Search results for: physic-mechanical properties
2205 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas
Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang
Abstract:
An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.Keywords: axial capacity, cyclic loading, pile ageing, shallow gas
Procedia PDF Downloads 3452204 Antimicrobial, Antioxidant and Cytotoxicity Properties of Some Selected Wild Edible Fruits Used Traditionally as a Source of Food
Authors: Thilivhali Emmanuel Tshikalange, Darky Cheron Modishane, Frederick Tawi Tabit
Abstract:
The fruit pulp extracts of twelve selected ethnobotanical wild edible fruits from Mutale local municipality in Venda (Limpopo Province, South Africa) were investigated for their antimicrobial, antioxidant and cytotoxicity activities. Methanol extracts were prepared and tested against six micro-organisms (Salmonella typhi, Streptococcus pyogenes, Bacillus cereus, Klebsiella pneumoniae, Prevotella intermedia and Candida albicans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the micro-dilution method, while for antioxidant activity the 2,2-diphenyl-1-picrylhydrazyl method was used. Of the 12 extracts tested, Adonsonia digitata, Berchemia discolor, Manilkara mochisia, Xanthocercis zambesiaca, Landolphia kirkii and Garcinia livingstonei showed antimicrobial activity, with MIC values ranging from 12.5 to 0.4 mg/ml. Gram negative bacteria were more resistant to the extracts in comparison to Gram positive bacteria. Antioxidant activity was only detected in Adonsonia digitata extract and the IC50 (substrate concentration to produce 50% reduction) was found to be 16.18µg/ml. The cytotoxicity of the extracts that showed antimicrobial and antioxidant activities was also determined. All plant extracts tested were non-toxic against human kidney cells (HEK293), with IC50 values of >400 µg/ml. The results presented in this study provide support to some traditional uses of wild edible fruits.Keywords: antimicrobial, antioxidant, cytotoxicity, ethnobotanical, fruits
Procedia PDF Downloads 3922203 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites
Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh
Abstract:
The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength
Procedia PDF Downloads 612202 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency
Procedia PDF Downloads 5242201 Development and Evaluation of Naringenin Nanosuspension to Improve Antioxidant Potential
Authors: Md. Shadab, Mariyam N. Nashid, Venkata Srikanth Meka, Thiagarajan Madheswaran
Abstract:
Naringenin (NAR), is a naturally occurring plant flavonoid, found predominantly in citrus fruits, that possesses a wide range of pharmacological properties including anti-oxidant, anti-inflammatory behaviour, cholesterol-lowering and anticarcinogenic activities. However, despite the therapeutic potential of naringenin shown in a number of animal models, its clinical development has been hindered due to its low aqueous solubility, slow dissolution rate and inefficient transport across biological membranes resulting in low bioavailability. Naringenin nanosuspension were produced using stabilizers Tween® 80 by high pressure homogenization techniques. The nanosuspensions were characterized with regard to size (photon correlation spectroscopy (PCS), size distribution, charge (zeta potential measurements), morphology, short term physical stability, dissolution profile and antioxidant potential. A nanocrystal PCS size of about 500 nm was obtained after 20 homogenization cycles at 1500 bar. The short-term stability was assessed by storage of the nanosuspensions at 4 ◦C, room temperature and 40 ◦C. Result showed that naringenin nanosuspension was physically unstable due to large fluctuations in the particle size and zeta potential after 30 days. Naringenin nanosuspension demonstrated higher drug dissolution (97.90%) compared to naringenin powder (62.76%) after 120 minutes of testing. Naringenin nanosuspension showed increased antioxidant activity compared to naringenin powder with a percentage DPPH radical scavenging activity of 49.17% and 31.45% respectively at the lowest DPPH concentration.Keywords: bioavailability, naringenin, nanosuspension, oral delivery
Procedia PDF Downloads 3262200 Hydrothermal Synthesis of Hydrosodalite by Using Ultrasounds
Authors: B. Białecka, Z. Adamczyk, M. Cempa
Abstract:
The use of ultrasounds in zeolization of fly ash can increase the efficiency of this process. The molar ratios of the reagents, as well as the time and temperature of the synthesis, are the main parameters determining the type and properties of the zeolite formed. The aim of the work was to create hydrosodalite in a short time (8h), with low NaOH concentration (3 M) and in low temperature (80°C). A zeolite material contained in fly ash from hard coal combustion in one of Polish Power Plant was subjected to hydrothermal alkaline synthesis. The phase composition of the ash consisted mainly of glass, mullite, quartz, and hematite. The dominant chemical components of the ash were SiO₂ (over 50%mas.) and Al₂O₃ (more than 28%mas.), whereas the contents of the remaining components, except Fe₂O₃ (6.34%mas.), did not exceed 4% mas. The hydrothermal synthesis of the zeolite material was carried out in the following conditions: 3M-solution of NaOH, synthesis time – 8 hours, 40 kHz-frequency ultrasounds during the first two hours of synthesis. The mineral components of the input ash as well as product after synthesis were identified in microscopic observations, in transmitted light, using X-ray diffraction (XRD) and electron scanning microscopy (SEM/EDS). The chemical composition of the input ash was identified by the method of X-ray fluorescence (XRF). The obtained material apart from phases found in the initial fly ash sample, also contained new phases, i.e., hydrosodalite and NaP-type zeolite. The chemical composition in micro areas of grains indicated their diversity: i) SiO₂ content was in the range 30-59%mas., ii) Al₂O₃ content was in the range 24-35%mas., iii) Na₂O content was in the range 6-15%mas. This clearly indicates that hydrosodalite forms hypertrophies with NaP type zeolite as well as relict grains of fly ash. A small amount of potassium in the examined grains is noteworthy, which may indicate the substitution of sodium with potassium. This is confirmed by the high value of the correlation coefficient between these two components.Keywords: fly ash, hydrosodalite, ultrasounds, zeolite
Procedia PDF Downloads 1522199 Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils
Authors: Elad Arad, Raz Jelinek, Hanna Rapaport
Abstract:
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications.Keywords: titanium dioxide, amyloids, photothermal treatment, catechol, Congo-red
Procedia PDF Downloads 1462198 Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer
Authors: Tinomuvonga Manenji Zhou, Eubert Mahofa, Tatenda Crispen Madzokere
Abstract:
The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture.Keywords: NPK hydroxyapatite nano hybrid fertilizer, bentonite, encapsulation, low release
Procedia PDF Downloads 942197 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial
Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew
Abstract:
Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration
Procedia PDF Downloads 2722196 Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading
Authors: S. F. H. Tasfy, N. A. M. Zabidi, M.-S. Shaharun
Abstract:
Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial for the production of clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in microactivity fixed-bed system at 250 °C, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance was strongly affected by the loading of the active site. Where, the catalytic activity, methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14 % and methanol selectivity of 92 % were obtained over Cu/ZnO-SBA-15 catalyst with total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well disperses active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.Keywords: hydrogenation of carbon dioxide, methanol synthesis, metal loading, Cu/ZnO-SBA-15 catalyst
Procedia PDF Downloads 2302195 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions
Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet
Abstract:
Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera
Procedia PDF Downloads 1432194 Rainstorm Characteristics over the Northeastern Region of Thailand: Weather Radar Analysis
Authors: P. Intaracharoen, P. Chantraket, C. Detyothin, S. Kirtsaeng
Abstract:
Radar reflectivity data from Phimai weather radar station of DRRAA (Department of Royal Rainmaking and Agricultural Aviation) were used to analyzed the rainstorm characteristics via Thunderstorm Identification Tracking Analysis and Nowcasting (TITAN) algorithm. The Phimai weather radar station was situated at Nakhon Ratchasima province, northeastern Thailand. The data from 277 days of rainstorm events occurring from May 2016 to May 2017 were used to investigate temporal distribution characteristics of convective individual rainclouds. The important storm properties, structures, and their behaviors were analyzed by 9 variables as storm number, storm duration, storm volume, storm area, storm top, storm base, storm speed, storm orientation, and maximum storm reflectivity. The rainstorm characteristics were also examined by separating the data into two periods as wet and dry season followed by an announcement of TMD (Thai Meteorological Department), under the influence of southwest monsoon (SWM) and northeast monsoon (NEM). According to the characteristics of rainstorm results, it can be seen that rainstorms during the SWM influence were found to be the most potential rainstorms over northeastern region of Thailand. The SWM rainstorms are larger number of the storm (404, 140 no./day), storm area (34.09, 26.79 km²) and storm volume (95.43, 66.97 km³) than NEM rainstorms, respectively. For the storm duration, the average individual storm duration during the SWM and NEM was found a minor difference in both periods (47.6, 48.38 min) and almost all storm duration in both periods were less than 3 hours. The storm velocity was not exceeding 15 km/hr (13.34 km/hr for SWM and 10.67 km/hr for NEM). For the rainstorm reflectivity, it was found a little difference between wet and dry season (43.08 dBz for SWM and 43.72 dBz for NEM). It assumed that rainstorms occurred in both seasons have same raindrop size.Keywords: rainstorm characteristics, weather radar, TITAN, Northeastern Thailand
Procedia PDF Downloads 1932193 Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications
Authors: M. Venkateswarlu, Srinivasa Rao Allam, S. K. Mahamuda, K. Swapna, G. Vijaya Prakash
Abstract:
Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively.Keywords: glasses, JO parameters, optical materials, thullium
Procedia PDF Downloads 2522192 Modelling Interactions between Saturated and Unsaturated Zones by Hydrus 1D, Plain of Kairouan, Central Tunisia
Authors: Mariem Saadi, Sabri Kanzari, Adel Zghibi
Abstract:
In semi-arid areas like the Kairouan region, the constant irrigation with saline water and the overuse of groundwater resources, soils and aquifers salinization has become an increasing concern. In this study, a methodology has been developed to evaluate the groundwater contamination risk based on the unsaturated zone hydraulic properties. Two soil profiles with different ranges of salinity, one located in the north of the plain and another one in the south of plain (each 30 m deep) and both characterized by direct recharge of the aquifer were chosen. Simulations were conducted with Hydrus-1D code using measured precipitation data for the period 1998-2003 and calculated evapotranspiration for both chosen profiles. Four combinations of initial conditions of water content and salt concentration were used for the simulation process in order to find the best match between simulated and measured values. The success of the calibration of Hydrus-1D allowed the investigation of some scenarios in order to assess the contamination risk under different natural conditions. The aquifer risk contamination is related to the natural conditions where it increased while facing climate change and temperature increase and decreased in the presence of a clay layer in the unsaturated zone. Hydrus-1D was a useful tool to predict the groundwater level and quality in the case of a direct recharge and in the absence of any information related to the soil layers except for the texture.Keywords: Hydrus-1D, Kairouan, salinization, semi-arid region, solute transport, unsaturated zone
Procedia PDF Downloads 1832191 Factors Controlling Durability of Some Egyptian Non-Stylolitic Marbleized Limestone to Salt Weathering
Authors: H. El Shayab, G. M. Kamh, N. G. Abdel Ghafour, M. L. Abdel Latif
Abstract:
Nowadays, marbleized limestone becomes one of the most important sources of the mineral wealth in Egypt as they have beautiful colors (white, grey, rose, yellow and creamy, etc.) make it very suitable for decoration purposes. Non-styolitic marbleized limestone which not contains styolitic surfaces. The current study aims to study different factors controlling durability of non-styolitic marbleized limestone against salt crystallization weathering. The achievement aim of the research was required nine representative samples were collected from the studied areas. Three samples from each of the studied areas. The studied samples was characterized by various instrumental methods before salt weathering, to determine its mineralogical composition, chemical composition and pore physical properties respectively. The obtained results revealed that both of Duwi and Delga studied samples nearly have the same average ∆M% 1.63 and 1.51 respectively and consequently A.I. stage of deformation. On the other hand, average ∆M% of Wata studied samples is 0.29 i.e. lower than two other studied areas. Wata studied samples are more durable against salt crystallization test than Duwi and Delga. The difference in salt crystallization durability may be resulted from one of the following factors: Microscopic textural effect as both of micrite and skeletal percent are in directly proportional to durability of stones to salt weathering. Dolomite mineral present as a secondary are in indirectly proportional to durability of stones to salt weathering. Increase in MgO% also associated with decrease the durability of studied samples against salt crystallization test. Finally, all factors affecting positively against salt crystallization test presents in Wadi Wata studied samples rather than others two areas.Keywords: marbleized limestone, salt weathering, Wata, salt weathering
Procedia PDF Downloads 3272190 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler
Authors: Srikanth Korla, Mahesh Sharnangat
Abstract:
Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.Keywords: composite materials, moisture test, filler material, natural fibre composites
Procedia PDF Downloads 2052189 Electrospun Alginate Nanofibers Containing Spirulina Extract Double-Layered with Polycaprolactone Nanofibers
Authors: Seon Yeong Byeon, Hwa Sung Shin
Abstract:
Nanofibrous sheets are of interest in the beauty industries due to the properties of moisturizing, adhesion to skin and delivery of nutrient materials. The benefit and function of the cosmetic products should not be considered without safety thus a non-toxic manufacturing process is ideal when fabricating the products. In this study, we have developed cosmetic patches consisting of alginate and Spirulina extract, a marine resource which has antibacterial and antioxidant effects, without addition of harmful cross-linkers. The patches obtained their structural stabilities by layer-upon-layer electrospinning of an alginate layer on a formerly spread polycaprolactone (PCL) layer instead of crosslinking method. The morphological characteristics, release of Spirulina extract, water absorption, skin adhesiveness and cytotoxicity of the double-layered patches were assessed. The image of scanning electron microscopy (SEM) showed that the addition of Spirulina extract has made the fiber diameter of alginate layers thinner. Impregnation of Spirulina extract increased their hydrophilicity, moisture absorption ability and skin adhesive ability. In addition, wetting the pre-dried patches resulted in releasing the Spirulina extract within 30 min. The patches were detected to have no cytotoxicity in the human keratinocyte cell-based MTT assay, but rather showed increased cell viability. All the results indicate the bioactive and hydro-adhesive double-layered patches have an excellent applicability to bioproducts for personal skin care in the trend of ‘A mask pack a day’.Keywords: alginate, cosmetic patch, electrospun nanofiber, polycaprolactone, Spirulina extract
Procedia PDF Downloads 3472188 Phenolic Compounds and Antioxidant Capacity of Tuckeroo (Cupaniopsis anacardioides) Fruits
Authors: Ngoc Minh Quynh Pham, Quan V. Vuong, Michael C. Bowyer, Christopher J. Scarlett
Abstract:
Tuckeroo (Cupaniopsis anacardioides) is an Australian native plant and is grown in the coastal regions in New South Wales, Queensland and Northern Australia. Its fruits have been eaten by birds; however there is no information on phytochemical and antioxidant capacity of these fruits. This study aimed to determine the phenolic compounds (TPC), flavonoids (TFC), proanthocyanidins (TPro) and antioxidant capacity in the whole or different parts of tuckeroo fruit including skin, flesh and seed. Whole and partly tuckeroo fruits were collected and immediately freeze dried to constant weight and then ground to small particle sizes (<1mm mesh). Samples were extracted in 50% methanol using an ultrasonic bath set at temperature 40 °C for 30 minutes. TPC, TFC, TPro and antioxidant capacity were measured by spectrophotometric analysis. The results showed that the whole fruits contained 106.23 mg GAE/g of TPC, 67.67 mg CAE/g of TFC and 56.74 mg CAE/g of TPro. These fruits also possessed high antioxidant capacity (DPPH: 263.78 mg TroE/g, ABTS: 346.98 mg TroE/g, CUPRAC: 370.12 mg TroE/g and FRAP: 176.30 mg TroE/g), revealing that these fruits are rich source of antioxidants. The results also showed that distribution of the antioxidants was varied in different parts of the fruits. Skin had the highest levels of TPC, TFC, and TPro as well as antioxidant properties, followed by the seed and flesh had the lowest levels of phenolic compounds and antioxidant capacity. Of note, levels of phenolic compounds and antioxidant capacity of the skin were significantly higher than those of the whole fruits. Therefore, the skin of tuckeroo fruits is recommended as a starting material for extraction and purification of phenolic compounds as potential antioxidants for further utilisation in the food and pharmaceutical industries.Keywords: antioxidant capacity, Cupaniopsis anacardioides, phenolic compounds, tuckeroo fruit
Procedia PDF Downloads 3992187 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 1632186 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases
Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams
Abstract:
Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.Keywords: bauxite, kaolin, aging, crystallization, zeolites
Procedia PDF Downloads 2202185 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe
Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara
Abstract:
Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.Keywords: drag reduction, shear viscosity, gum arabic, injection point
Procedia PDF Downloads 1392184 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene
Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell
Abstract:
A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO
Procedia PDF Downloads 1572183 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis
Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman
Abstract:
Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test
Procedia PDF Downloads 1252182 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes
Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv
Abstract:
As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment
Procedia PDF Downloads 2092181 The Big Bang Was Not the Beginning, but a Repeating Pattern of Expansion and Contraction of the Spacetime
Authors: Amrit Ladhani
Abstract:
The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless cycles of expansion and cooling, each beginning with a “big bang” and ending in a “big crunch”. In this paper, we propose a unique property of Space-time. This particular and marvelous nature of space shows us that space can stretch, expand, and shrink. This property of space is caused by the size of the universe change over time: growing or shrinking. The observed accelerated expansion, which relates to the stretching of Shrunk space for the new theory, is derived. This theory is based on three underlying notions: First, the Big Bang is not the beginning of Space-time, but rather, at the very beginning fraction of a second, there was an infinite force of infinite Shrunk space in the cosmic singularity that force gave rise to the big bang and caused the rapidly growing of space, and all other forms of energy are transformed into new matter and radiation and a new period of expansion and cooling begins. Second, there was a previous phase leading up to it, with multiple cycles of contraction and expansion that repeat indefinitely. Third, the two principal long-range forces are the gravitational force and the repulsive force generated by shrink space. They are the two most fundamental quantities in the universe that govern cosmic evolution. They may provide the clockwork mechanism that operates our eternal cyclic universe. The universe will not continue to expand forever; no need, however, for dark energy and dark matter. This new model of Space-time and its unique properties enables us to describe a sequence of events from the Big Bang to the Big Crunch.Keywords: dark matter, dark energy, cosmology, big bang and big crunch
Procedia PDF Downloads 782180 Diversification of Sweet Potato Blends and Utilization for Malnutrition and Poverty Alleviation
Authors: Ladele Ademola A., Nkiru T. Meludu, Olufunke Ezekiel, Olaoye Taye F., Okanlowan Oluwatoyin M.
Abstract:
Value addition to agricultural produce is of possible potential in reducing poverty, improving food security and malnutrition, therefore the need to develop small and micro-enterprises of sweet potato production. The study was carried out in Nigeria to determine the acceptability of blends sweet potato (Ipomea batatas) and commodities yellow maize (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), bambara groundnut (Vigna subterranean), guinea corn (Sorghum vulgare), wheat (Triticum aestivum), and roselle (Hibiscus sabdariffa) through sensory evaluation. Sweet potato (Ipomea batatas) roots were processed using two methods. The first method involved the use of a fabricated gas powered cabinet dryer to dry sulphited chips and the second method was the use of traditional sun drying method without the addition of the chemical. The blends were also assessed in terms of functional, chemical and color properties. Most acceptable blends include BAW (80:20 of sweet potato/wheat), BBC (80:20 of sweet potato/guinea corn), AAB (60:40 of sweet potato/guinea corn), YTE (100% soybean), TYG (100% sweet potato), KTN (100% wheat flour), XGP (80:20 of sweet potato/soybean), XAX (60:40 of sweet potato/wheat), LSS (100% Roselle), CHK (100% Guinea corn), and ABC (60:40% of sweet potato/ yellow maize). In addition, chemical analysis carried out revealed that sweet potato has high percentage of vitamins A and C, potassium (K), manganese (Mn), calcium (Ca), magnesium (Mg) and iron (Fe) and fibre content. There is also an increase of vitamin A and Iron in the blended products.Keywords: blends, diversification, sensory evaluation, sweet potato, utilization
Procedia PDF Downloads 5062179 Mass Customization of Chemical Protective Clothing
Authors: Eugenija Strazdiene, Violeta Bytautaite, Daivute Krisciuniene
Abstract:
The object of the investigation is the suit for chemical protection, which totally covers human body together with breathing apparatus, breathing mask and helmet (JSC Ansell Protective Solutions Lithuania). The end users of such clothing are the members of rescue team – firefighters. During the presentation, the results of 3D scanning with stationary Human Solutions scanner and portable Artec Eva scanner will be compared on the basis of the efficiency of scanning procedure and scanning accuracy. Also, the possibilities to exporting scanned bodies into specialized CAD systems for suit design development and material consumption calculation will be analyzed. The necessity to understand and to implement corresponding clothing material properties during 3D visualization of garment on CAD systems will be presented. During the presentation, the outcomes of the project ‘Smart and Safe Work Wear Clothing SWW’ will be discussed. The project is carried out under the Interreg Baltic Sea Region Program as 2014-2020 European territorial cooperation objective. Thematic priority is Capacity for Innovation. The main goal of the project is to improve competitiveness and to increase business possibilities for work wear enterprises in the Baltic Sea Region. The project focuses on mass customization of products for various end users. It engages textile and clothing manufacturing technology researchers, work wear producers, end users, as well as national textile and clothing branch organizations in Finland, Lithuania, Latvia, Estonia and Poland.Keywords: CAD systems, mass customization, 3D scanning, safe work wear
Procedia PDF Downloads 2022178 Calcium ion cross linked HEC/SA/HA hydrogel:Fabrication, Characterization and Wound Healing Applications
Authors: Fathima Shahitha, Alqasim Al-Mamari, Mohammed Al-Sibani, Ahmed Al Harrasi
Abstract:
The aim of this study is to prepare a novel antibacterial wound healing hydrogel based on hydroxyethyl cellulose/ Sodium alginate/ hyaluronic acid (HEC/SA/HA) and Ag nanoparticles, which is cross-linked via Ca2+ ions. The aim of the study is to obtain a hydrogel compound using green chemistry that helps to heal the wound faster and better. The properties and structure of the hydrogel have been tested to include swelling ratio, vitro degradation, antibacterial and antifungal activity and wound healing tests. It was also characterized via UV-Vis, FTIR, TEM, TGA and tested after it was fabricated by freeze-drying technique. The characteristic peak of UV-Vis spectra revealed the formation of AgNPs in the compound at 411 nm. The FTIR curves showed new peaks that confirmed the oxidation of HEC and also showed the chemical interaction of the three polymers with AgNPs and Ca2+. The TEM images presented monodispersed of AgNPs with their size ranging ( 8.2 to 32 nm ). The results from these studies showed that the hydrogel has an excellent performance in swelling ratio and vitro degradation. Furthermore, the wound healing activity of the hydrogel was examined via measuring the closure of wound and the second group treated with hydrogel revealed a significant healing activity compared to the control group. The hydrogel activity against bacteria and fungi was also measures for 72 h and the results showed excellent performance. These results suggested that the cross-linked hydrogel based on (HEC/HA/SA) with AgNPs might be a promising dressing for wounds.Keywords: hydrogels, wound healing, hydroxyethyl cellulose, sodium alginate, Ca2+ cross-linking, hyaluronic acid
Procedia PDF Downloads 02177 Qualitative Phytochemical Screening and Antibacterial Evaluation of Sohphlang: Flemingia Vestita
Authors: J. K. D. M. P. Madara, R. B. L. Dharmawickreme, Linu John, Ivee Boiss
Abstract:
Flemingia vestita, commonly known as ‘Sohphlang’ is an important medicinal plant found in the North-Eastern region of India, which is traditionally recognized for its anthelmintic properties. This study was aimed to evaluate the phytochemical constituents and antibacterial activity of the tuber skin extracts of the plant species. Methanol, acetone, and water were used to obtain the solvent extractions of the skin peel extracts. Concentrated extracts of skin peel were tested using previously established qualitative phytochemical assays. The antibacterial efficacy of methanol tuber skin extract was tested against Gram-negative and positive microorganisms, namely, Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Mycobacterium tuberculosis strains. Agar well diffusion method was employed to determine the zone of inhibition of the plant extracts. Obtained data were statistically analyzed. Methanol extracts of Flemingia vestita were found to be effective against Bacillus subtilis and Mycobacterium tuberculosis at concentrations of 0.5 mg/ml. The reported zone of inhibition for the two strains was 13.3mm ± 0.57 and 16.3mm ± 4.9, respectively. However Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were resistant to the plant extracts with no zone of inhibition. Alkaloids, glycosides, and phenols were found to be present in aqueous, methanol, and acetone extracts of the plant in qualitative phytochemical analysis.Keywords: flemingia vestita, antibacterial activity, phytochemical screening, well diffusion method
Procedia PDF Downloads 1092176 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window
Authors: Emin Z. Mahmud
Abstract:
Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz.Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening
Procedia PDF Downloads 118