Search results for: hyperspectral remote sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1804

Search results for: hyperspectral remote sensing

1144 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data

Authors: Zegrar Ahmed, Ghabi Mohamed

Abstract:

The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.

Keywords: remote sensing, SIG, ecosystem, degradation, desertification

Procedia PDF Downloads 339
1143 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses

Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan

Abstract:

California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.

Keywords: soil moisture, high resolution, regional drought, analysis and monitoring

Procedia PDF Downloads 136
1142 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 89
1141 Human-Centric Sensor Networks for Comfort and Productivity in Offices: Integrating Environmental, Body Area Network, and Participatory Sensing

Authors: Chenlu Zhang, Wanni Zhang, Florian Schaule

Abstract:

Indoor environment in office buildings directly affects comfort, productivity, health, and well-being of building occupants. Wireless environmental sensor networks have been deployed in many modern offices to monitor and control the indoor environments. However, indoor environmental variables are not strong enough predictors of comfort and productivity levels of every occupant due to personal differences, both physiologically and psychologically. This study proposes human-centric sensor networks that integrate wireless environmental sensors, body area network sensors and participatory sensing technologies to collect data from both environment and human and support building operations. The sensor networks have been tested in one small-size and one medium-size office rooms with 22 participants for five months. Indoor environmental data (e.g., air temperature and relative humidity), physiological data (e.g., skin temperature and Galvani skin response), and physiological responses (e.g., comfort and self-reported productivity levels) were obtained from each participant and his/her workplace. The data results show that: (1) participants have different physiological and physiological responses in the same environmental conditions; (2) physiological variables are more effective predictors of comfort and productivity levels than environmental variables. These results indicate that the human-centric sensor networks can support human-centric building control and improve comfort and productivity in offices.

Keywords: body area network, comfort and productivity, human-centric sensors, internet of things, participatory sensing

Procedia PDF Downloads 139
1140 Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft

Authors: Peyman Honarmandi, Mazen Alhirsh

Abstract:

Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering.

Keywords: aerodynamics of banner, banner design, banner towing, drag coefficients of banner, RC aircraft banner

Procedia PDF Downloads 242
1139 Modeling Local Warming Trend: An Application of Remote Sensing Technique

Authors: Khan R. Rahaman, Quazi K. Hassan

Abstract:

Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).

Keywords: local warming, climate change, urban area, Alberta, Canada

Procedia PDF Downloads 346
1138 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 186
1137 The Increase of Adolescent Obesity Rates after the COVID-19 Pandemic and Possible Obesity Prevention Programs for Implementation

Authors: Tatiana Pratt, Benyamin Hanasabzadeh, Panayiota Courelli

Abstract:

The COVID-19 pandemic is one of the largest global public health issues of this current century. COVID-19 puts people diagnosed with obesity at higher risk of not only contracting the virus but also being hospitalized and dying, making this a vital time to implement obesity prevention programs. However, COVID-19 is predicted to rapidly increase the obesity rate in the United States due to the mandatory sedentary lifestyle the pandemic demands; this is especially harmful to adolescent-aged children because it creates lifelong unhealthy habits and behaviors. Adolescent obesity prevention programs have been rigorously implemented throughout the last century to help diminish the ever-increasing adolescent obesity rate. Since the pandemic kept adolescents inside and away from in-person school, many programs have now become ineffective due to their in-person participation. Examples of in-person participation programs include school lunch programs, OSNAP and New Moves. Therefore, online programs or remote intervention measures are now more essential. This leads to programs such as Time2bHealthy, HEALTH[e]TEEN, and SWITCH should be looked at with more vitality. Adolescents have intertwined their lives with technology and screen usage. Therefore, online and remote prevention programs will continue to play a large role in the post-pandemic era. This literature review will be reviewing past and current adolescent obesity prevention programs and their effectiveness with the new remote, sedentary lifestyle adolescents. Furthermore, it will suggest new ways to more productively decrease adolescent obesity rates by analyzing the harmful factors that COVID-19 introduced into their lifestyles.

Keywords: adolescent, obesity, overweight, COVID-19, preventative care, public health, public policy, obesity prevention programs, online programs

Procedia PDF Downloads 238
1136 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value

Authors: Mostafa Ghasemi, Andrew Urquhart

Abstract:

In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.

Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor

Procedia PDF Downloads 75
1135 Micro Grids, Solution to Power Off-Grid Areas in Pakistan

Authors: M. Naveed Iqbal, Sheza Fatima, Noman Shabbir

Abstract:

In the presence of energy crisis in Pakistan, off-grid remote areas are not on priority list. The use of new large scale coal fired power plants will also make this situation worst. Therefore, the greatest challenge in our society is to explore new ways to power off grid remote areas with renewable energy sources. It is time for a sustainable energy policy which puts consumers, the environment, human health, and peace first. The renewable energy is one of the biggest growing sectors of the energy industry. Therefore, the large scale use of micro grid is thus described here with modeling, simulation, planning and operating of the micro grid. The goal of this research paper is to go into detail of a library of major components of micro grid. The introduction will go through the detail view of micro grid definition. Then, the simulation of Micro Grid in MATLAB/ Simulink including the Photo Voltaic Cell will be described with the detailed modeling. The simulation with the design and modeling will be introduced too.

Keywords: micro grids, distribution generation, PV, off-grid operations

Procedia PDF Downloads 312
1134 Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique

Authors: Junkyeong Kim, Seunghee Park, Ju-Won Kim, Myung-Sug Cho

Abstract:

Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures.

Keywords: concrete curing, embedded piezoelectric sensor, high strength concrete, nuclear power plant, self-sensing impedance

Procedia PDF Downloads 515
1133 Assessing Mobile Robotic Telepresence Based On Measures of Social Telepresence

Authors: A. Bagherzadhalimi, E. Di Maria

Abstract:

The feedbacks obtained regarding the sense of presence from pilot users operating a Mobile Robotic presence (MRP) system to visit a simulated museum are reported in this paper. The aim is to investigate how much the perception of system’s usefulness and ease of use is affected by operators’ sense of social telepresence (presence) in the remote location. Therefore, scenarios of visiting a museum are simulated and the user operators are supposed to perform some regular tasks inside the remote environment including interaction with local users, navigation and visiting the artworks. Participants were divided into two groups, those who had previous experience of operation and interaction with a MRP system and those who never had experience. Based on the results, both groups provided different feedbacks. Moreover, there was a significant association between user’s sense of presence and their perception of system usefulness and ease of use.

Keywords: mobile robotic telepresence, museum, social telepresence, usability test

Procedia PDF Downloads 400
1132 Shark Detection and Classification with Deep Learning

Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti

Abstract:

Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.

Keywords: classification, data mining, Instagram, remote monitoring, sharks

Procedia PDF Downloads 121
1131 Flood Risk Assessment in the Niger River Basin in Support of the Conception of a Flood Risk Management Plan: Case Study of the District of Malanville, Benin

Authors: Freddy Houndekindo

Abstract:

A study was carried out to evaluate the flood risk in the district of Malanville located along the Niger River. The knowledge produce by this study is useful in the implementation of adaptation and/or mitigation measures to alleviate the impact of the flooding on the populations, the economy and the environment. Over the course of the study, the lack of data in the area of interest has been one of the main challenges encountered. Therefore, in the analysis of the flood hazard different sources of remotely sensed data were used. Moreover, the flood hazard was analysed by applying a 1D hydraulic model: HEC-RAS. After setting up the model for the study area, the different flood scenarios considered were simulated and mapped using ArcGIS and the HEC-GEORAS extension. The result of the simulation gave information about the inundated areas and the water depths at each location. From the analysis of the flood hazard, it was found that between 47% and 50% of the total area of the district of Malanville would be flooded in the different flood scenarios considered, and the water depth varies between 1 and 7 m. The townships of Malanville most at risk of flooding are Momkassa and Galiel, located in a high-risk and very high-risk zone, respectively. Furthermore, the assessment of the flood risk showed that the most vulnerable sector to the inundations is the agricultural sector. Indeed, the cultivated floodplains were the most affected areas by the floodwater in every flood scenarios. Knowing that a high proportion of the population of the district relies on their farmlands in these floodplains for their livelihood, the floods pose a challenge not only to the food security in the area but also to its development.

Keywords: flood risk management, Niger, remote sensing, vulnerability

Procedia PDF Downloads 152
1130 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 63
1129 Non Enzymatic Electrochemical Sensing of Glucose Using Manganese Doped Nickel Oxide Nanoparticles Decorated Carbon Nanotubes

Authors: Anju Joshi, C. N. Tharamani

Abstract:

Diabetes is one of the leading cause of death at present and remains an important concern as the prevalence of the disease is increasing at an alarming rate. Therefore, it is crucial to diagnose the accurate levels of glucose for developing an efficient therapeutic for diabetes. Due to the availability of convenient and compact self-testing, continuous monitoring of glucose is feasible nowadays. Enzyme based electrochemical sensing of glucose is quite popular because of its high selectivity but suffers from drawbacks like complicated purification and immobilization procedures, denaturation, high cost, and low sensitivity due to indirect electron transfer. Hence, designing a robust enzyme free platform using transition metal oxides remains crucial for the efficient and sensitive determination of glucose. In the present work, manganese doped nickel oxide nanoparticles (Mn-NiO) has been synthesized onto the surface of multiwalled carbon nanotubes using a simple microwave assisted approach for non-enzymatic electrochemical sensing of glucose. The morphology and structure of the synthesized nanostructures were characterized using scanning electron microscopy (SEM) and X-Ray diffraction (XRD). We demonstrate that the synthesized nanostructures show enormous potential for electrocatalytic oxidation of glucose with high sensitivity and selectivity. Cyclic voltammetry and square wave voltammetry studies suggest superior sensitivity and selectivity of Mn-NiO decorated carbon nanotubes towards the non-enzymatic determination of glucose. A linear response between the peak current and the concentration of glucose has been found to be in the concentration range of 0.01 μM- 10000 μM which suggests the potential efficacy of Mn-NiO decorated carbon nanotubes for sensitive determination of glucose.

Keywords: diabetes, glucose, Mn-NiO decorated carbon nanotubes, non-enzymatic

Procedia PDF Downloads 235
1128 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.

Keywords: algorithm, LiDAR, object recognition, OBIA

Procedia PDF Downloads 244
1127 Development of a Low-Cost Smart Insole for Gait Analysis

Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri

Abstract:

Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.

Keywords: gait analysis, IoT, smart insole, accelerometer sensor

Procedia PDF Downloads 17
1126 Micro-Hydrokinetic for Remote Rural Electrification

Authors: S. P. Koko, K. Kusakana, H. J. Vermaak

Abstract:

Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).

Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)

Procedia PDF Downloads 432
1125 Future Projection of Glacial Lake Outburst Floods Hazard: A Hydrodynamic Study of the Highest Lake in the Dhauliganga Basin, Uttarakhand

Authors: Ashim Sattar, Ajanta Goswami, Anil V. Kulkarni

Abstract:

Glacial lake outburst floods (GLOF) highly contributes to mountain hazards in the Himalaya. Over the past decade, high altitude lakes in the Himalaya has been showing notable growth in their size and number. The key reason is rapid retreat of its glacier front. Hydrodynamic modeling GLOF using shallow water equations (SWE) would result in understanding its impact in the downstream region. The present study incorporates remote sensing based ice thickness modeling to determine the future extent of the Dhauliganga Lake to map the over deepening extent around the highest lake in the Dhauliganga basin. The maximum future volume of the lake calculated using area-volume scaling is used to model a GLOF event. The GLOF hydrograph is routed along the channel using one dimensional and two dimensional model to understand the flood wave propagation till it reaches the 1st hydropower station located 72 km downstream of the lake. The present extent of the lake calculated using SENTINEL 2 images is 0.13 km². The maximum future extent of the lake, mapped by investigating the glacier bed has a calculated scaled volume of 3.48 x 106 m³. The GLOF modeling releasing the future volume of the lake resulted in a breach hydrograph with a peak flood of 4995 m³/s at just downstream of the lake. Hydraulic routing

Keywords: GLOF, glacial lake outburst floods, mountain hazard, Central Himalaya, future projection

Procedia PDF Downloads 162
1124 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education

Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina

Abstract:

Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.

Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory

Procedia PDF Downloads 395
1123 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing

Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare

Abstract:

Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.

Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell

Procedia PDF Downloads 77
1122 Assessment of the Number of Damaged Buildings from a Flood Event Using Remote Sensing Technique

Authors: Jaturong Som-ard

Abstract:

The heavy rainfall from 3rd to 22th January 2017 had swamped much area of Ranot district in southern Thailand. Due to heavy rainfall, the district was flooded which had a lot of effects on economy and social loss. The major objective of this study is to detect flooding extent using Sentinel-1A data and identify a number of damaged buildings over there. The data were collected in two stages as pre-flooding and during flood event. Calibration, speckle filtering, geometric correction, and histogram thresholding were performed with the data, based on intensity spectral values to classify thematic maps. The maps were used to identify flooding extent using change detection, along with the buildings digitized and collected on JOSM desktop. The numbers of damaged buildings were counted within the flooding extent with respect to building data. The total flooded areas were observed as 181.45 sq.km. These areas were mostly occurred at Ban khao, Ranot, Takhria, and Phang Yang sub-districts, respectively. The Ban khao sub-district had more occurrence than the others because this area is located at lower altitude and close to Thale Noi and Thale Luang lakes than others. The numbers of damaged buildings were high in Khlong Daen (726 features), Tha Bon (645 features), and Ranot sub-district (604 features), respectively. The final flood extent map might be very useful for the plan, prevention and management of flood occurrence area. The map of building damage can be used for the quick response, recovery and mitigation to the affected areas for different concern organization.

Keywords: flooding extent, Sentinel-1A data, JOSM desktop, damaged buildings

Procedia PDF Downloads 192
1121 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia

Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli

Abstract:

Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.

Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield

Procedia PDF Downloads 101
1120 Research on the United Navigation Mechanism of Land, Sea and Air Targets under Multi-Sources Information Fusion

Authors: Rui Liu, Klaus Greve

Abstract:

The navigation information is a kind of dynamic geographic information, and the navigation information system is a kind of special geographic information system. At present, there are many researches on the application of centralized management and cross-integration application of basic geographic information. However, the idea of information integration and sharing is not deeply applied into the research of navigation information service. And the imperfection of navigation target coordination and navigation information sharing mechanism under certain navigation tasks has greatly affected the reliability and scientificity of navigation service such as path planning. Considering this, the project intends to study the multi-source information fusion and multi-objective united navigation information interaction mechanism: first of all, investigate the actual needs of navigation users in different areas, and establish the preliminary navigation information classification and importance level model; and then analyze the characteristics of the remote sensing and GIS vector data, and design the fusion algorithm from the aspect of improving the positioning accuracy and extracting the navigation environment data. At last, the project intends to analyze the feature of navigation information of the land, sea and air navigation targets, and design the united navigation data standard and navigation information sharing model under certain navigation tasks, and establish a test navigation system for united navigation simulation experiment. The aim of this study is to explore the theory of united navigation service and optimize the navigation information service model, which will lay the theory and technology foundation for the united navigation of land, sea and air targets.

Keywords: information fusion, united navigation, dynamic path planning, navigation information visualization

Procedia PDF Downloads 288
1119 Satellite Technology Usage for Greenhouse Gas Emissions Monitoring and Verification: Policy Considerations for an International System

Authors: Timiebi Aganaba-Jeanty

Abstract:

Accurate and transparent monitoring, reporting and verification of Greenhouse Gas (GHG) emissions and removals is a requirement of the United Nations Framework Convention on Climate Change (UNFCCC). Several countries are obligated to prepare and submit an annual national greenhouse gas inventory covering anthropogenic emissions by sources and removals by sinks, subject to a review conducted by an international team of experts. However, the process is not without flaws. The self-reporting varies enormously in thoroughness, frequency and accuracy including inconsistency in the way such reporting occurs. The world’s space agencies are calling for a new generation of satellites that would be precise enough to map greenhouse gas emissions from individual nations. The plan is delicate politically because the global system could verify or cast doubt on emission reports from the member states of the UNFCCC. A level playing field is required and an idea that an international system should be perceived as an instrument to facilitate fairness and equality rather than to spy on or punish. This change of perspective is required to get buy in for an international verification system. The research proposes the viability of a satellite system that provides independent access to data regarding greenhouse gas emissions and the policy and governance implications of its potential use as a monitoring and verification system for the Paris Agreement. It assesses the foundations of the reporting monitoring and verification system as proposed in Paris and analyzes this in light of a proposed satellite system. The use of remote sensing technology has been debated for verification purposes and as evidence in courts but this is not without controversy. Lessons can be learned from its use in this context.

Keywords: greenhouse gas emissions, reporting, monitoring and verification, satellite, UNFCCC

Procedia PDF Downloads 286
1118 Comparative Electrochemical Studies of Enzyme-Based and Enzyme-less Graphene Oxide-Based Nanocomposite as Glucose Biosensor

Authors: Chetna Tyagi. G. B. V. S. Lakshmi, Ambuj Tripathi, D. K. Avasthi

Abstract:

Graphene oxide provides a good host matrix for preparing nanocomposites due to the different functional groups attached to its edges and planes. Being biocompatible, it is used in therapeutic applications. As enzyme-based biosensor requires complicated enzyme purification procedure, high fabrication cost and special storage conditions, we need enzyme-less biosensors for use even in a harsh environment like high temperature, varying pH, etc. In this work, we have prepared both enzyme-based and enzyme-less graphene oxide-based biosensors for glucose detection using glucose-oxidase as enzyme and gold nanoparticles, respectively. These samples were characterized using X-ray diffraction, UV-visible spectroscopy, scanning electron microscopy, and transmission electron microscopy to confirm the successful synthesis of the working electrodes. Electrochemical measurements were performed for both the working electrodes using a 3-electrode electrochemical cell. Cyclic voltammetry curves showed the homogeneous transfer of electron on the electrodes in the scan range between -0.2V to 0.6V. The sensing measurements were performed using differential pulse voltammetry for the glucose concentration varying from 0.01 mM to 20 mM, and sensing was improved towards glucose in the presence of gold nanoparticles. Gold nanoparticles in graphene oxide nanocomposite played an important role in sensing glucose in the absence of enzyme, glucose oxidase, as evident from these measurements. The selectivity was tested by measuring the current response of the working electrode towards glucose in the presence of the other common interfering agents like cholesterol, ascorbic acid, citric acid, and urea. The enzyme-less working electrode also showed storage stability for up to 15 weeks, making it a suitable glucose biosensor.

Keywords: electrochemical, enzyme-less, glucose, gold nanoparticles, graphene oxide, nanocomposite

Procedia PDF Downloads 141
1117 Impacts of Aquaculture Farms on the Mangroves Forests of Sundarbans, India (2010-2018): Temporal Changes of NDVI

Authors: Sandeep Thakur, Ismail Mondal, Phani Bhusan Ghosh, Papita Das, Tarun Kumar De

Abstract:

Sundarbans Reserve forest of India has been undergoing major transformations in the recent past owing to population pressure and related changes. This has brought about major changes in the spatial landscape of the region especially in the western parts. This study attempts to assess the impacts of the Landcover changes on the mangrove habitats. Time series imageries of Landsat were used to analyze the Normalized Differential Vegetation Index (NDVI) patterns over the western parts of Indian Sundarbans forest in order to assess the heath of the mangroves in the region. The images were subjected to Land use Land cover (LULC) classification using sub-pixel classification techniques in ERDAS Imagine software and the changes were mapped. The spatial proliferation of aquaculture farms during the study period was also mapped. A multivariate regression analysis was carried out between the obtained NDVI values and the LULC classes. Similarly, the observed meteorological data sets (time series rainfall and minimum and maximum temperature) were also statistically correlated for regression. The study demonstrated the application of NDVI in assessing the environmental status of mangroves as the relationship between the changes in the environmental variables and the remote sensing based indices felicitate an efficient evaluation of environmental variables, which can be used in the coastal zone monitoring and development processes.

Keywords: aquaculture farms, LULC, Mangrove, NDVI

Procedia PDF Downloads 181
1116 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis

Authors: Syed Amer Mahmood, Rao Mansor Ali Khan

Abstract:

This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.

Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT

Procedia PDF Downloads 348
1115 Satellite Derived Snow Cover Status and Trends in the Indus Basin Reservoir

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

Snow constitutes an important component of the cryosphere, characterized by high temporal and spatial variability. Because of the contribution of snow melt to water availability, snow is an important focus for research on climate change and adaptation. MODIS satellite data have been used to identify spatial-temporal trends in snow cover in the upper Indus basin. For this research MODIS satellite 8 day composite data of medium resolution (250m) have been analysed from 2001-2005.Pixel based supervised classification have been performed and extent of snow have been calculated of all the images. Results show large variation in snow cover between years while an increasing trend from west to east is observed. Temperature data for the Upper Indus Basin (UIB) have been analysed for seasonal and annual trends over the period 2001-2005 and calibrated with the results acquired by the research. From the analysis it is concluded that there are indications that regional warming is one of the factor that is affecting the hydrology of the upper Indus basin due to accelerated glacial melting during the simulation period, stream flow in the upper Indus basin can be predicted with a high degree of accuracy. This conclusion is also supported by the research of ICIMOD in which there is an observation that the average annual precipitation over a five year period is less than the observed stream flow and supported by positive temperature trends in all seasons.

Keywords: indus basin, MODIS, remote sensing, snow cover

Procedia PDF Downloads 387