Search results for: unified commensurate multiple
4406 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement
Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova
Abstract:
One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank
Procedia PDF Downloads 3874405 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers
Authors: Rakesh Bhatia
Abstract:
Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.Keywords: baudhayan numbers, anurupyena, vilokanam, sutras
Procedia PDF Downloads 74404 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates
Authors: Abeer Amayri, Akif A. Bulgak
Abstract:
Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.Keywords: global supply chains, quality, stochastic programming, supplier selection
Procedia PDF Downloads 4584403 Demographic Variations of Multiple Sclerosis Patients between Britain and Kuwait
Authors: Ali Fuad Ashour
Abstract:
Introduction: Multiple sclerosis (MS) is a chronic, progressive and degenerative disease that affects the central nervous system (CNS). MS has been described to result in the debilitating symptom of the disease. It is reported to have a negative impact on the patient’s mental activities, brings a lower quality of life, leads to unemployment, causes distress and psychological disorders, generates low levels of motivation and self-esteem, and result in disability and neurological impairment. The aim of this study was to compare the effects of MS on patients from Britain and Kuwait. Methodology: A questionnaire was distributed to 200 individuals with MS (100 Kuwaiti and 100 British). The questionnaire consists of three parts; 1. General demographics, 2. Disease-specific data (symptoms, severity levels, relapse frequency, and support system), and 3. Attitudes towards physical exercise. Results: A response rate of 62% from the British sample and 50% from the Kuwaiti sample was achieved. 84% of the sample (n=52) were 41 years old or over. The duration of the disease was less than 10 years in 43.4% of British and 68% of Kuwaiti respondents. The majority of British respondents (56.5%) reported the disease severity to be moderate, while the majority of Kuwaitis was mild (72%). The annual relapse rates in Kuwait were relatively low, with 82% of the Kuwaiti sample had one relapse per year, compared to the 64.5% of British. The most common symptoms reported by British respondents were balance (75.8%), fatigue (74.2%), and weakness (71%), and by Kuwaiti respondents were fatigue (86%), balance (76%), and weakness (66%). The help and support for MS were by far more diverse for the British than Kuwaiti respondents. Discussion: The results unveiled marked differences between two groups of British and Kuwaiti MS patients in terms of patients’ age and disease duration, and severity. The overwhelming majority of Kuwaiti patients are young individuals who have been with the disease for a relatively short period of time, and their MS in most cases was mild. On the other hand, British patients were relatively older, many have been with the disease for a long period of time, and their average MS condition was more serious than that of their Kuwaiti counterparts. The main support in Kuwait comes from the neurologist, who primarily prescribe medications and advise patients to try to be active. The Kuwaiti respondents thought that lack of encouragement was the main reason for them not to engage in social activities.Keywords: multiple sclerosis, Kuwait, exercise, demographic
Procedia PDF Downloads 1184402 Methods of Variance Estimation in Two-Phase Sampling
Authors: Raghunath Arnab
Abstract:
The two-phase sampling which is also known as double sampling was introduced in 1938. In two-phase sampling, samples are selected in phases. In the first phase, a relatively large sample of size is selected by some suitable sampling design and only information on the auxiliary variable is collected. During the second phase, a sample of size is selected either from, the sample selected in the first phase or from the entire population by using a suitable sampling design and information regarding the study and auxiliary variable is collected. Evidently, two phase sampling is useful if the auxiliary information is relatively easy and cheaper to collect than the study variable as well as if the strength of the relationship between the variables and is high. If the sample is selected in more than two phases, the resulting sampling design is called a multi-phase sampling. In this article we will consider how one can use data collected at the first phase sampling at the stages of estimation of the parameter, stratification, selection of sample and their combinations in the second phase in a unified setup applicable to any sampling design and wider classes of estimators. The problem of the estimation of variance will also be considered. The variance of estimator is essential for estimating precision of the survey estimates, calculation of confidence intervals, determination of the optimal sample sizes and for testing of hypotheses amongst others. Although, the variance is a non-negative quantity but its estimators may not be non-negative. If the estimator of variance is negative, then it cannot be used for estimation of confidence intervals, testing of hypothesis or measure of sampling error. The non-negativity properties of the variance estimators will also be studied in details.Keywords: auxiliary information, two-phase sampling, varying probability sampling, unbiased estimators
Procedia PDF Downloads 5884401 The COVID-19 Pandemic and Supply Chain Resilience of Food Banks: A Multiple-Case Study
Authors: Karima Afif, Jacinthe Clouthier, Marie-Ève Gaboury-Bonhomme, Véronique Provencher, Morgane Leclercq
Abstract:
This paper investigates how food banks have secured and improved their supply chain resilience to pursue their mission during COVID-19. More specifically, the implications of the COVID-19 outbreak on the food aid needs, donations, operations, and mission of food banks are explored. To develop an in-depth understanding of the reactions and actions that they have been taken, a qualitative approach has been adopted using a multiple case study design. Data from two focus groups, 12 semi-structured interviews with key informants covering all supply chain levels, and field notes from 7 workplace observations in donation points, food bank facilities, and community-based organizations in Québec (Canada) are triangulated. The results highlight that the pandemic has significantly and unpredictably increased the number of food aid demands, causing significant operational challenges for the food banks supply chain, as well as an unprecedented shortage of donations to food banks. Besides, the sanitary measures have required several adaptative strategies. These implications have caused food banks to enhance their operational flexibility, optimize their logistics operations, enhance their human resources management, and expand collaboration within their supply chain.Keywords: supply chain resilience, food banks, food donations, food aid, COVID-19
Procedia PDF Downloads 714400 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest
Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff
Abstract:
Nowadays, illegal logging has been causing much effect to our forest. Some of it causes a flash flood, avalanche, global warming, and etc. This comprehensibly makes us wonder why, what, and who has made it happened. Often, it already has been too late after we have known the cause of it. Even the Malaysian Royal Belum forest has not been spared from land clearing or illegal activity by the natives although this area has been gazetted as a protected area preserved for future generations. Furthermore, because of its sizeable and wide area, these illegal activities are difficult to monitor and to maintain. A critical action must be called upon to prevent all of these unhealthy activities from recurrence. Therefore, a remote monitoring device must be developed in order to capture critical real-time data such as temperature, humidity, gaseous, fire, and rain detection which indicates the current and preserved natural state and habitat in the forest. Besides, this device location can be detected via GPS by showing the latitudes and longitudes of its current location and then to be transmitted by SMS via GSM system. All of its readings will be sent in real-time for data management and analysis. This result will be benefited to the monitoring bodies or relevant authority in keeping the forest in the natural habitat. Furthermore, this research is to gather a unified data and then will be analysed for its comparison with an existing method.Keywords: remote monitoring system, forest data, GSM, GPS, wireless sensor
Procedia PDF Downloads 4174399 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite
Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li
Abstract:
Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption
Procedia PDF Downloads 2814398 Attribute Based Comparison and Selection of Modular Self-Reconfigurable Robot Using Multiple Attribute Decision Making Approach
Authors: Manpreet Singh, V. P. Agrawal, Gurmanjot Singh Bhatti
Abstract:
From the last decades, there is a significant technological advancement in the field of robotics, and a number of modular self-reconfigurable robots were introduced that can help in space exploration, bucket to stuff, search, and rescue operation during earthquake, etc. As there are numbers of self-reconfigurable robots, choosing the optimum one is always a concern for robot user since there is an increase in available features, facilities, complexity, etc. The objective of this research work is to present a multiple attribute decision making based methodology for coding, evaluation, comparison ranking and selection of modular self-reconfigurable robots using a technique for order preferences by similarity to ideal solution approach. However, 86 attributes that affect the structure and performance are identified. A database for modular self-reconfigurable robot on the basis of different pertinent attribute is generated. This database is very useful for the user, for selecting a robot that suits their operational needs. Two visual methods namely linear graph and spider chart are proposed for ranking of modular self-reconfigurable robots. Using five robots (Atron, Smores, Polybot, M-Tran 3, Superbot), an example is illustrated, and raking of the robots is successfully done, which shows that Smores is the best robot for the operational need illustrated, and this methodology is found to be very effective and simple to use.Keywords: self-reconfigurable robots, MADM, TOPSIS, morphogenesis, scalability
Procedia PDF Downloads 2234397 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 1394396 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: beam structures, layerwise, optimization, variable stiffness
Procedia PDF Downloads 1434395 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries
Authors: Abdulrahman M. Qahtani, Gary. B. Wills, Andy. M. Gravell
Abstract:
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.Keywords: customisation software products, global software engineering, local decision making, requirement engineering, simulation model
Procedia PDF Downloads 4304394 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1504393 Development of a French to Yorùbá Machine Translation System
Authors: Benjamen Nathaniel, Eludiora Safiriyu Ijiyemi, Egume Oneme Lucky
Abstract:
A review on machine translation systems shows that a lot of computational artefacts has been carried out to translate written or spoken texts from a source language to Yorùbá language through Machine Translation systems. However, there are no work on French to Yorùbá language machine translation system; hence, the study investigated the process involved in the translation of French-to-Yorùbá language equivalent with the view to adopting a rule- based MT approach to build a Machine Translation framework from simple sentences administered through questionnaire. Articles and relevant textbooks were reviewed with key speakers of both languages interviewed to find out the processes involved in the translation of French language and their equivalent in Yorùbálanguage simple sentences using home domain terminologies. Achieving this, a model was formulated using phrase grammar structure, re-write rule, parse tree, automata theory- based techniques, designed and implemented respectively with unified modeling language (UML) and python programming language. Analysing the result, it was observed when carrying out the result that, the Machine Translation system performed 18.45% above Experimental Subject Respondent and 2.7% below Linguistics Expert when analysed with word orthography, sentence syntax and semantic correctness of the sentences. And, when compared with Google Machine Translation system, it was noticed that the developed system performed better on lexicons of the target language.Keywords: machine translation (MT), rule-based, French language, Yoru`ba´ language
Procedia PDF Downloads 774392 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing
Procedia PDF Downloads 2864391 Traditional Management Systems and the Conservation of Cultural and Natural Heritage: Multiple Case Studies in Zimbabwe
Authors: Nyasha Agnes Gurira, Petronella Katekwe
Abstract:
Traditional management systems (TMS) are a vital source of knowledge for conserving cultural and natural heritage. TMS’s are renowned for their ability to preserve both tangible and intangible manifestations of heritage. They are a construct of the intricate relationship that exists between heritage and host communities, where communities are recognized as owners of heritage and so, set up management mechanisms to ensure its adequate conservation. Multiple heritage condition surveys were conducted to assess the effectiveness of using TMS in the conservation of both natural and cultural heritage. Surveys were done at Nharira Hills, Mahwemasimike, Dzimbahwe, Manjowe Rock art sites and Norumedzo forest which are heritage places in Zimbabwe. It assessed the state of conservation of the five case studies and assessed the role that host communities play in the management of these heritage places. It was revealed that TMS’s are effective in the conservation of natural heritage, however in relation to heritage forms with cultural manifestations, there are major disparities. These range from differences in appreciation and perception of value within communities leading to vandalism, over emphasis in the conservation of the intangible element as opposed to the tangible. This leaves the tangible element at risk. Despite these issues, TMS are a reliable knowledge base which enables more holistic conservation approaches for cultural and natural heritage.Keywords: communities, cultural intangible, tangible heritage, traditional management systems, natural
Procedia PDF Downloads 5614390 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model
Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura
Abstract:
This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.Keywords: Malawi rainfall, forecast model, predictors, SST
Procedia PDF Downloads 3894389 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?
Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson
Abstract:
The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.Keywords: predisposition, familial, exome sequencing, breast cancer
Procedia PDF Downloads 4944388 Contrastive Learning for Unsupervised Object Segmentation in Sequential Images
Authors: Tian Zhang
Abstract:
Unsupervised object segmentation aims at segmenting objects in sequential images and obtaining the mask of each object without any manual intervention. Unsupervised segmentation remains a challenging task due to the lack of prior knowledge about these objects. Previous methods often require manually specifying the action of each object, which is often difficult to obtain. Instead, this paper does not need action information of objects and automatically learns the actions and relations among objects from the structured environment. To obtain the object segmentation of sequential images, the relationships between objects and images are extracted to infer the action and interaction of objects based on the multi-head attention mechanism. Three types of objects’ relationships in the object segmentation task are proposed: the relationship between objects in the same frame, the relationship between objects in two frames, and the relationship between objects and historical information. Based on these relationships, the proposed model (1) is effective in multiple objects segmentation tasks, (2) just needs images as input, and (3) produces better segmentation results as more relationships are considered. The experimental results on multiple datasets show that this paper’s method achieves state-of-art performance. The quantitative and qualitative analyses of the result are conducted. The proposed method could be easily extended to other similar applications.Keywords: unsupervised object segmentation, attention mechanism, contrastive learning, structured environment
Procedia PDF Downloads 1114387 A Validated UPLC-MS/MS Assay Using Negative Ionization Mode for High-Throughput Determination of Pomalidomide in Rat Plasma
Authors: Muzaffar Iqbal, Essam Ezzeldin, Khalid A. Al-Rashood
Abstract:
Pomalidomide is a second generation oral immunomodulatory agent, being used for the treatment of multiple myeloma in patients with disease refractory to lenalidomide and bortezomib. In this study, a sensitive UPLC-MS/MS assay was developed and validated for high-throughput determination of pomalidomide in rat plasma using celecoxib as an internal standard (IS). Liquid liquid extraction using dichloromethane as extracting agent was employed to extract pomalidomide and IS from 200 µL of plasma. Chromatographic separation was carried on Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) using an isocratic mobile phase of acetonitrile:10 mM ammonium acetate (80:20, v/v), at a flow rate of 0.250 mL/min. Both pomalidomide and IS were eluted at 0.66 ± 0.03 and 0.80 ± 0.03 min, respectively with a total run time of 1.5 min only. Detection was performed on a triple quadrupole tandem mass spectrometer using electrospray ionization in negative mode. The precursor to product ion transitions of m/z 272.01 → 160.89 for pomalidomide and m/z 380.08 → 316.01 for IS were used to quantify them respectively, using multiple reaction monitoring mode. The developed method was validated according to regulatory guideline for bioanalytical method validation. The linearity in plasma sample was achieved in the concentration range of 0.47–400 ng/mL (r2 ≥ 0.997). The intra and inter-day precision values were ≤ 11.1% (RSD, %) whereas accuracy values ranged from - 6.8 – 8.5% (RE, %). In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of pomalidomide in rats.Keywords: pomalidomide, pharmacokinetics, LC-MS/MS, celecoxib
Procedia PDF Downloads 3914386 Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target
Authors: Ivan Ramos Sampe Immanuel, Linung Kresno Adikusumo, Liston Sitanggang
Abstract:
Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets.Keywords: production, performance, dashboard, data analytics
Procedia PDF Downloads 714385 Research on the Conservation Strategy of Territorial Landscape Based on Characteristics: The Case of Fujian, China
Authors: Tingting Huang, Sha Li, Geoffrey Griffiths, Martin Lukac, Jianning Zhu
Abstract:
Territorial landscapes have experienced a gradual loss of their typical characteristics during long-term human activities. In order to protect the integrity of regional landscapes, it is necessary to characterize, evaluate and protect them in a graded manner. The study takes Fujian, China, as an example and classifies the landscape characters of the site at the regional scale, middle scale, and detailed scale. A multi-scale approach combining parametric and holistic approaches is used to classify and partition the landscape character types (LCTs) and landscape character areas (LCAs) at different scales, and a multi-element landscape assessment approach is adopted to explore the conservation strategies of the landscape character. Firstly, multiple fields and multiple elements of geography, nature and humanities were selected as the basis of assessment according to the scales. Secondly, the study takes a parametric approach to the classification and partitioning of landscape character, Principal Component Analysis, and two-stage cluster analysis (K-means and GMM) in MATLAB software to obtain LCTs, combines with Canny Operator Edge Detection Algorithm to obtain landscape character contours and corrects LCTs and LCAs by field survey and manual identification methods. Finally, the study adopts the Landscape Sensitivity Assessment method to perform landscape character conservation analysis and formulates five strategies for different LCAs: conservation, enhancement, restoration, creation, and combination. This multi-scale identification approach can efficiently integrate multiple types of landscape character elements, reduce the difficulty of broad-scale operations in the process of landscape character conservation, and provide a basis for landscape character conservation strategies. Based on the natural background and the restoration of regional characteristics, the results of landscape character assessment are scientific and objective and can provide a strong reference in regional and national scale territorial spatial planning.Keywords: parameterization, multi-scale, landscape character identify, landscape character assessment
Procedia PDF Downloads 994384 Wearable Interface for Telepresence in Robotics
Authors: Uriel Martinez-Hernandez, Luke W. Boorman, Hamideh Kerdegari, Tony J. Prescott
Abstract:
In this paper, we present architecture for the study of telepresence, immersion and human-robot interaction. The architecture is built around a wearable interface, developed here, that provides the human with visual, audio and tactile feedback from a remote location. We have chosen to interface the system with the iCub humanoid robot, as it mimics many human sensory modalities, such as vision, with gaze control and tactile feedback. This allows for a straightforward integration of multiple sensory modalities, but also offers a more complete immersion experience for the human. These systems are integrated, controlled and synchronised by an architecture developed for telepresence and human-robot interaction. Our wearable interface allows human participants to observe and explore a remote location, while also being able to communicate verbally with humans located in the remote environment. Our approach has been tested from local, domestic and business venues, using wired, wireless and Internet based connections. This has involved the implementation of data compression to maintain data quality to improve the immersion experience. Initial testing has shown the wearable interface to be robust. The system will endow humans with the ability to explore and interact with other humans at remote locations using multiple sensing modalities.Keywords: telepresence, telerobotics, human-robot interaction, virtual reality
Procedia PDF Downloads 2904383 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems
Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo
Abstract:
The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.Keywords: adaptive control, digital Fly-By-Wire, oscillations suppression, PIO
Procedia PDF Downloads 1344382 Combined Effect of Gender Differences and Fatiguing Task on Unipedal Postural Balance and Functional Mobility in Adults with Multiple Sclerosis
Authors: Sonda Jallouli, Omar Hammouda, Imen Ben Dhia, Salma Sakka, Chokri Mhiri, Mohamed Habib Elleuch, Abedlmoneem Yahia, Sameh Ghroubi
Abstract:
Multiple sclerosis (MS) is characterized by gender differences with affecting women two to four times more than men, but the disease progression is faster and more severe in men. Fatigue represents one of the most frequent and disabling symptoms related to MS. Results of previous studies regarding gender differences in fatigue perception in MS persons are contradictory. Besides, fatigue has been shown to affect negatively postural balance and functional mobility in MS persons. However, no study has taken into account gender differences in the response of these physical parameters to a fatiguing protocol in MS persons. Given the reduction of autonomy due to the alteration of these parameters induced by fatigue and the importance of gender differences in postural balance training programs in fatigued men and women with MS, the aim of this study was to investigate the effect of gender difference on unipedal postural balance and functional mobility after performing a fatiguing task in MS adults. Methods: Eleven women (30.29 ± 7.99 years) and seven men (30.91 ± 8.19 years) with relapsing-remitting MS performed a fatiguing protocol: three sets of the 5×sit to stand test (5-STST), six-minute walk test (6MWT) followed by three sets of the 5-STST. Unipedal balance, functional mobility, and fatigue perception were measured prefatigue (T0) and post fatigue (T3) using a clinical unipedal balance test, timed up and go test (TUGT), and analogic visual scale of fatigue (VASF), respectively. Heart rate (HR) and rate of perceived exertion (RPE) were recorded before, during and after the fatiguing task. Results: Compared to women, men showed an impairment of unipedal balance on the dominant leg (p<0.001, d=0.52) and mobility (p<0.001, d=3) via reducing unipedal stance time and increasing duration of TUGT execution, respectively. No gender differences were observed in 6MWT, 5-STST, HR, RPE and VASF scores. Conclusion: Fatiguing protocol negatively affected unipedal postural balance and mobility only in men. These gender differences were inconclusive but can be taken into account in postural balance rehabilitation programs for persons with MS.Keywords: functional mobility, fatiguing exercises, multiple sclerosis, sex differences, unipedal balance
Procedia PDF Downloads 1384381 Sunspot Cycles: Illuminating Humanity's Mysteries
Authors: Aghamusa Azizov
Abstract:
This study investigates the correlation between solar activity and sentiment in news media coverage, using a large-scale dataset of solar activity since 1750 and over 15 million articles from "The New York Times" dating from 1851 onwards. Employing Pearson's correlation coefficient and multiple Natural Language Processing (NLP) tools—TextBlob, Vader, and DistillBERT—the research examines the extent to which fluctuations in solar phenomena are reflected in the sentiment of historical news narratives. The findings reveal that the correlation between solar activity and media sentiment is generally negligible, suggesting a weak influence of solar patterns on the portrayal of events in news media. Notably, a moderate positive correlation was observed between the sentiments derived from TextBlob and Vader, indicating consistency across NLP tools. The analysis provides insights into the historical impact of solar activity on human affairs and highlights the importance of using multiple analytical methods to understand complex relationships in large datasets. The study contributes to the broader understanding of how extraterrestrial factors may intersect with media-reported events and underlines the intricate nature of interdisciplinary research in the data science and historical domains.Keywords: solar activity correlation, media sentiment analysis, natural language processing, historical event patterns
Procedia PDF Downloads 774380 Properties of Bacterial Nanocellulose for Scenic Arts
Authors: Beatriz Suárez López, Gabriela Forman
Abstract:
Kombucha (a symbiotic culture of bacteria and yeast) produces material capable of acquiring multiple shapes and textures that change significantly under different environment or temperature variations (e.g., when it is exposed to wet conditions), properties that may be explored in the scenic industry. This paper presents an analysis of its specific characteristics, exploring them as a non-conventional material for arts and performance. Costume Design uses surfaces as a powerful way of expression to represent concepts and stories; it may apply the unique features of nano bacterial cellulose (NBC) as assets in this artistic context. A mix of qualitative and quantitative (interventionist) methodology approaches were used -review of relevant literature to deepen knowledge on the research topic (crossing bibliography from different fields of studies: Biology, Art, Costume Design, etc.); as well as descriptive methods: laboratorial experiments, document quantities, observation to identify material properties and possibilities used to express a multiple narrative ideas, concepts and feelings. The results confirmed that NBC is an interactive and versatile material viable to be used in an alternative scenic context; its unique aesthetic and performative qualities, which change in contact to moisture, is a resource that can be used to show a visual and poetic impact on stage.Keywords: biotechnological materials, contemporary dance, costume design, nano bacterial cellulose, performing arts
Procedia PDF Downloads 1014379 Effects of Knitting Variables for Pressure Controlling of Tubular Compression Fabrics
Authors: Shi Yu, Rong Liu, Jingyun Lv
Abstract:
Compression textiles with ergonomic-fit and controllable pressure performance have demonstrated positive effect on prevention and treatment of chronic venous insufficiency (CVI). Well-designed compression textile products contribute to improving user compliance in their daily application. This study explored the effects of multiple knitting variables (yarn-machinery settings) on the physical-mechanical properties and the produced pressure magnitudes of tubular compression fabrics (TCFs) through experimental testing and multiple regression modeling. The results indicated that fabric physical (stitch densities and circumference) and mechanical (tensile) properties were affected by the linear density (yarn diameters) of inlay yarns, which, to some extent, influenced pressure magnitudes of the TCFs. Knitting variables (e.g., feeding velocity of inlay yarns and loop size settings) can alter circumferences and tensile properties of tubular fabrics, respectively, and significantly varied pressure values of the TCFs. This study enhanced the understanding of the effects of knitting factors on pressure controlling of TCFs, thus facilitating dimension and pressure design of compression textiles in future development.Keywords: laid-in knitted fabric, yarn-machinery settings, pressure magnitudes, quantitative analysis, compression textiles
Procedia PDF Downloads 2114378 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach
Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya
Abstract:
A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.Keywords: deep learning, hidden Markov model, pothole, speed breaker
Procedia PDF Downloads 1444377 Influence of Gamma-Radiation Dosimetric Characteristics on the Stability of the Persistent Organic Pollutants
Authors: Tatiana V. Melnikova, Lyudmila P. Polyakova, Alla A. Oudalova
Abstract:
As a result of environmental pollution, the production of agriculture and foodstuffs inevitably contain residual amounts of Persistent Organic Pollutants (POP). The special attention must be given to organic pollutants, including various organochlorinated pesticides (OCP). Among priorities, OCP is DDT (and its metabolite DDE), alfa-HCH, gamma-HCH (lindane). The control of these substances spends proceeding from requirements of sanitary norms and rules. During too time often is lost sight of that the primary product can pass technological processing (in particular irradiation treatment) as a result of which transformation of physicochemical forms of initial polluting substances is possible. The goal of the present work was to study the OCP radiation degradation at a various gamma-radiation dosimetric characteristics. The problems posed for goal achievement: to evaluate the content of the priority of OCPs in food; study the character the degradation of OCP in model solutions (with micro concentrations commensurate with the real content of their agricultural and food products) depending upon dosimetric characteristics of gamma-radiation. Qualitative and quantitative analysis of OCP in food and model solutions by gas chromatograph Varian 3400 (Varian, Inc. (USA)); chromatography-mass spectrometer Varian Saturn 4D (Varian, Inc. (USA)) was carried out. The solutions of DDT, DDE, alpha- and gamma- isomer HCH (0.01, 0.1, 1 ppm) were irradiated on "Issledovatel" (60Co) and "Luch - 1" (60Co) installations at a dose 10 kGy with a variation of dose rate from 0.0083 up to 2.33 kGy/sec. It was established experimentally that OCP residual concentration in individual samples of food products (fish, milk, cereal crops, meat, butter) are evaluated as 10-1-10-4 mg/kg, the value of which depends on the factor-sensations territory and natural migration processes. The results were used in the preparation of model solutions OCP. The dependence of a degradation extent of OCP from a dose rate gamma-irradiation has complex nature. According to our data at a dose 10 kGy, the degradation extent of OCP at first increase passes through a maximum (over the range 0.23 – 0.43 Gy/sec), and then decrease with the magnification of a dose rate. The character of the dependence of a degradation extent of OCP from a dose rate is kept for various OCP, in polar and nonpolar solvents and does not vary at the change of concentration of the initial substance. Also in work conditions of the maximal radiochemical yield of OCP which were observed at having been certain: influence of gamma radiation with a dose 10 kGy, in a range of doses rate 0.23 – 0.43 Gy/sec; concentration initial OCP 1 ppm; use of solvent - 2-propanol after preliminary removal of oxygen. Based on, that at studying model solutions of OCP has been established that the degradation extent of pesticides and qualitative structure of OCP radiolysis products depend on a dose rate, has been decided to continue researches radiochemical transformations OCP into foodstuffs at various of doses rate.Keywords: degradation extent, dosimetric characteristics, gamma-radiation, organochlorinated pesticides, persistent organic pollutants
Procedia PDF Downloads 249