Conceptualization, Validation, and Interpretation

Authors: Mehari Teshome, Lara Agostini, Anna Nosella

Abstract:

The current knowledge-based economy extends intellectual property rights (IPRs) legal research themes into a more strategic and organizational perspectives. From the diverse types of IPRs, patents are the strongest and well-known form of legal protection that influences commercial success and market value. Indeed, from our pilot survey, we understood that firms are less likely to manage their patents and actively used it as a tool for achieving competitive advantage rather they invest resource and efforts for patent application. To this regard, the literature also confirms that insights into how firms manage their patents from a holistic, strategic perspective, and how the portfolio value of patents can be optimized are scarce. Though patent management is an important business tool and there exist few scales to measure some dimensions of patent management, at the best of our knowledge, no systematic attempt has been made to develop a valid and comprehensive measure of it. Considering this theoretical and practical point of view, the aim of this article is twofold: to develop a framework for patent management encompassing all relevant dimensions with their respective constructs and measurement items, and to validate the measurement using survey data from practitioners. Methodology: We used six-step methodological approach (i.e., specify the domain of construct, item generation, scale purification, internal consistency assessment, scale validation, and replication). Accordingly, we carried out a systematic review of 182 articles on patent management, from ISI Web of Science. For each article, we mapped relevant constructs, their definition, and associated features, as well as items used to measure these constructs, when provided. This theoretical analysis was complemented by interviews with experts in patent management to get feedbacks that are more practical on how patent management is carried out in firms. Afterwards, we carried out a questionnaire survey to purify our scales and statistical validation. Findings: The analysis allowed us to design a framework for patent management, identifying its core dimensions (i.e., generation, portfolio-management, exploitation and enforcement, intelligence) and support dimensions (i.e., strategy and organization). Moreover, we identified the relevant activities for each dimension, as well as the most suitable items to measure them. For example, the core dimension generation includes constructs as: state-of-the-art analysis, freedom-to-operate analysis, patent watching, securing freedom-to-operate, patent potential and patent-geographical-scope. Originality and the Study Contribution: This study represents a first step towards the development of sound scales to measure patent management with an overarching approach, thus laying the basis for developing a recognized landmark within the research area of patent management. Practical Implications: The new scale can be used to assess the level of sophistication of the patent management of a company and compare it with other firms in the industry to evaluate their ability to manage the different activities involved in patent management. In addition, the framework resulting from this analysis can be used as a guide that supports managers to improve patent management in firms.

Keywords: patent, management, scale, development, intellectual property rights (IPRs)

Procedia PDF Downloads 147
392 Spectral Responses of the Laser Generated Coal Aerosol

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Tomi Smausz, Zoltán Kónya, Béla Hopp, Gábor Szabó, Zoltán Bozóki

Abstract:

Characterization of spectral responses of light absorbing carbonaceous particulate matter (LAC) is of great importance in both modelling its climate effect and interpreting remote sensing measurement data. The residential or domestic combustion of coal is one of the dominant LAC constituent. According to some related assessments the residential coal burning account for roughly half of anthropogenic BC emitted from fossil fuel burning. Despite of its significance in climate the comprehensive investigation of optical properties of residential coal aerosol is really limited in the literature. There are many reason of that starting from the difficulties associated with the controlled burning conditions of the fuel, through the lack of detailed supplementary proximate and ultimate chemical analysis enforced, the interpretation of the measured optical data, ending with many analytical and methodological difficulties regarding the in-situ measurement of coal aerosol spectral responses. Since the gas matrix of ambient can significantly mask the physicochemical characteristics of the generated coal aerosol the accurate and controlled generation of residential coal particulates is one of the most actual issues in this research area. Most of the laboratory imitation of residential coal combustion is simply based on coal burning in stove with ambient air support allowing one to measure only the apparent spectral feature of the particulates. However, the recently introduced methodology based on a laser ablation of solid coal target opens up novel possibilities to model the real combustion procedure under well controlled laboratory conditions and makes the investigation of the inherent optical properties also possible. Most of the methodology for spectral characterization of LAC is based on transmission measurement made of filter accumulated aerosol or deduced indirectly from parallel measurements of scattering and extinction coefficient using free floating sampling. In the former one the accuracy while in the latter one the sensitivity are liming the applicability of this approaches. Although the scientific community are at the common platform that aerosol-phase PhotoAcoustic Spectroscopy (PAS) is the only method for precise and accurate determination of light absorption by LAC, the PAS based instrumentation for spectral characterization of absorption has only been recently introduced. In this study, the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols are demonstrated. The experimental set-up and its characteristic for residential coal aerosol generation are introduced here. The optical absorption and the scattering coefficients as well as their wavelength dependency are determined by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, some correlation between the proximate and ultimate chemical as well as the measured or deduced optical parameters are also revealed.

Keywords: absorption, scattering, residential coal, aerosol generation by laser ablation

Procedia PDF Downloads 361
391 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method

Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani

Abstract:

Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.

Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding

Procedia PDF Downloads 112
390 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 120
389 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 128
388 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics

Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki

Abstract:

The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.

Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio

Procedia PDF Downloads 174
387 Study of Nucleation and Growth Processes of Ettringite in Supersaturated Diluted Solutions

Authors: E. Poupelloz, S. Gauffinet

Abstract:

Ettringite Ca₆Al₂(SO₄)₃(OH)₁₂26H₂O is one of the major hydrates formed during cement hydration. Ettringite forms in Portland cement from the reaction between tricalcium aluminate Ca₃Al₂O₆ and calcium sulfate. Ettringite is also present in calcium sulfoaluminate cement in which it is the major hydrate, formed by the reaction between yeelimite Ca₄(AlO₂)₆SO₄ and calcium sulfate. About the formation of ettringite, numerous results are available in the literature even if some issues are still under discussion. However, almost all published work about ettringite was done on cementitious systems. Yet in cement, hydration reactions are very complex, the result of dissolution-precipitation processes and are submitted to various interactions. Understanding the formation process of a phase alone, here ettringite, is the first step to later understand the much more complex reactions happening in cement. This study is crucial for the comprehension of early cement hydration and physical behavior. Indeed formation of hydrates, in particular, ettringite, will have an influence on the rheological properties of the cement paste and on the need for admixtures. To make progress toward the understanding of existing phenomena, a specific study of nucleation and growth processes of ettringite was conducted. First ettringite nucleation was studied in ionic aqueous solutions, with controlled but different experimental conditions, as different supersaturation degrees (β), different pH or presence of exogenous ions. Through induction time measurements, interfacial ettringite crystals solution energies (γ) were determined. Growth of ettringite in supersaturated solutions was also studied through chain crystallization reactions. Specific BET surface area measurements and Scanning Electron Microscopy observations seemed to prove that growth process is favored over the nucleation process when ettringite crystals are initially present in a solution with a low supersaturation degree. The influence of stirring on ettringite formation was also investigated. Observation was made that intensity and nature of stirring have a high influence on the size of ettringite needles formed. Needle sizes vary from less than 10µm long depending on the stirring to almost 100µm long without any stirring. During all previously mentioned experiments, initially present ions are consumed to form ettringite in such a way that the supersaturation degree with regard to ettringite is decreasing over time. To avoid this phenomenon a device compensating the drop of ion concentrations by adding some more solutions, and therefore always have constant ionic concentrations, was used. This constant β recreates the conditions of the beginning of cement paste hydration, when the dissolution of solid reagents compensates the consumption of ions to form hydrates. This device allowed the determination of the ettringite precipitation rate as a function of the supersaturation degree β. Taking samples at different time during ettringite precipitation and doing BET measurements allowed the determination of the interfacial growth rate of ettringite in m²/s. This work will lead to a better understanding and control of ettringite formation alone and thus during cements hydration. This study will also ultimately define the impact of ettringite formation process on the rheology of cement pastes at early age, which is a crucial parameter from a practical point of view.

Keywords: cement hydration, ettringite, morphology of crystals, nucleation-growth process

Procedia PDF Downloads 128
386 Previously Undescribed Cardiac Abnormalities in Two Unrelated Autistic Males with Causative Variants in CHD8

Authors: Mariia A. Parfenenko, Ilya S. Dantsev, Sergei V. Bochenkov, Natalia V. Vinogradova, Olga S. Groznova, Victoria Yu. Voinova

Abstract:

Introduction: Autism is the most common neurodevelopmental disorder. Autism is characterized by difficulties in social interaction and adherence to stereotypic behavioral patterns and frequently co-occurs with epilepsy, intellectual disabilities, connective tissue disorders, and other conditions. CHD8 codes for chromodomain-helicase-DNA-binding protein 8 - a chromatin remodeler that regulates cellular proliferation and neurodevelopment in embryogenesis. CHD8 is one of the genes most frequently involved in autism. Patients and methods: 2 unrelated male patients, P3 and P12, aged 3 and 12 years old, underwent whole genome sequencing, which determined that they both had different likely pathogenic variants, both previously undescribed in literature. Sanger sequencing later determined that P12 inherited the variant from his affected mother. Results: P3 and P12 presented with autism, a developmental delay, ataxia, sleep disorders, overgrowth, and macrocephaly, as well as other clinical features typically present in patients with causative variants in CHD8. The mother of P12 also has autistic traits, as well as ataxia, hypotonia, sleep disorders, and other symptoms. However, P3 and P12 also have different cardiac abnormalities. P3 had signs of a repolarization disorder: a flattened T wave in the III and aVF derivations and a negative T wave in the V1-V2 derivations. He also had structural valve anomalies with associated regurgitation, local contractility impairment of the left ventricular, and diastolic dysfunction of the right ventricle. Meanwhile, P12 had Wolff-Parkinson-White syndrome and underwent radiofrequency ablation at the age of 2 years. At the time of observation, P12 had mild sinus arrhythmia and an incomplete right bundle branch block, as well as arterial hypertension. Discussion: Cardiac abnormalities were not previously reported in patients with causative variants in CHD8. The underlying mechanism for the formation of those abnormalities is currently unknown. However, the two hypotheses are either a disordered interaction with CHD7 – another chromodomain remodeler known to be directly involved in the cardiophenotype of CHARGE syndrome – a rare condition characterized by coloboma, heart defects and growth abnormalities, or the disrupted functioning of CHD8 as an A-Kinase Anchoring Protein, which are known to modulate cardiac function. Conclusion: We observed 2 unrelated autistic males with likely pathogenic variants in CHD8 that presented with typical symptoms of CHD8-related neurodevelopmental disorder, as well as cardiac abnormalities. Cardiac abnormalities have, until now, been considered uncharacteristic for patients with causative variants in CHD8. Further accumulation of data, including experimental evidence of the involvement of CHD8 in heart formation, will elucidate the mechanism underlying the cardiophenotype of those patients. Acknowledgements: Molecular genetic testing of the patients was made possible by the Charity Fund for medical and social genetic aid projects «Life Genome.»

Keywords: autism spectrum disorders, chromodomain-helicase-DNA-binding protein 8, neurodevelopmental disorder, cardio phenotype

Procedia PDF Downloads 86
385 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel

Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer

Abstract:

Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.

Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber

Procedia PDF Downloads 127
384 Contrastive Analysis of Parameters Registered in Training Rowers and the Impact on the Olympic Performance

Authors: Gheorghe Braniste

Abstract:

The management of the training process in sports is closely related to the awareness of the close connection between performance and the morphological, functional and psychological characteristics of the athlete's body. Achieving high results in Olympic sports is influenced, on the one hand, by the genetically determined characteristics of the body and, on the other hand, by the morphological, functional and motor abilities of the athlete. Taking into account the importance of properly understanding the evolutionary specificity of athletes to assess their competitive potential, this study provides a comparative analysis of the parameters that characterize the growth and development of the level of adaptation of sweeping rowers, considering the growth interval between 12 and 20 years. The study established that, in the multi-annual training process, the bodies of the targeted athletes register significant adaptive changes while analyzing parameters of the morphological, functional, psychomotor and sports-technical spheres. As a result of the influence of physical efforts, both specific and non-specific, there is an increase in the adaptability of the body, its transfer to a much higher level of functionality within the parameters, useful and economical adaptive reactions influenced by environmental factors, be they internal or external. The research was carried out for 7 years, on a group of 28 athletes, following their evolution and recording the specific parameters of each age stage. In order to determine the level of physical, morpho-functional, psychomotor development and technical training of rowers, the screening data were applied at the State University of Physical Education and Sports in the Republic of Moldova. During the research, measurements were made on the waist, in the standing and sitting position, arm span, weight, circumference and chest perimeter, vital capacity of the lungs, with the subsequent determination of the vital index (tolerance level to oxygen deficiency in venous blood in Stange and Genchi breath-taking tests that characterize the level of oxygen saturation, absolute and relative strength of the hand and back, calculation of body mass and morphological maturity indices (Kettle index), body surface area (body gait), psychomotor tests (Romberg test), test-tepping 10 s., reaction to a moving object, visual and auditory-motor reaction, recording of technical parameters of rowing on a competitive distance of 200 m. At the end of the study it was found that highly performance is sports is to be associated on the one hand with the genetically determined characteristics of the body and, on the other hand, with favorable adaptive reactions and energy saving, as well as morphofunctional changes influenced by internal and external environmental factors. The importance of the results obtained at the end of the study was positively reflected in obtaining the maximum level of training of athletes in order to demonstrate performance in large-scale competitions and mostly in the Olympic Games.

Keywords: olympics, parameters, performance, peak

Procedia PDF Downloads 123
383 A Practical Methodology for Evaluating Water, Sanitation and Hygiene Education and Training Programs

Authors: Brittany E. Coff, Tommy K. K. Ngai, Laura A. S. MacDonald

Abstract:

Many organizations in the Water, Sanitation and Hygiene (WASH) sector provide education and training in order to increase the effectiveness of their WASH interventions. A key challenge for these organizations is measuring how well their education and training activities contribute to WASH improvements. It is crucial for implementers to understand the returns of their education and training activities so that they can improve and make better progress toward the desired outcomes. This paper presents information on CAWST’s development and piloting of the evaluation methodology. The Centre for Affordable Water and Sanitation Technology (CAWST) has developed a methodology for evaluating education and training activities, so that organizations can understand the effectiveness of their WASH activities and improve accordingly. CAWST developed this methodology through a series of research partnerships, followed by staged field pilots in Nepal, Peru, Ethiopia and Haiti. During the research partnerships, CAWST collaborated with universities in the UK and Canada to: review a range of available evaluation frameworks, investigate existing practices for evaluating education activities, and develop a draft methodology for evaluating education programs. The draft methodology was then piloted in three separate studies to evaluate CAWST’s, and CAWST’s partner’s, WASH education programs. Each of the pilot studies evaluated education programs in different locations, with different objectives, and at different times within the project cycles. The evaluations in Nepal and Peru were conducted in 2013 and investigated the outcomes and impacts of CAWST’s WASH education services in those countries over the past 5-10 years. In 2014, the methodology was applied to complete a rigorous evaluation of a 3-day WASH Awareness training program in Ethiopia, one year after the training had occurred. In 2015, the methodology was applied in Haiti to complete a rapid assessment of a Community Health Promotion program, which informed the development of an improved training program. After each pilot evaluation, the methodology was reviewed and improvements were made. A key concept within the methodology is that in order for training activities to lead to improved WASH practices at the community level, it is not enough for participants to acquire new knowledge and skills; they must also apply the new skills and influence the behavior of others following the training. The steps of the methodology include: development of a Theory of Change for the education program, application of the Kirkpatrick model to develop indicators, development of data collection tools, data collection, data analysis and interpretation, and use of the findings for improvement. The methodology was applied in different ways for each pilot and was found to be practical to apply and adapt to meet the needs of each case. It was useful in gathering specific information on the outcomes of the education and training activities, and in developing recommendations for program improvement. Based on the results of the pilot studies, CAWST is developing a set of support materials to enable other WASH implementers to apply the methodology. By using this methodology, more WASH organizations will be able to understand the outcomes and impacts of their training activities, leading to higher quality education programs and improved WASH outcomes.

Keywords: education and training, capacity building, evaluation, water and sanitation

Procedia PDF Downloads 310
382 Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria

Authors: Abdulkadir Sarauta

Abstract:

Almost every type of industrial process involves the release of trace quantity of toxic organic and inorganic compound that up in receiving water bodies, this study was aimed at assessing the Persistent Organic Pollutant Level in Challawa River Basin of Kano State, Nigeria. And the research formed the basis of identifying the presence of PCBs and PAHs in receiving water bodies in the study area, assessing the PCBs and PAHs concentration in receiving water body of Challawa system, evaluate the concentration level of PCBs and PAHs in fishes in the study area, determine the concentration level of PCBs and PAHs in crops irrigated in the study area as well as compare the concentration of PCBs and PAHs with the acceptable limit set by Nigerian, EU, U.S and WHO standard. Data were collected using reconnaissance survey, site inspection, field survey, laboratory experiment as well as secondary data source. A total of 78 samples were collected through stratified systematic random sampling (i.e., 26 samples for each of water, crops and fish) three sampling points were chosen and designated A, B and C along the stretch of the river (i.e. up, middle, and downstream) from Yan Danko Bridge to Tambirawa bridge. The result shows that the Polychlorinated biphenyls (PCBs) was not detected while, polycyclic aromatic hydrocarbons (PAHs) was detected in the whole samples analysed at the trench of Challawa River basin in order to assess the contribution of human activities to global environmental pollution. The total concentrations of ΣPAH and ΣPCB ranges between 0.001 to 0.087mg/l and 0.00 to 0.00mg/l of water samples While, crops samples ranges between 2.0ppb to 8.1ppb and fish samples ranges from 2.0 to 6.7ppb.The whole samples are polluted because most of the parameters analyzed exceed the threshold limits set by WHO, Nigerian, U.S and EU standard. The analytical results revealed that some chemicals are present in water, crops and fishes are significantly very high at Zamawa village which is very close to Challawa industrial estate and also is main effluent discharge point and drinking water around study area is not potable for consumption. Analysis of Variance was obtained by Bartlett’s test performance. There is only significant difference in water because the P < 0.05 level of significant, But there is no difference in crops concentration they have the same performance, likes wise in the fishes. It is said to be of concern to health hazard which will increase incidence of tumor related diseases such as skin, lungs, bladder, gastrointestinal cancer, this show there is high failure of pollution abatement measures in the area. In conclusion, it can be said that industrial activities and effluent has impact on Challawa River basin and its environs especially those that are living in the immediate surroundings. Arising from the findings of this research some recommendations were made the industries should treat their liquid properly by installing modern treatment plants.

Keywords: Challawa River Basin, organic, persistent, pollutant

Procedia PDF Downloads 575
381 Barbie in India: A Study of Effects of Barbie in Psychological and Social Health

Authors: Suhrita Saha

Abstract:

Barbie is a fashion doll manufactured by the American toy company Mattel Inc and it made debut at the American International Toy Fair in New York in 9 March 1959. From being a fashion doll to a symbol of fetishistic commodification, Barbie has come a long way. A Barbie doll is sold every three seconds across the world, which makes the billion dollar brand the world’s most popular doll for the girls. The 11.5 inch moulded plastic doll has a height of 5 feet 9 inches at 1/6 scale. Her vital statistics have been estimated at 36 inches (chest), 18 inches (waist) and 33 inches (hips). Her weight is permanently set at 110 pounds which would be 35 pounds underweight. Ruth Handler, the creator of Barbie wanted a doll that represented adulthood and allowed children to imagine themselves as teenagers or adults. While Barbie might have been intended to be independent, imaginative and innovative, the physical uniqueness does not confine the doll to the status of a play thing. It is a cultural icon but with far reaching critical implications. The doll is a commodity bearing more social value than practical use value. The way Barbie is produced represents industrialization and commodification of the process of symbolic production. And this symbolic production and consumption is a standardized planned one that produce stereotypical ‘pseudo-individuality’ and suppresses cultural alternatives. Children are being subject to and also arise as subjects in this consumer context. A very gendered, physiologically dissected sexually charged symbolism is imposed upon children (both male and female), childhood, their social worlds, identity, and relationship formation. Barbie is also very popular among Indian children. While the doll is essentially an imaginative representation of the West, it is internalized by the Indian sensibilities. Through observation and questionnaire-based interview within a sample population of adolescent children (primarily female, a few male) and parents (primarily mothers) in Kolkata, an Indian metropolis, the paper puts forth findings of sociological relevance. 1. Barbie creates, recreates, and accentuates already existing divides between the binaries like male- female, fat- thin, sexy- nonsexy, beauty- brain and more. 2. The Indian girl child in her associative process with Barbie wants to be like her and commodifies her own self. The male child also readily accepts this standardized commodification. Definition of beauty is thus based on prejudice and stereotype. 3. Not being able to become Barbie creates health issues both psychological and physiological varying from anorexia to obesity as well as personality disorder. 4. From being a plaything Barbie becomes the game maker. Barbie along with many other forms of simulation further creates a consumer culture and market for all kind of fitness related hyper enchantment and subsequent disillusionment. The construct becomes the reality and the real gets lost in the play world. The paper would thus argue that Barbie from being an innocuous doll transports itself into becoming social construct with long term and irreversible adverse impact.

Keywords: barbie, commodification, personality disorder, sterotype

Procedia PDF Downloads 361
380 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor

Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen

Abstract:

In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.

Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.

Procedia PDF Downloads 252
379 Implementation of a Multidisciplinary Weekly Safety Briefing in a Tertiary Paediatric Cardiothoracic Transplant Unit

Authors: Lauren Dhugga, Meena Parameswaran, David Blundell, Abbas Khushnood

Abstract:

Context: A multidisciplinary weekly safety briefing was implemented at the Paediatric Cardiothoracic Unit at the Freeman Hospital in Newcastle-upon-Tyne. It is a tertiary referral centre with a quarternary cardiac paediatric intensive care unit and provides complexed care including heart and lung transplants, mechanical support and advanced heart failure assessment. Aim: The aim of this briefing is to provide a structured platform of communication, in an effort to improve efficiency, safety, and patient care. Problem: The paediatric cardiothoracic unit is made up of a vast multidisciplinary team including doctors, intensivists, anaesthetists, surgeons, specialist nurses, echocardiogram technicians, physiotherapists, psychologists, dentists, and dietitians. It provides care for children with congenital and acquired cardiac disease and is one of only two units in the UK to offer paediatric heart transplant. The complexity of cases means that there can be many teams involved in providing care to each patient, and frequent movement of children between ward, high dependency, and intensive care areas. Currently, there is no structured forum for communicating important information across the department, for example, staffing shortages, prescribing errors and significant events. Strategy: An initial survey questioning the need for better communication found 90% of respondents agreed that they could think of an incident that had occurred due to ineffective communication, and 85% felt that incident could have been avoided had there been a better form of communication. Lastly, 80% of respondents felt that a weekly 60 second safety briefing would be beneficial to improve communication within our multidisciplinary team. Based on those promising results, a weekly 60 second safety briefing was implemented to be conducted on a Monday morning. The safety briefing covered four key areas (SAFE): staffing, awareness, fix and events. This was to highlight any staffing gaps, any incident reports to be learned from, any issues that required fixing and any events including teachings for the week ahead. The teams were encouraged to email suggestions or issues to be raised for the week or to approach in person with information to add. The safety briefing was implemented using change theory. Effect: The safety briefing has been trialled over 6 weeks and has received a good buy in from staff across specialties. The aim is to embed this safety briefing into a weekly meeting using the PDSA cycle. There will be a second survey in one month to assess the efficacy of the safety briefing and to continue to improve the delivery of information. The project will be presented at the next clinical governance briefing to attract wider feedback and input from across the trust. Lessons: The briefing displays promise as a tool to improve vigilance and communication in a busy multi-disciplinary unit. We have learned about how to implement quality improvement and about the culture of our hospital - how hierarchy influences change. We demonstrate how to implement change through a grassroots process, using a junior led briefing to improve the efficiency, safety, and communication in the workplace.

Keywords: briefing, communication, safety, team

Procedia PDF Downloads 142
378 Identifying Common Sports Injuries in Karate and Presenting a Model for Preventing Identified Injuries (A Case Study of East Azerbaijan, Iranian Karatekas)

Authors: Nadia Zahra Karimi Khiavi, Amir Ghiami Rad

Abstract:

Due to the high likelihood of injuries in karate, karatekas' injuries warrant special treatment. This study explores the prevalence of karate injuries in East Azerbaijan, Iran and provides a model for karatekas to use in the prevention of such injuries. This study employs a descriptive approach. Male and female participants with a brown belt or above in either control or non-control styles in East Azerbaijan province are included in the study's statistical population. A statistical sample size of 100 people was computed using the tools employed (smartpls), and the samples were drawn at random from all clubs in the province with the assistance of the Karate Board in order to give a model for the prevention of karate injuries. Information was gathered by means of a survey that made use of the Standard Questionnaire for Australian Sports Medicine Injury Reports. The information is presented in the form of tables and samples, and descriptive statistics were used to organise and summarise the data. Control and non-control independent t-tests were conducted using SPSS version 20, and structural equation modelling (pls) was utilised for injury prevention modelling at a 0.05 level of significance. The results showed that the most common areas of injury among the control groups were the upper limbs (46.15%), lower limbs (34.61%), trunk (15.38%), and head and neck (3.84%). The most common types of injuries were broken bones (34.61%), sprain or strain (23.13%), bruising and contusions (23.13%), trauma to the face and mouth (11.53%), and damage to the nerves (69.69%). Uncontrolled committees are most likely to sustain injuries to the head and neck (33.33%), trunk (25.92%), upper limbs (22.22%), and lower limbs (18.51%). The most common injuries were to the mouth and face (33.33%), dislocations and fractures (22.22%), aspirin and strain (22.22%), bruises and contusions (18.51%), and nerves (70%), in that order. Among those who practice control kata, injuries to the upper limb account for 45.83%, the lower limb for 41.666%, the trunk for 8.33%, and the head and neck for 4.166%. The most common types of injuries are dislocations and fractures (41.66 per cent), aspirin and strain (29.16 per cent), bruising and bruises (16.66 per cent), and nerves (12.5%). Injuries to the face and mouth were not reported among those practising the control kata. By far, the most common sites of injury for those practising uncontrolled kata were the lower limb (43.74%), upper limb (39.13%), trunk (13.14%), and head and neck (4.34%). The most common types of injuries were dislocations and fractures (34.82%), aspirin and strain (26.08%), bruises and contusions (21.73%), mouth and face (13.14%), and nerves. Teaching the concepts of cooling and warming (0.591) and enhancing the degree of safety in the sports environment (0.413) were shown to play the most essential roles in reducing sports injuries among karate practitioners of controlling and uncontrolled styles, respectively. Use of common sports gear (0.390), Modification of training programme principles (0.341), Formulation of an effective diet plan for athletes (0.284), Evaluation of athletes' physical anatomy, physiology, chemistry, and physics (0.247).

Keywords: sports injuries, karate, prevention, cooling and warming

Procedia PDF Downloads 101