Search results for: soil‒water coupling
4418 Investigation of Drought Resistance in Iranian Sesamum Germpelasm
Authors: Fatemeh Najafi
Abstract:
The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS).Keywords: sesamum, drought, stress, germplasm, resistance
Procedia PDF Downloads 724417 Coagulation-Flocculation of Palm Oil Mill Effluent from Pertubuhan Peladang Negeri Johor, Malaysia
Authors: A. H. Jagaba, Musa Babayo, Ab Aziz Abdul Latiff, Sule Abubakar, I. M. Lawal, Isa Zubairu, M. A. Nasara
Abstract:
Wastewater containing heavy metals is of extreme importance globally because of its potential threat to both the aquatic ecosystem and the soil environment. Heavy metal is hazardous even at low concentration and thereby causing various forms of diseases. One method which has been tested and found to be effective for heavy metals removal is coagulation-flocculation. For the coagulation process of POME obtained from Pertubuhan Peladang Negeri Johor (PPNJ), Oil Palm Mill Company located in Kahang area of Kluang, Johor Darul Takzim, Malaysia, diffèrent coagulants would be used to absorb and then separate the metals from wastewater. The determination of heavy metals concentration in POME was carried out using an inductively coupled plasma (ICP) and an Atomic Absorption Spectrometer (AAS). Results of the study showed that alum coagulant was successful in effectively reducing Cu, Cd, and Mn from 0.840 mg/l, 0.00509 mg/l and 8.191 mg/l to as low as 0.107 mg/l, 0.000270 mg/l and 0.612 mg/l respectively. All were obtained at a dose of 1000 mg/l. 1000 mg/l dose of ferric chloride reduced Pb concentration from 0.0248 mg/l to 0.00151 mg/l. Chitosan was best at reducing Fe and Zn from 62.91 mg/l and 3.616 mg/l to 6.003 mg/l and 0.595 mg/l all at a dose of 400 mg/l.Keywords: palm oil mill effluent, coagulation, heavy metals, Pertubuhan Peladang Negeri Johor, Malaysia
Procedia PDF Downloads 2264416 Metagovernance and Sustainable Development Goals: Importance of Sustainable Policies and Democratic Institutions
Authors: Ghulam Rasool Madni
Abstract:
Global economies are prioritizing the attainment of Sustainable Development Goals (SDGs) for well-being of their people. An emphasis lies on the concept of metagovernance when contemplating the role of government in SDGs, especially in the context of its influence and guidance. Existing literature acknowledges the pivotal role of metagovernance in achieving the SDGs, but aspects of metagovernance unclear that are important for 17 SDGs. Using data from 41 countries, a comparative analysis is conducted for the year 2022. Utilizing a multiple regression analysis, the impact of different dimensions of metagovernance to achieve SDGs is explored, with a particular focus on sustainable policies, strategic capacity, policy coherence, democratic institutions, reflexivity, and adaptation. It is found that sustainable policies have a positive and significant relationship with different SDGs, including no poverty, zero hunger, health, sanitation and clean water, affordable and clean energy, decent work and economic growth, industry, innovation and infrastructure, reduced inequalities while democratic institutions also have a positive relationship with no poverty, good health and well-being, quality education, gender equality, clean water and sanitation, clean and affordable energy, and peace, justice, and strong institutions in these countries. Policymakers are suggested to ensure that sustainable policies are backed by legislation to provide them with a strong legal foundation. It is suggested to develop a long-term vision for sustainability that goes beyond short-term political cycles. Economies are encouraged to invest in building the capacity of government agencies, civil society organizations, and other stakeholders to effectively implement sustainable policies. Moreover, democratic institutions may be established through a constitution providing a solid foundation for democratic governance, including protection of human rights, separation of powers, and mechanisms for accountability and transparency.Keywords: metagovernance, sustainable development goals, sustainable policies, democratic institutions
Procedia PDF Downloads 204415 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 3784414 Characteristics of the Mortars Obtained by Radioactive Recycled Sand
Authors: Claudiu Mazilu, Ion Robu, Radu Deju
Abstract:
At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio
Procedia PDF Downloads 1944413 High-Frequency Acoustic Microscopy Imaging of Pellet/Cladding Interface in Nuclear Fuel Rods
Authors: H. Saikouk, D. Laux, Emmanuel Le Clézio, B. Lacroix, K. Audic, R. Largenton, E. Federici, G. Despaux
Abstract:
Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (e.g. UO2 or (U,Pu) O2) assembled in a zirconium cladding tube. By design, an initial gap exists between these two elements. During irradiation, they both undergo transformations leading progressively to the closure of this gap. A local and non destructive examination of the pellet/cladding interface could constitute a useful help to identify the zones where the two materials are in contact, particularly at high burnups when a strong chemical bonding occurs under nominal operating conditions in PWR fuel rods. The evolution of the pellet/cladding bonding during irradiation is also an area of interest. In this context, the Institute of Electronic and Systems (IES- UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface with high resolution. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, 2D images of this interface need to be acquired via this ultrasonic system with a highly performing processing signal and by means of controlled displacement of the sample rod along both its axis and its circumference. Modeling the multi-layer system (water, cladding, fuel etc.) is necessary in this present study and aims to take into account all the parameters that have an influence on the resolution of the acquired images. The first prototype of this microscope and the first results of the visualization of the inner face of the cladding will be presented in a poster in order to highlight the potentials of the system, whose final objective is to be introduced in the existing bench MEGAFOX dedicated to the non-destructive examination of irradiated fuel rods at LECA-STAR facility in CEA-Cadarache.Keywords: high-frequency acoustic microscopy, multi-layer model, non-destructive testing, nuclear fuel rod, pellet/cladding interface, signal processing
Procedia PDF Downloads 1914412 The Effects of Different Types of Herbicides Used for Lawn Maintenance on the Dynamics of Weeds in an Urban Environment
Authors: Yetunde I. Bulu, Moses B. Adewole, Julius O. Faluyi
Abstract:
This study investigates the effect of aggressive application of herbicide on weed succession in an urban environment in Ile-Ife, Osun State. An inspection of the communities was carried out to identify sites maintained by herbicides (test plots) and those without herbicide history (control plots). Four different experimental plots located at Olasode, Eleweran, Ife City and Parakin within Ile-Ife town were monitored during the study. Comprehensive enumeration and identification of plant populations to species level was carried out on each of the plots and at every visit to determine the direction of succession. Index of similarities was used to determine the relationship in plant species composition between plots treated with herbicide and the untreated plots. The trend of increasing plant species was observed in all the study plots. Low Similarity Index between the treated plots and the control vegetation was observed at all visitations. Low similarity was also observed between the above-ground vegetation and the seed bank in all the plots. The study concluded that the weed population observed from the experimental plots showed an increase in species richness and diversity when the plots were left to recover compared to the control plots.Keywords: herbicide, index of similarity, population, soil seed bank, succession
Procedia PDF Downloads 1614411 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study
Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh
Abstract:
Ammonium nitrate (NH₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension
Procedia PDF Downloads 2314410 Liquefaction Resistance Using Shear Wave Velocity
Authors: Filali Kamel, Sbartai Badreddine
Abstract:
The cyclic resistance curves developed by Andrus and Stokoe related to shear wave velocity case history databases are frequently used in accordance with the assumption of the Seed and Idriss simplified procedure. These cyclic resistance curves were deduced using a database according to the cyclic stress ratio (CSR) proposed by Seed and Idriss. Their approach is founded on the hypothesis that the dynamic cyclic shear stress (τd) is always less than that given by the simplified procedure (τr), as deduced by Seed and Idriss through their simplifying assumptions (rd= τd / τr <1). In 2017, Filali and Sbartai demonstrated that rd can often exceed 1, and they proposed a correction for the CSR in cases where rd > 1. Therefore, the correction of CSR implies that the cyclic resistance ratio (CRR) must also be corrected because it is defined by the boundary curve, which separates the liquefied and nonliqueified cases plotted using the original CSR of Seed and Idriss on which values of CRR are equal to CSR. For this purpose, in the context of this study, we have proposed in the range when the peak ground acceleration is ≤0.30g, which corresponds to rd>1, a modified boundary curve in accordance with the corrected version of the simplified method, which provides the safest case, generalize its use for any used earthquakes and allows the simplified method to be the more conservative.Keywords: liquefaction, soil, earthquake, simplified method, cyclic stress ratio, cyclique resistance ratio
Procedia PDF Downloads 204409 CFD Study for Normal and Rifled Tube with a Convergence Check
Authors: Sharfi Dirar, Shihab Elhaj, Ahmed El Fatih
Abstract:
Computational fluid dynamics were used to simulate and study the heated water boiler tube for both normal and rifled tube with a refinement of the mesh to check the convergence. The operation condition was taken from GARRI power station and used in a boundary condition accordingly. The result indicates the rifled tube has higher heat transfer efficiency than the normal tube.Keywords: boiler tube, convergence check, normal tube, rifled tube
Procedia PDF Downloads 3344408 Similitude for Thermal Scale-up of a Multiphase Thermolysis Reactor in the Cu-Cl Cycle of a Hydrogen Production
Authors: Mohammed W. Abdulrahman
Abstract:
The thermochemical copper-chlorine (Cu-Cl) cycle is considered as a sustainable and efficient technology for a hydrogen production, when linked with clean-energy systems such as nuclear reactors or solar thermal plants. In the Cu-Cl cycle, water is decomposed thermally into hydrogen and oxygen through a series of intermediate reactions. This paper investigates the thermal scale up analysis of the three phase oxygen production reactor in the Cu-Cl cycle, where the reaction is endothermic and the temperature is about 530 oC. The paper focuses on examining the size and number of oxygen reactors required to provide enough heat input for different rates of hydrogen production. The type of the multiphase reactor used in this paper is the continuous stirred tank reactor (CSTR) that is heated by a half pipe jacket. The thermal resistance of each section in the jacketed reactor system is studied to examine its effect on the heat balance of the reactor. It is found that the dominant contribution to the system thermal resistance is from the reactor wall. In the analysis, the Cu-Cl cycle is assumed to be driven by a nuclear reactor where two types of nuclear reactors are examined as the heat source to the oxygen reactor. These types are the CANDU Super Critical Water Reactor (CANDU-SCWR) and High Temperature Gas Reactor (HTGR). It is concluded that a better heat transfer rate has to be provided for CANDU-SCWR by 3-4 times than HTGR. The effect of the reactor aspect ratio is also examined in this paper and is found that increasing the aspect ratio decreases the number of reactors and the rate of decrease in the number of reactors decreases by increasing the aspect ratio. Finally, a comparison between the results of heat balance and existing results of mass balance is performed and is found that the size of the oxygen reactor is dominated by the heat balance rather than the material balance.Keywords: sustainable energy, clean energy, Cu-Cl cycle, heat transfer, hydrogen, oxygen
Procedia PDF Downloads 2964407 Study of the Toxic Activity of the Entomopathogenic Fungus Beauveria bassiana on the Wistar Rat Rattus norvegicus
Authors: F. Haddadj, S. Hamdi, A. Milla, S. Zenia, A. Smai, H. Saadi, F. Marniche, B. Doumandji-Mitiche
Abstract:
The use of a biopesticide based on a microorganism scale requires particular care including safety against the useful auxiliary fauna and mammals among other human beings. Due to its persistence in soil and its apparent human and animal safety, Beauveria bassiana is a cryptogram used for controlling pests organizations, particularly in the locust where its effectiveness has been proven. This fungus is also called for greater respect for biotic communities and the environment. Indeed, biopesticides have several environmental benefits: biodegradability, their activity and selectivity decrease unintended non-target species effects, decreased resistance to some of them. It is in this sense that we contribute by presenting our work on the safety of B. bassiana against mammals. For this we conducted a toxicological study of this fungus strain on Wistar rats Rattus norvegicus, first its effect on weight gain. In a second time were performed histological target organ is the liver. After 20 days of treatment, the results of the toxicological studies have shown that B. bassiana caused no change in the physiological state of rats or weight gain, behavior and diet. On cuts in liver histology revealed no disturbance on the organ.Keywords: B. bassiana, entomopathogenic fungus, histology, Rattus norvegicus
Procedia PDF Downloads 2384406 A Case Study of Brownfield Revitalization in Taiwan
Authors: Jen Wang, Wei-Chia Hsu, Zih-Sin Wang, Ching-Ping Chu, Bo-Shiou Guo
Abstract:
In the late 19th century, the Jinguashi ore deposit in northern Taiwan was discovered, and accompanied with flourishing mining activities. However, tons of contaminants including heavy metals, sulfur dioxide, and total petroleum hydrocarbons (TPH) were released to surroundings and caused environmental problems. Site T was one of copper smelter located on the coastal hill near Jinguashi ore deposit. In over ten years of operation, variety contaminants were emitted that it polluted the surrounding soil and groundwater quality. In order to exhaust fumes produced from smelting process, three stacks were built along the hill behind the factory. The sediment inside the stacks contains high concentration of heavy metals such as arsenic, lead, copper, etc. Moreover, soil around the discarded stacks suffered a serious contamination when deposition leached from the ruptures of stacks. Consequently, Site T (including the factory and its surroundings) was declared as a pollution remediation site that visiting the site and land-use activities on it are forbidden. However, the natural landscape and cultural attractions of Site T are spectacular that it attracts a lot of visitors annually. Moreover, land resources are extremely precious in Taiwan. In addition, Taiwan Environmental Protection Administration (EPA) is actively promoting the contaminated land revitalization policy. Therefore, this study took Site T as case study for brownfield revitalization planning to the limits of activate and remediate the natural resources. Land-use suitability analysis and risk mapping were applied in this study to make appropriate risk management measures and redevelopment plan for the site. In land-use suitability analysis, surrounding factors into consideration such as environmentally sensitive areas, biological resources, land use, contamination, culture, and landscapes were collected to assess the development of each area; health risk mapping was introduced to show the image of risk assessments results based on the site contamination investigation. According to land-use suitability analysis, the site was divided into four zones: priority area (for high-efficiency development), secondary area (for co-development with priority area), conditional area (for reusing existing building) and limited area (for Eco-tourism and education). According to the investigation, polychlorinated biphenyls (PCB), heavy metals and TPH were considered as target contaminants while oral, inhalation and dermal would be the major exposure pathways in health risk assessment. In accordance with health risk map, the highest risk was found in the southwest and eastern side. Based on the results, the development plan focused on zoning and land use. Site T was recommended be divides to public facility zone, public architectonic art zone, viewing zone, existing building preservation zone, historic building zone, and cultural landscape zone for various purpose. In addition, risk management measures including sustained remediation, extinguish exposure and administration management are applied to ensure particular places are suitable for visiting and protect the visitors’ health. The consolidated results are corroborated available by analyzing aspects of law, land acquired method, maintenance and management and public participation. Therefore, this study has a certain reference value to promote the contaminated land revitalization policy in Taiwan.Keywords: brownfield revitalization, land-use suitability analysis, health risk map, risk management
Procedia PDF Downloads 1844405 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber
Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi
Abstract:
This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.Keywords: bending and deflection, bridge beam, compression, Nigerian Opepe, shear, structural reliability
Procedia PDF Downloads 4674404 Evaluation of κ -Carrageenan Hydrogel Efficiency in Wound-Healing
Authors: Ali Ayatic, Emad Mozaffari, Bahareh Tanhaei, Maryam Khajenoori, Saeedeh Movaghar Khoshkho, Ali Ayati
Abstract:
The abuse of antibiotics, such as tetracycline (TC), is a great global threat to people and the use of topical antibiotics is a promising tact that can help to solve this problem. Antibiotic therapy is often appropriate and necessary for acute wound infections, while topical tetracycline can be highly efficient in improving the wound healing process in diabetics. Due to the advantages of drug-loaded hydrogels as wound dressing, such as ease of handling, high moisture resistance, excellent biocompatibility, and the ability to activate immune cells to speed wound healing, it was found as an ideal wound treatment. In this work, the tetracycline-loaded hydrogels combining agar (AG) and κ-carrageenan (k-CAR) as polymer materials were prepared, in which span60 surfactant was introduced inside as a drug carrier. The Field Emission Scanning Electron Microscopes (FESEM) and Fourier-transform infrared spectroscopy (FTIR) techniques were employed to provide detailed information on the morphology, composition, and structure of fabricated drug-loaded hydrogels and their mechanical properties, and hydrogel permeability to water vapor was investigated as well. Two types of gram-negative and gram-positive bacteria were used to explore the antibacterial properties of prepared tetracycline-contained hydrogels. Their swelling and drug release behavior was studied using the changing factors such as the ratio of polysaccharides (MAG/MCAR), the span60 surfactant concentration, potassium chloride (KCl) concentration and different release media (deionized water (DW), phosphate-buffered saline (PBS), and simulated wound fluid (SWF)) at different times. Finally, the kinetic behavior of hydrogel swelling was studied. Also, the experimental data of TC release to DW, PBS, and SWF using various mathematical models such as Higuchi, Korsmeyer-Peppas, zero-order, and first-order in the linear and nonlinear modes were evaluated.Keywords: drug release, hydrogel, tetracycline, wound healing
Procedia PDF Downloads 804403 Evaluation of Hollocelulase Production for Lignocellulosic Biomass Degradation by Penicillium polonicum
Authors: H. M. Takematsu, B. R. De Camargo, E. F. Noronha
Abstract:
The use of hydrolyzing enzymes for degradation of lignocellulosic biomass is of great concern for the production of second generation ethanol. Although many hollocelulases have already been described in the literature, much more has to be discovered. Therefore, the aim of this study to evaluate hollocelulase production of P. polonicum grown in liquid media containing sugarcane bagasse as the carbon source. From a collection of twenty fungi isolated from Cerrado biome soil, P. polonicum was molecular identified by sequencing of ITS4, βtubulin and Calmodulin genes, and has been chosen to be further investigated regarding its potential production of hydrolyzing enzymes. Spore suspension (1x10-6 ml-1) solution was inoculated in sterilized minimal liquid medium containing 0,5%(w/v) of non-pretreated sugarcane bagasse as the carbon source, and incubated in shaker incubator at 28°C and 120 rpm. The supernatant obtained, was subjected to enzymatic assays to analyze xylanase, mannanase, pectinase and endoglucanase activities. Xylanase activity showed better results (67,36 UI/mg). Xylanases bands were indicated by zymogram and SDS-PAGE, and one of them was partially purified and characterized. It showed maximum activity at 50 °C, was thermostable for 72h at 40°C, and pH5.0 was the optimum observed. This study presents P. polonicum as an interesting source of hollocelulases, especially xylanase, for lignocellulose bio-conversion processes with commercial use.Keywords: sugarcane bagasse, Cerrado biome , hollocelulase, lignocellulosic biomass
Procedia PDF Downloads 2914402 Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution
Authors: Xiangjun Li, Huaiyuan Tian, Wujie Zhang, Dianhua Liu
Abstract:
Polyoxymethylene dimethyl ethers (PODEn) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODEn in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·gcat-1·h-1 in a fixed bed reactor. Methanol conversion and PODE3-6 selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g-1, respectively, while regenerated catalyst reached 2.0430 mmol·g-1, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE3-6 product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE3-6, respectively. The concentration of PODE3-6 in final product can reach up to 97%. These results indicate that the scale-up production of PODE3-6 from methanol and formaldehyde solution is feasible.Keywords: inactivation, polyoxymethylene dimethyl ethers, separation process, sulfonic cation exchange resin
Procedia PDF Downloads 1384401 Evaluation in Vitro and in Silico of Pleurotus ostreatus Capacity to Decrease the Amount of Low-Density Polyethylene Microplastics Present in Water Sample from the Middle Basin of the Magdalena River, Colombia
Authors: Loren S. Bernal., Catalina Castillo, Carel E. Carvajal, José F. Ibla
Abstract:
Plastic pollution, specifically microplastics, has become a significant issue in aquatic ecosystems worldwide. The large amount of plastic waste carried by water tributaries has resulted in the accumulation of microplastics in water bodies. The polymer aging process caused by environmental influences such as photodegradation and chemical degradation of additives leads to polymer embrittlement and properties change that require degradation or reduction procedures in rivers. However, there is a lack of such procedures for freshwater entities that develop over extended periods. The aim of this study is evaluate the potential of Pleurotus ostreatus a fungus, in reducing lowdensity polyethylene microplastics present in freshwater samples collected from the middle basin of the Magdalena River in Colombia. The study aims to evaluate this process both in vitro and in silico by identifying the growth capacity of Pleurotus ostreatus in the presence of microplastics and identifying the most likely interactions of Pleurotus ostreatus enzymes and their affinity energies. The study follows an engineering development methodology applied on an experimental basis. The in vitro evaluation protocol applied in this study focused on the growth capacity of Pleurotus ostreatus on microplastics using enzymatic inducers. In terms of in silico evaluation, molecular simulations were conducted using the Autodock 1.5.7 program to calculate interaction energies. The molecular dynamics were evaluated by using the myPresto Portal and GROMACS program to calculate radius of gyration and Energies.The results of the study showed that Pleurotus ostreatus has the potential to degrade low-density polyethylene microplastics. The in vitro evaluation revealed the adherence of Pleurotus ostreatus to LDPE using scanning electron microscopy. The best results were obtained with enzymatic inducers as a MnSO4 generating the activation of laccase or manganese peroxidase enzymes in the degradation process. The in silico modelling demonstrated that Pleurotus ostreatus was able to interact with the microplastics present in LDPE, showing affinity energies in molecular docking and molecular dynamics shown a minimum energy and the representative radius of gyration between each enzyme and its substract. The study contributes to the development of bioremediation processes for the removal of microplastics from freshwater sources using the fungus Pleurotus ostreatus. The in silico study provides insights into the affinity energies of Pleurotus ostreatus microplastic degrading enzymes and their interaction with low-density polyethylene. The study demonstrated that Pleurotus ostreatus can interact with LDPE microplastics, making it a good agent for the development of bioremediation processes that aid in the recovery of freshwater sources. The results of the study suggested that bioremediation could be a promising approach to reduce microplastics in freshwater systems.Keywords: bioremediation, in silico modelling, microplastics, Pleurotus ostreatus
Procedia PDF Downloads 1144400 Spawning Induction and Early Larval Development of the Penshell Atrina maura (Sowerby, 1835) under Controlled Conditions in Ecuador
Authors: Jose Melena, Rosa Santander, Tanya Gonzalez, Richard Duque, Juan Illanes
Abstract:
Ecuador is one of the countries with the greatest aquatic biodiversity worldwide. In particular, there are at least a dozen native marine species with great aquaculture potential locally. This research concerns one of those species. It has proposed to implement experimental protocols in order to induce spawning and to generate the early larval development of the penshell Atrina maura under controlled conditions. Bioassays were carried out with one adult batch (n= 26) with an average valvar length of 307,6 ± 9,4 mm, which were collected in the Puerto El Morro Mangrove (2° 42' 33'' S, 80° 14' 28'' W), Guayas Province. During a short acclimation stage, five adults of penshell A. maura were sacrificed in order to determine their sexual maturity degree and to estimate their sex ratio. Dissection showed that three were ripe females (60%) and two were ripe males (40%). Later, three groups (n= 7 by each) were tested with two treatments in order to induce the broodstock spawning: thermal stress, osmotic shock, and one control. Spawning induction was achieved by the immersion in water to 0 g L⁻¹ per 1 h and immersion in sea water to 34 g L⁻¹ per 1 h. After the delivery of gametes, it was achieved 1,35 × 10⁶ viable zygotes. As results, fertilized eggs had 60 µm diameter; while first and second cell divisions were observed to 1 h post-fertilization, with individual average length of 65 ± 4 µm and polar body. Latter cell divisions, including gastrula stage, appeared at 9 h post-fertilization, with individual average length of 71 ± 4 µm; and trochophore stage at 16 h post-fertilization with individual average length of 75 ± 5 µm. In addition, veliger stage was registered at 20 h post-fertilization with individual average length of 81 ± 5 µm. Umboned larvae appeared at day 8 post-fertilization, with individual average length of 145 ± 6 µm. These pioneering results in Ecuador can strengthen the local conservation process of the overexploited A. maura and to encourage its production for commercial purposes.Keywords: Atrina maura, Ecuador, larval development, spawning induction
Procedia PDF Downloads 1634399 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System
Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich
Abstract:
The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.Keywords: automated vehicle, driver behavior, human factors, human-machine system
Procedia PDF Downloads 1464398 Co-Evolution of Urban Lake System and Rapid Urbanization: Case of Raipur, Chhattisgarh
Authors: Kamal Agrawal, Ved Prakash Nayak, Akshay Patil
Abstract:
Raipur is known as a city of water bodies. The city had around 200 man-made and natural lakes of varying sizes. These structures were constructed to collect rainwater and control flooding in the city. Due to the transition from community participation to state government, as well as rapid urbanisation, Raipur now has only about 80 lakes left. Rapid and unplanned growth has resulted in pollution, encroachment, and eutrophication of the city's lakes. The state government keeps these lakes in good condition by cleaning them and proposing lakefront developments. However, maintaining individual lakes is insufficient because urban lakes are not distinct entities. It is a system comprised of the lake, shore, catchment, and other components. While Urban lake system (ULS) is a combination of multiple such lake systems interacting in a complex urban setting. Thus, the project aims to propose a co-evolution model for urban lake systems (ULS) and rapid urbanization in Raipur. The goals are to comprehend the ULS and to identify elements and dimensions of urbanization that influence the ULS. Evaluate the impact of rapid urbanization on the ULS & vice versa in the study area. Determine how to maximize the positive impact while minimizing the negative impact identified in the study area. Propose short-, medium-, and long-term planning interventions to support the ULS's co-evolution with rapid urbanization. A complexity approach is used to investigate the ULS. It is a technique for understanding large, complex systems. A complex system is one with many interconnected and interdependent elements and dimensions. Thus, elements of ULS and rapid urbanization are identified through a literature study to evaluate statements of their impacts (Beneficial/ Adverse) on one another. Rapid urbanization has been identified as having elements such as demography, urban legislation, informal settlement, urban infrastructure, and tourism. Similarly, the catchment area of the lake, the lake's water quality, the water spread area, and lakefront developments are all being impacted by rapid urbanisation. These nine elements serve as parameters for the subsequent analysis. Elements are limited to physical parameters only. The city has designated a study area based on the definition provided by the National Plan for the Conservation of Aquatic Ecosystems. Three lakes are discovered within a one-kilometer radius, establishing a tiny urban lake system. Because the condition of a lake is directly related to the condition of its catchment area, the catchment area of these three lakes is delineated as the study area. Data is collected to identify impact statements, and the interdependence diagram generated between the parameters yields results in terms of interlinking between each parameter and their impact on the system as a whole. The planning interventions proposed for the ULS and rapid urbanisation co-evolution model include spatial proposals as well as policy recommendations for the short, medium, and long term. This study's next step will be to determine how to implement the proposed interventions based on the availability of resources, funds, and governance patterns.Keywords: urban lake system, co-evolution, rapid urbanization, complex system
Procedia PDF Downloads 734397 Pale, Soft, Exudative (PSE) Turkey Meat in a Brazilian Commercial Processing Plant
Authors: Danielle C. B. Honorato, Rafael H. Carvalho, Adriana L. Soares, Ana Paula F. R. L. Bracarense, Paulo D. Guarnieri, Massami Shimokomaki, Elza I. Ida
Abstract:
Over the past decade, the Brazilian production of turkey meat increased by more than 50%, indicating that the turkey meat is considered a great potential for the Brazilian economy contributing to the growth of agribusiness at the marketing international scenario. However, significant color changes may occur during its processing leading to the pale, soft and exudative (PSE) appearance on the surface of breast meat due to the low water holding capacity (WHC). Changes in PSE meat functional properties occur due to the myofibrils proteins denaturation caused by a rapid postmortem glycolysis resulting in a rapid pH decline while the carcass temperature is still warm. The aim of this study was to analyze the physical, chemical and histological characteristics of PSE turkey meat obtained from a Brazilian commercial processing plant. The turkey breasts samples were collected (n=64) at the processing line and classified as PSE at L* ≥ 53 value. The pH was also analyzed after L* measurement. In sequence, PSE meat samples were evaluated for WHC, cooking loss (CL), shear force (SF), myofibril fragmentation index (MFI), protein denaturation (PD) and histological evaluation. The abnormal color samples presented lower pH values, 16% lower fiber diameter, 11% lower SF and 2% lower WHC than those classified as normal. The CL, PD and MFI were, respectively, 9%, 18% and 4% higher in PSE samples. The Pearson correlation between the L* values and CL, PD and MFI was positive, while that SF and pH values presented negative correlation. Under light microscopy, a shrinking of PSE muscle cell diameter was approximately 16% shorter in relation to normal samples and an extracellular enlargement of endomysium and perimysium sheaths as the consequence of higher water contents lost as observed previously by lower WHC values. Thus, the results showed that PSE turkey breast meat presented significant changes in their physical, chemical and histological characteristics that may impair its functional properties.Keywords: functional properties, histological evaluation, meat quality, PSE
Procedia PDF Downloads 4604396 Methodological Approach for the Prioritization of Different Micro-Contaminants as Potential River Basin Specific Pollutants in the Upper Tisza River Watershed
Authors: Mihail Simion Beldean-Galea, Virginia Coman, Florina Copaciu, Mihaela Vlassa, Radu Mihaiescu, Adina Croitoru, Viorel Arghius, Modest Gertsiuk, Mikola Gertsiuk
Abstract:
Taking into consideration the huge number of chemicals released into environment compartments a proper environmental risk assessment is difficult to predict due to the gap of legislation and improper toxicological assessment of chemicals compounds. In Romania as well as in many other countries from Europe, the chemical status of the water body is characterized taking into consideration the Water Framework Directive (WFD) and the substances listed in Annex X. This Annex includes 45 substances from different classes of organic compounds and heavy metals for which AA-EQS and MAC-EQS have been established. For other compounds which are not included in Annex X, different methodologies to prioritize chemicals for risk assessment and monitoring has been proposed. These methodologies take into account Predicted No-Effect Concentrations (PNECs) of different classes of chemicals compounds available from existing risk assessments or from read-across models for acute toxicity to the standard test organisms such as Daphnia magna and Selenastrum capricornutum. Our work presents the monitoring results of 30 priority substances including polyaromatic hydrocarbons, pesticides, halogenated compounds, plasticizers and heavy metals and other 34 substances from different classes of pesticides and pharmaceuticals which are not included on the list of priority substances, performed in the Upper Tisza River Watershed from Romania and Ukraine. The obtained monitoring data were used for the establishment of the list of more relevant pollutants in the studied area and to establish the potential river basin specific pollutants. For this purpose, two indicators such as the Frequency of exceedance and Extent of exceedance of Predicted no-Effect Concentration (PNEC) were evaluated. These two indicators are based on maximum environmental concentrations (MECs) of priority substances and for other pollutants is use statistically based averages of obtained measured concentration compared to the lowest PNEC thresholds. From the obtained results it can be concluded that polyaromatic hydrocarbon such as Fluoranthene, Benzo[a]pyrene, Benzo[b]fluorathene, benzo[k]fluoranthene, Benzo(g.h.i)perylene, Indeno(1.2.3-cd)-pyrene, heavy metals such as Cadmium, Lead and Nickel can be considered as river basin specific pollutants, their concentration exceeding the Annual Average EQS concentration. Other compounds such as estrone, estriol, 174-β estradiol, naproxen or some antibiotics (Penicillin G, Tetracycline or Ceftazidime) should be taken into account for a long monitoring, in some cases their concentration exceeding PNEC. Acknowledgements: This work is performed in the frame of NATO SfP Programme, Project no. 984440.Keywords: prioritization, river basin specific pollutants, Tisza River, water framework directive
Procedia PDF Downloads 3054395 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads
Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo
Abstract:
Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads
Procedia PDF Downloads 2454394 Vegetation Index-Deduced Crop Coefficient of Wheat (Triticum aestivum) Using Remote Sensing: Case Study on Four Basins of Golestan Province, Iran
Authors: Hoda Zolfagharnejad, Behnam Kamkar, Omid Abdi
Abstract:
Crop coefficient (Kc) is an important factor contributing to estimation of evapotranspiration, and is also used to determine the irrigation schedule. This study investigated and determined the monthly Kc of winter wheat (Triticum aestivum L.) using five vegetation indices (VIs): Normalized Difference Vegetation Index (NDVI), Difference Vegetation Index (DVI), Soil Adjusted Vegetation Index (SAVI), Infrared Percentage Vegetation Index (IPVI), and Ratio Vegetation Index (RVI) of four basins in Golestan province, Iran. 14 Landsat-8 images according to crop growth stage were used to estimate monthly Kc of wheat. VIs were calculated based on infrared and near infrared bands of Landsat 8 images using Geographical Information System (GIS) software. The best VIs were chosen after establishing a regression relationship among these VIs with FAO Kc and Kc that was modified for the study area by the previous research based on R² and Root Mean Square Error (RMSE). The result showed that local modified SAVI with R²= 0.767 and RMSE= 0.174 was the best index to produce monthly wheat Kc maps.Keywords: crop coefficient, remote sensing, vegetation indices, wheat
Procedia PDF Downloads 4124393 The Effects of Fertilizer in the Workplace on Male Infertility: About Workers of Unit NPK in Complex Fertial Annaba
Authors: B. Loukil, L. Mallem, M. S. Boulakoud
Abstract:
Inorganic fertilizers consist mainly of salts of ammonium nitrate, phosphate and potassium, the combination of primary nutrients NPK including secondary and micro nutrients are essential for plant growth, used for intensive agriculture, ranching, and horticultural crops, to increase soil fertility and ensure sustainable crop production. The manufacture of fertilizers is generally at a high temperature and high pressure, in the presence of several highly hazardous chemicals, dust and gases. These products are absorbed high in the airway, increasing the airway resistance thereby adversely affecting the pulmonary functions of workers. A study was conducted on 34 employees, especially exposed to nitrate derivatives. A questionnaire was prepared and distributed to all employees in the unit. The workers were divided into two groups according to age. Several hormonal parameters Assay were measured. The results of the questionnaire have detected a fertility problem, Concerning the hormones a significant reduction in the concentration of testosterone in both groups and LH in the group aged 30 to 40 year were noted compared to the control. However, an increase in the concentration of prolactin in both groups compared to the control. There was a significant decrease in FSH in the group aged 30 to 40 always in compared with the control group.Keywords: fertilizers, healthy worker, risk, fertility
Procedia PDF Downloads 3994392 Finite Element Molecular Modeling: A Structural Method for Large Deformations
Authors: A. Rezaei, M. Huisman, W. Van Paepegem
Abstract:
Atomic interactions in molecular systems are mainly studied by particle mechanics. Nevertheless, researches have also put on considerable effort to simulate them using continuum methods. In early 2000, simple equivalent finite element models have been developed to study the mechanical properties of carbon nanotubes and graphene in composite materials. Afterward, many researchers have employed similar structural simulation approaches to obtain mechanical properties of nanostructured materials, to simplify interface behavior of fiber-reinforced composites, and to simulate defects in carbon nanotubes or graphene sheets, etc. These structural approaches, however, are limited to small deformations due to complicated local rotational coordinates. This article proposes a method for the finite element simulation of molecular mechanics. For ease in addressing the approach, here it is called Structural Finite Element Molecular Modeling (SFEMM). SFEMM method improves the available structural approaches for large deformations, without using any rotational degrees of freedom. Moreover, the method simulates molecular conformation, which is a big advantage over the previous approaches. Technically, this method uses nonlinear multipoint constraints to simulate kinematics of the atomic multibody interactions. Only truss elements are employed, and the bond potentials are implemented through constitutive material models. Because the equilibrium bond- length, bond angles, and bond-torsion potential energies are intrinsic material parameters, the model is independent of initial strains or stresses. In this paper, the SFEMM method has been implemented in ABAQUS finite element software. The constraints and material behaviors are modeled through two Fortran subroutines. The method is verified for the bond-stretch, bond-angle and bond-torsion of carbon atoms. Furthermore, the capability of the method in the conformation simulation of molecular structures is demonstrated via a case study of a graphene sheet. Briefly, SFEMM builds up a framework that offers more flexible features over the conventional molecular finite element models, serving the structural relaxation modeling and large deformations without incorporating local rotational degrees of freedom. Potentially, the method is a big step towards comprehensive molecular modeling with finite element technique, and thereby concurrently coupling an atomistic domain to a solid continuum domain within a single finite element platform.Keywords: finite element, large deformation, molecular mechanics, structural method
Procedia PDF Downloads 1524391 A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves
Authors: E. Akpinar, A. Erol, M.F. Cakir
Abstract:
Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves.Keywords: damage prediction, fragility curve, industrial buildings, precast reinforced concrete structures
Procedia PDF Downloads 1894390 Effect of Citric Acid on Hydrogen-Bond Interactions and Tensile Retention Properties of Citric Acid Modified Thermoplastic Starch Biocomposites
Authors: Da-Wei Wang, Liang Yang, Xuan-Long Peng, Mei-Chuan Kuo, Jen-Taut Yeh
Abstract:
The tensile retention and waterproof properties of thermoplastic starch (TPS) resins were significantly enhanced by modifying with proper amounts of citric acid (CA) and by melt-blending with poly(lactic acid) (PLA), although no distinguished chemical reaction occurred between CA and starch molecules. As evidenced by Fourier transform infrared spectroscopy and Solid-state 13C Nuclear Magnetic Resonance analyses, disruption of intra and interhydrogen-bondings within starch molecules did occur during the modification processes of CA modified TPS (i.e. TPS100CAx) specimens. The tensile strength (σf) retention values of TPS specimens reduced rapidly from 27.8 to 20.5 and 0.4 MPa, respectively, as the conditioning time at 20°C/50% relative humidity (RH) increased from 0 to 7 and 70 days, respectively. While the elongation at break (εf) retention values of TPS specimens increased rapidly from 5.9 to 6.5 and 34.8%, respectively, as the conditioning time increased from 0 to 7 and 70 days. After conditioning at 20°C/50% RH for 70 days, the σf and εf retention values of the best prepared (TPS100CA0.1)30PLA70 specimen are equivalent to 85% and 167% of its initial σf and εf values, respectively, and are more than 105 times higher but 48% lower than those of TPS specimens conditioned at 20°C/50% RH for the same amount of time. Demarcated diffraction peaks, new melting endotherms of recrystallized starch crystals and distinguished ductile characteristics with drawn debris were found for many conditioned TPS specimens, however, only slight retrogradation effect and much less drawn debris was found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens. The significantly improved water proof, tensile retention properties and relatively unchanged in retrogradation effect found for most conditioned TPS100CAx and/or (TPS100CA0.1)xPLAy specimens are apparently due to the efficient blocking of the moisture-absorbing hydroxyl groups (free or hydrogen bonded) by hydrogen-bonding CA with starch molecules during their modification processes.Keywords: thermoplastic starch, hydrogen-bonding, water proof, strength retention
Procedia PDF Downloads 3054389 Salt Stress Affects Growth, Nutrition and Anatomy of Stipa lagascae: A Psammophile Grass in Southern Tunisia
Authors: Raoudha Abdellaoui, Faycal Boughalleb, Zohra Chebil
Abstract:
In arid and semi-arid regions, salinity represents a major constraint towards plants’ growth. Stipa lagascae, a psammophile grass, is a promised species since its economic and ecological interests. Our study aims to explore the effects of different salt concentrations (0; 100; 200; 300 and 400 mM) on physiological, biochemical and anatomic parameters. Salt stress was applied on S. lagascae plants cultivated under controlled conditions. Results show that salinity reduces biomass production especially when plants are subjected to severe stress (>200 mM NaCl). Concerning the nutritional level, the fact of enriching soil with NaCl, leads to an accumulation of Na+ against other nutritional elements (K+, Ca2+). To maintain tissues hydration, S. lagascae established osmotic adaptation by accumulation of proline and soluble sugars. Salt stress affected significantly root and foliar anatomy. Indeed, plants increased their vessels’ diameter and mesophyll surface. S. lagascae plants reduced also the surface of the belluforme cells to defeat dehydration. According to our results, S. lagascae seems to be a tolerant plant at acceptable concentrations that do not exceed 6g/l.Keywords: anatomical adaptations, mineral nutrition, plant growth, salt stress, stipa lagascae
Procedia PDF Downloads 265