Search results for: ptrotien adoptions inside the glass surface
2165 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating
Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang
Abstract:
The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying
Procedia PDF Downloads 2722164 Kinetic Study of the Esterification of Unsaturated Fatty Acids from Salmon Oil (Salmosalar L.)
Authors: André Luis Lima de Oliveira, Vera Lúcia Viana do Nascimento, Victória Maura Silva Bermudez, Mauricio Nunes Kleinberg, João Carlos da Costa Assunção, José Osvaldo Beserra Carioca
Abstract:
The objective of this study was to synthesize a triglyceride with high content of unsaturated fatty acids from salmon oil (Salmo salar L.) by esterification with glycerol catalyzed dealuminized zeolite. A kinetic study was conducted to determine the reaction order and the activation energy. A statistical study was conducted to determine optimal reaction conditions. Initially, the crude oil was refined salmon physically and chemically. The crude oil was hydrolyzed and unsaturated free fatty acids were separated by urea complexation method. An experimental project to verify the parameters (temperature, glycerin and catalyst) with the greatest impact on the reaction was developed. In experiments aliquots were taken at predetermined times to measure the amount of free fatty acids. Pareto, surface, contour and hub graphs were used to determine the factors that maximized the reaction. According to the graphs the best reaction conditions were: temperature 80 ° C, the proportion glycerine/oil 5: 1 and 1% of catalyst. The kinetic data showed that the system was compatible with a second-order reaction. After analyzing the rate constant versus temperature charts a value of 85.31 kJ/mol was obtained for the reaction activation energy.Keywords: esterification, kinect, oil, salmon
Procedia PDF Downloads 5212163 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂
Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek
Abstract:
Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂
Procedia PDF Downloads 1762162 Remotely Sensed Data Fusion to Extract Vegetation Cover in the Cultural Park of Tassili, South of Algeria
Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur
Abstract:
The cultural park of the Tassili, occupying a large area of Algeria, is characterized by a rich vegetative biodiversity to be preserved and managed both in time and space. The management of a large area (case of Tassili), by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information etc.), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Multispectral imaging sensors have been very useful in the last decade in very interesting applications of remote sensing. They can aid in several domains such as the de¬tection and identification of diverse surface targets, topographical details, and geological features. In this work, we try to extract vegetative areas using fusion techniques between data acquired from sensor on-board the Earth Observing 1 (EO-1) satellite and Landsat ETM+ and TM sensors. We have used images acquired over the Oasis of Djanet in the National Park of Tassili in the south of Algeria. Fusion technqiues were applied on the obtained image to extract the vegetative fraction of the different classes of land use. We compare the obtained results in vegetation end member extraction with vegetation indices calculated from both Hyperion and other multispectral sensors.Keywords: Landsat ETM+, EO1, data fusion, vegetation, Tassili, Algeria
Procedia PDF Downloads 4342161 Comparing Different Frequency Ground Penetrating Radar Antennas for Tunnel Health Assessment
Authors: Can Mungan, Gokhan Kilic
Abstract:
Structural engineers and tunnel owners have good reason to attach importance to the assessment and inspection of tunnels. Regular inspection is necessary to maintain and monitor the health of the structure not only at the present time but throughout its life cycle. Detection of flaws within the structure, such as corrosion and the formation of cracks within the internal elements of the structure, can go a long way to ensuring that the structure maintains its integrity over the course of its life. Other issues that may be detected earlier through regular assessment include tunnel surface delamination and the corrosion of the rebar. One advantage of new technology such as the ground penetrating radar (GPR) is the early detection of imperfections. This study will aim to discuss and present the effectiveness of GPR as a tool for assessing the structural integrity of the heavily used tunnel. GPR is used with various antennae in frequency and application method (2 GHz and 500 MHz GPR antennae). The paper will attempt to produce a greater understanding of structural defects and identify the correct tool for such purposes. Conquest View with 3D scanning capabilities was involved throughout the analysis, reporting, and interpretation of the results. This study will illustrate GPR mapping and its effectiveness in providing information of value when it comes to rebar position (lower and upper reinforcement). It will also show how such techniques can detect structural features that would otherwise remain unseen, as well as moisture ingress.Keywords: tunnel, GPR, health monitoring, moisture ingress, rebar position
Procedia PDF Downloads 1192160 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid
Procedia PDF Downloads 1842159 A Stepped Care mHealth-Based Approach for Obesity with Type 2 Diabetes in Clinical Health Psychology
Authors: Gianluca Castelnuovo, Giada Pietrabissa, Gian Mauro Manzoni, Margherita Novelli, Emanuele Maria Giusti, Roberto Cattivelli, Enrico Molinari
Abstract:
Diabesity could be defined as a new global epidemic of obesity and being overweight with many complications and chronic conditions. Such conditions include not only type 2 diabetes, but also cardiovascular diseases, hypertension, dyslipidemia, hypercholesterolemia, cancer, and various psychosocial and psychopathological disorders. The financial direct and indirect burden (considering also the clinical resources involved and the loss of productivity) is a real challenge in many Western health-care systems. Recently the Lancet journal defined diabetes as a 21st-century challenge. In order to promote patient compliance in diabesity treatment reducing costs, evidence-based interventions to improve weight-loss, maintain a healthy weight, and reduce related comorbidities combine different treatment approaches: dietetic, nutritional, physical, behavioral, psychological, and, in some situations, pharmacological and surgical. Moreover, new technologies can provide useful solutions in this multidisciplinary approach, above all in maintaining long-term compliance and adherence in order to ensure clinical efficacy. Psychological therapies with diet and exercise plans could better help patients in achieving weight loss outcomes, both inside hospitals and clinical centers and during out-patient follow-up sessions. In the management of chronic diseases clinical psychology play a key role due to the need of working on psychological conditions of patients, their families and their caregivers. mHealth approach could overcome limitations linked with the traditional, restricted and highly expensive in-patient treatment of many chronic pathologies: one of the best up-to-date application is the management of obesity with type 2 diabetes, where mHealth solutions can provide remote opportunities for enhancing weight reduction and reducing complications from clinical, organizational and economic perspectives. A stepped care mHealth-based approach is an interesting perspective in chronic care management of obesity with type 2 diabetes. One promising future direction could be treating obesity, considered as a chronic multifactorial disease, using a stepped-care approach: -mhealth or traditional based lifestyle psychoeducational and nutritional approach. -health professionals-driven multidisciplinary protocols tailored for each patient. -inpatient approach with the inclusion of drug therapies and other multidisciplinary treatments. -bariatric surgery with psychological and medical follow-up In the chronic care management of globesity mhealth solutions cannot substitute traditional approaches, but they can supplement some steps in clinical psychology and medicine both for obesity prevention and for weight loss management.Keywords: clinical health psychology, mhealth, obesity, type 2 diabetes, stepped care, chronic care management
Procedia PDF Downloads 3452158 3D Carbon Structures (Globugraphite) with Hierarchical Pore Morphology for the Application in Energy Storage Systems
Authors: Hubert Beisch, Janik Marx, Svenja Garlof, Roman Shvets, Ivan Grygorchak, Andriy Kityk, Bodo Fiedler
Abstract:
Three-dimensional carbon materials can be used as electrode materials for energy storage systems such as batteries and supercapacitors. Fast charging and discharging times are realizable without reducing the performance due to aging processes. Furthermore high specific surface area (SSA) of three-dimensional carbon structures leads to high specific capacities. One newly developed carbon foam is Globugraphite. This interconnected globular carbon morphology with statistically distributed hierarchical pores is manufactured by a chemical vapor deposition (CVD) process from ceramic templates resulting from a sintering process. Via scanning electron (SEM) and transmission electron microscopy (TEM), the morphology is characterized. Moreover, the SSA was measured by the Brunauer–Emmett–Teller (BET) theory. Measurements of Globugraphite in an organic and inorganic electrolyte show high energy densities and power densities resulting from ion absorption by forming an electrochemical double layer. A comparison of the specific values is summarized in a Ragone diagram. Energy densities up to 48 Wh/kg and power densities to 833 W/kg could be achieved for an SSA from 376 m²/g to 859 m²/g. For organic electrolyte, a specific capacity of 100 F/g at a density of 20 mg/cm³ was achieved.Keywords: BET, carbon foam, CVD process, electrochemical cell, Ragone diagram, SEM, TEM
Procedia PDF Downloads 2342157 Combined Effects of Microplastics and Climate Change on Marine Life
Authors: Vikrant Sinha, Himanshu Singh, Nitish Kumar Singh, Sujal Nag
Abstract:
This research creates an urgent and complex challenge for marine ecosystems. Microplastics were primarily found on land, but now they are pervasive in marine environments as well, affecting a wide range of marine species, from zooplankton to larger mammals that live in those environments. These pollutants interfere with major biological processes like feeding and reproduction, causing disruption throughout the food web as microplastics are getting accumulated at different tropic levels. Meanwhile, climatic changes made these effects more accelerated, and the concentration of microplastics due to these occurrences is increasing day by day. Rising temperatures, melting ice, increased runoff due to rainfall, and shifting wind patterns are transforming marine life in a way that intensifies the burden on marine life. This dual stress is particularly present in fragile ecosystems of marine life, such as coral reefs and mangroves. Addressing this twisted crisis requires not only efforts to restrain plastic pollution but also adapts strategies for climate mitigation. This research emphasizes the critical need to combine approaches to save marine biodiversity and withstand the rapid changes in the environment.Keywords: microplastic pollution, climate change impacts, marine ecosystems, biodiversity threats, zooplankton ingestion, trophic accumulation, coral reef degradation, ecosystem resilience, plastic pollution mitigation, climate adaptation strategies, SST, sea surface temperature
Procedia PDF Downloads 102156 Optimal Design of Submersible Permanent Magnet Linear Synchronous Motor Based Design of Experiment and Genetic Algorithm
Authors: Xiao Zhang, Wensheng Xiao, Junguo Cui, Hongmin Wang
Abstract:
Submersible permanent magnet linear synchronous motors (SPMLSMs) are electromagnetic devices, which can directly drive plunger pump to obtain the crude oil. Those motors have been gradually applied in oil fields due to high thrust force density and high efficiency. Since the force performance closely depends on the concrete structural parameters, the seven different structural parameters are investigated in detail. This paper presents an optimum design of an SPMLSM to minimize the detent force and maximize the thrust by using design of experiment (DOE) and genetic algorithm (GA). The three significant structural parameters (air-gap length, slot width, pole-arc coefficient) are separately screened using 27 1/16 fractional factorial design (FFD) to investigate the significant effect of seven parameters used in this research on the force performance. Response surface methodology (RSM) is well adapted to make analytical model of thrust and detent force with constraints of corresponding significant parameters and enable objective function to be easily created, respectively. GA is performed as a searching tool to search for the Pareto-optimal solutions. By finite element analysis, the proposed PMLSM shows merits in improving thrust and reducing the detent force dramatically.Keywords: optimization, force performance, design of experiment (DOE), genetic algorithm (GA)
Procedia PDF Downloads 2902155 An Investigation to Study the Moisture Dependency of Ground Enhancement Compound
Authors: Arunima Shukla, Vikas Almadi, Devesh Jaiswal, Sunil Saini, Bhusan S. Patil
Abstract:
Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.Keywords: backfill material, bentonite, grounding material, low resistivity
Procedia PDF Downloads 1472154 Characterization and Evaluation of Soil Resources for Sustainable Land Use Planning of Timatjatji Community Farm, Limpopo, South Africa
Authors: M. Linda Phooko, Phesheya E. Dlamini, Vusumuzi E. Mbanjwa, Rhandu Chauke
Abstract:
The decline of yields as a consequence of miss-informed land-use decisions poses a threat to sustainable agriculture in South Africa. The non-uniform growth pattern of wheat crop and the yields below expectations has been one of the main concerns for Timatjatji community farmers. This study was then conducted to characterize, classify, and evaluate soils of the farm for sustainable land use planning. A detailed free survey guided by surface features was conducted on a 25 ha farm to check soil variation. It was revealed that Sepane (25%), Bonheim (21%), Rensburg (18%), Katspruit (15%), Arcadia (12%) and Dundee (9%) were the dominant soil forms found across the farm. Field soil description was done to determine morphological characteristics of the soils which were matched with slope percentage and climate to assess the potential of the soils. The land capability results showed that soils were generally shallow due to high clay content in the B horizon. When the climate of the area was factored in (i.e. land potential), it further revealed that the area has low cropping potential due to heat, moisture stress and shallow soils. This implies that the farm is not suitable for annual cropping but can be highly suitable for planted pastures.Keywords: characterization, land capability, land evaluation, land potential
Procedia PDF Downloads 1992153 Influence of Thermal Treatments on Ovomucoid as Allergenic Protein
Authors: Nasser A. Al-Shabib
Abstract:
Food allergens are most common non-native form when exposed to the immune system. Most food proteins undergo various treatments (e.g. thermal or proteolytic processing) during food manufacturing. Such treatments have the potential to impact the chemical structure of food allergens so as to convert them to more denatured or unfolded forms. The conformational changes in the proteins may affect the allergenicity of treated-allergens. However, most allergenic proteins possess high resistance against thermal modification or digestive enzymes. In the present study, ovomucoid (a major allergenic protein of egg white) was heated in phosphate-buffered saline (pH 7.4) at different temperatures, aqueous solutions and on different surfaces for various times. The results indicated that different antibody-based methods had different sensitivities in detecting the heated ovomucoid. When using one particular immunoassay‚ the immunoreactivity of ovomucoid increased rapidly after heating in water whereas immunoreactivity declined after heating in alkaline buffer (pH 10). Ovomucoid appeared more immunoreactive when dissolved in PBS (pH 7.4) and heated on a stainless steel surface. To the best of our knowledge‚ this is the first time that antibody-based methods have been applied for the detection of ovomucoid adsorbed onto different surfaces under various conditions. The results obtained suggest that use of antibodies to detect ovomucoid after food processing may be problematic. False assurance will be given with the use of inappropriate‚ non-validated immunoassays such as those available commercially as ‘Swab’ tests. A greater understanding of antibody-protein interaction after processing of a protein is required.Keywords: ovomucoid, thermal treatment, solutions, surfaces
Procedia PDF Downloads 4482152 The Problem of the Use of Learning Analytics in Distance Higher Education: An Analytical Study of the Open and Distance University System in Mexico
Authors: Ismene Ithai Bras-Ruiz
Abstract:
Learning Analytics (LA) is employed by universities not only as a tool but as a specialized ground to enhance students and professors. However, not all the academic programs apply LA with the same goal and use the same tools. In fact, LA is formed by five main fields of study (academic analytics, action research, educational data mining, recommender systems, and personalized systems). These fields can help not just to inform academic authorities about the situation of the program, but also can detect risk students, professors with needs, or general problems. The highest level applies Artificial Intelligence techniques to support learning practices. LA has adopted different techniques: statistics, ethnography, data visualization, machine learning, natural language process, and data mining. Is expected that any academic program decided what field wants to utilize on the basis of his academic interest but also his capacities related to professors, administrators, systems, logistics, data analyst, and the academic goals. The Open and Distance University System (SUAYED in Spanish) of the University National Autonomous of Mexico (UNAM), has been working for forty years as an alternative to traditional programs; one of their main supports has been the employ of new information and communications technologies (ICT). Today, UNAM has one of the largest network higher education programs, twenty-six academic programs in different faculties. This situation means that every faculty works with heterogeneous populations and academic problems. In this sense, every program has developed its own Learning Analytic techniques to improve academic issues. In this context, an investigation was carried out to know the situation of the application of LA in all the academic programs in the different faculties. The premise of the study it was that not all the faculties have utilized advanced LA techniques and it is probable that they do not know what field of study is closer to their program goals. In consequence, not all the programs know about LA but, this does not mean they do not work with LA in a veiled or, less clear sense. It is very important to know the grade of knowledge about LA for two reasons: 1) This allows to appreciate the work of the administration to improve the quality of the teaching and, 2) if it is possible to improve others LA techniques. For this purpose, it was designed three instruments to determinate the experience and knowledge in LA. These were applied to ten faculty coordinators and his personnel; thirty members were consulted (academic secretary, systems manager, or data analyst, and coordinator of the program). The final report allowed to understand that almost all the programs work with basic statistics tools and techniques, this helps the administration only to know what is happening inside de academic program, but they are not ready to move up to the next level, this means applying Artificial Intelligence or Recommender Systems to reach a personalized learning system. This situation is not related to the knowledge of LA, but the clarity of the long-term goals.Keywords: academic improvements, analytical techniques, learning analytics, personnel expertise
Procedia PDF Downloads 1282151 Application of Nitric Acid Modified Cocos nucifera, Pennisetum glaucum and Sorghum bicolor Activated Carbon for Adsorption of H₂S Gas
Authors: Z. N. Ali, O. A. Babatunde, S. Garba, H. M. S. Haruna
Abstract:
The potency of modified and unmodified activated carbons prepared from shells of Cocos nucifera (coconut shell), straws of Pennisetum glaucum (millet) and Sorghum bicolor (sorghum) for adsorption of hydrogen sulphide gas were investigated using an adsorption apparatus (stainless steel cylinder) at constant temperature (ambient temperature). The adsorption equilibria states were obtained when the pressure indicated on the pressure gauge remained constant. After modification with nitric acid, results of the scanning electron microscopy of the unmodified and modified activated carbons showed that HNO3 greatly improved the formation of micropores and mesopores on the activated carbon surface. The adsorption of H2S gas was found to be highest in modified Cocos nucifera activated carbon with maximum monolayer coverage of 28.17 mg/g, and the adsorption processes were both physical and chemical with the physical process being predominant. The adsorption data were well fitted into the Langmuir isotherm model with the adsorption capacities of the activated carbons in the order modified Cocos nucifera > modified Pennisetum glaucum > modified Sorghum bicolor > unmodified Cocos nucifera > unmodified Pennisetum glaucum > unmodified Sorghum bicolour.Keywords: activated carbon adsorption, hydrogen sulphide, nitric acid, modification, stainless steel cylinder
Procedia PDF Downloads 1392150 Effect of the pH on the Degradation Kinetics of Biodegradable Mg-0.8Ca Orthopedic Implants
Authors: A. Mohamed, A. El-Aziz
Abstract:
The pH of the body plays a great role in the degradation kinetics of biodegradable Mg-Ca orthopedic implants. At the location of fracture, the pH of the body becomes no longer neutral which draws the attention towards studying a range of different pH values of the body fluid. In this study, the pH of Hank’s balanced salt solution (HBSS) was modified by phosphate buffers into an aggressive acidic pH 1.8, a slightly acidic pH 5.3 and an alkaline pH 8.1. The biodegradation of Mg-0.8Ca implant was tested in those three different media using immersion test and electrochemical polarization means. It was proposed that the degradation rate has increased with decreasing the pH of HBSS. The immersion test revealed weight gain for all the samples followed by weight loss as the immersion time increased. The highest weight gain was pronounced for the acidic pH 1.8 and the least weight gain was observed for the alkaline pH 8.1. This was in agreement with the electrochemical polarization test results where the degradation rate was found to be high (7.29 ± 2.2 mm/year) in the aggressive acidic solution of pH 1.8 and relatively minimum (0.31 ± 0.06 mm/year) in the alkaline medium of pH 8.1. Furthermore, it was confirmed that the pH of HBSS has reached a steady state of an alkaline pH (~pH 11) at the end of the two-month immersion period regardless of the initial pH of the solution. Finally, the corrosion products formed on the samples’ surface were investigated by SEM, EDX and XRD analyses that revealed the formation of magnesium and calcium phosphates with different morphologies according to the pH.Keywords: biodegradable, electrochemical polarization means, orthopedics, immersion test, simulated body fluid
Procedia PDF Downloads 1232149 Impact Assessment of Phosphogypsum on the Groundwater of Sfax-Agareb Aquifer, in Southeast of Tunisia
Authors: Samira Melki, Moncef Gueddari
Abstract:
In Tunisia, solid wastes storage continue to be uncontrolled. It is eliminated by land raising without any protection measurement against water table and soil contamination. Several industries are located in Sfax area, especially those of the Tunisian Chemical Group (TCG) for the enrichment and transformation of phosphate. The activity of the TCG focuses primarily on the production of chemical fertilizers and phosphoric acid, by transforming natural phosphates. This production generates gaseous emissions, liquid discharges and huge amounts of phosphogypsum (PG) stored directly on the soil surface. Groundwater samples were collected from Tunisian Chemical Group (TCG) site, to assess the effects of phosphogypsum leatchate on groundwater quality. The measurements of various physicochemical parameters including heavy metals (Al, Fe, Zn and F) and stable isotopes of the water molecule (¹⁸O, ²H) were determined in groundwater samples and are reported. The moderately high concentrations of SO₄⁼, Ortho-P, NH₄⁺ Al and F⁻ in groundwater particularly near to the phosphogypsum storage site, likely indicate that groundwater quality is being significantly affected by leachate percolation. The effect of distance of the piezometers from the pollution source was also investigated. The isotopic data of water molecule, showed that the waters of the Sfax-Agreb aquifer amount to recent-evaporation induced rainfall.Keywords: phosphogypsum leatchate, groundwater quality, pollution, stable isotopes, Sfax-Agareb, Tunisia
Procedia PDF Downloads 2022148 Selective Electrooxidation of Ammonia to Nitrogen Gas on the Crystalline Cu₂O/Ni Foam Electrode
Authors: Ming-Han Tsai, Chihpin Huang
Abstract:
Electrochemical oxidation of ammonia (AEO) is one of the highly efficient and environmentally friendly methods for NH₃ removal from wastewater. Recently, researchers have focused on non-Pt-based electrodes (n-PtE) for AEO, aiming to evaluate the feasibility of these low-cost electrodes for future practical applications. However, for most n-PtE, NH₃ is oxidized mainly to nitrate ion NO₃⁻ instead of the desired nitrogen gas N₂, which requires further treatment to remove excess NO₃⁻. Therefore, developing a high N₂ conversion electrode for AEO is highly urgent. In this study, we fabricated various Cu₂O/Ni foam (NF) electrodes by electrodeposition of Cu on NF. The Cu plating bath contained different additives, including cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), polyamide acid (PAA), and sodium alginate (SA). All the prepared electrodes were physically and electrochemically investigated. Batch AEO experiments were conducted for 3 h to clarify the relation between electrode structures and N₂ selectivity. The SEM and XRD results showed that crystalline platelets-like Cu₂O, particles-like Cu₂O, cracks-like Cu₂O, and sheets-like Cu₂O were formed in the Cu plating bath by adding CTAC, SDS, PAA, and SA, respectively. For electrochemical analysis, all Cu₂O/NF electrodes revealed a higher current density (2.5-3.2 mA/cm²) compared to that without additives modification (1.6 mA/cm²). At a constant applied potential of 0.95 V (vs Hg/HgO), the Cu₂O sheet (51%) showed the highest N₂ selectivity, followed by Cu₂O cracks (38%), Cu₂O particles (30%), and Cu₂O platelet (18%) after 3 h reaction. Our result demonstrated that the selectivity of N₂ during AEO was surface structural dependent.Keywords: ammonia, electrooxidation, selectivity, cuprous oxide, Ni foam
Procedia PDF Downloads 862147 Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel
Authors: Rubén Bãnos, José Arcos, Oscar Bautista, Federico Méndez
Abstract:
The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H¨uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Reω, the electrokinetic parameter, ¯κ, defined as the ratio of the characteristic length scale to the Debye length, the parameter λ which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Reω and ¯κ are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers.Keywords: low zeta potentials, non-newtonian, oscillatory electroosmotic flow, power-law model
Procedia PDF Downloads 1692146 Effect of Micaceous Iron Oxide and Nanocrystalline Al on the Electrochemical Behavior of Aliphatic Amine Cured Epoxy Coating
Authors: Asiful H. Seikh, Jabair A. Mohammed, Ubair A. Samad, Mohammad A. Alam, Saeed M. Al-Zahrani, El-Sayed M. Sherif
Abstract:
Three coating formulations were fabricated by incorporating different percentages of MIO (micaceous iron oxide ) (1, 2, and wt%) with ball-milled nanocrystalline Al (2 wt%) particles, which was optimized earlier. These coatings were characterized by means of different methods, namely, SEM, TGA, pendulum hardness, scratch test, and nano-indentation. The EIS measurements were carried out to report the effect of adding MIO powder in fabricated coatings on their corrosion behavior in 3.5 wt% NaCl solutions. In order to report the effect of immersion time on the corrosion and degradation of the prepared coatings, the EIS data were also acquired after various exposure periods of time, i.e., 1 h, 7 d, 14 d, 21 d, and 30 d in the test chloride solution. It has been found that the obtained EIS data for the fabricated coatings proved that the presence of 2% MIO provided the highest corrosion resistance amongst all coatings and that effect was recorded after all immersion periods of time. But, the MIO-incorporated coatings have less corrosion resistance than Al based epoxy coatings. It was also shown that with prolonged immersion, the resistance to corrosion declined after 7d, then with a longer period of immersion, i.e. 14 d, 21 d, and 30 d increases the resistance to corrosion by forming oxide products on the coatings surface. The results obtained from both mechanical and electrochemical testing confirmed that the fabricated coating with 2 wt% Al exhibited better hardness and higher resistance to corrosion as compared to coatings with 1 wt% Al and 3 wt% Al.Keywords: epoxy coatings, nanomaterials, corrosion resistance, EIS, nanoindentation
Procedia PDF Downloads 722145 Applied Mathematical Approach on “Baut” Special High Performance Metal Aggregate by Formulation and Equations
Authors: J. R. Bhalla, Gautam, Gurcharan Singh, Sanjeev Naval
Abstract:
Mathematics is everywhere behind the every things on the earth as well as in the universe. Predynastic Egyptians of the 5th millennium BC pictorially represented geometric designs. Now a day’s we can made and apply an equation on a complex geometry through applied mathematics. Here we work and focus on to create a formula which apply in the field of civil engineering in new concrete technology. In this paper our target is to make a formula which is applied on “BAUT” Metal Aggregate. In this paper our approach is to make formulation and equation on special “BAUT” Metal Aggregate by Applied Mathematical Study Case 1. BASIC PHYSICAL FORMULATION 2. ADVANCE EQUATION which shows the mechanical performance of special metal aggregates for concrete technology. In case 1. Basic physical formulation shows the surface area and volume manually and in case 2. Advance equation shows the mechanical performance has been discussed, the metal aggregates which had outstandingly qualities to resist shear, tension and compression forces. In this paper coarse metal aggregates is 20 mm which used for making high performance concrete (H.P.C).Keywords: applied mathematical study case, special metal aggregates, concrete technology, basic physical formulation, advance equation
Procedia PDF Downloads 3742144 Optimization of the Production Processes of Biodiesel from a Locally Sourced Gossypium herbaceum and Moringa oleifera
Authors: Ikechukwu Ejim
Abstract:
This research project addresses the optimization of biodiesel production from gossypium herbaceum (cottonseed) and moringa oleifera seeds. Soxhlet extractor method using n-hexane for gossypium herbaceum (cottonseed) and ethanol for moringa oleifera were used for solvent extraction. 1250 ml of oil was realized from both gossypium herbaceum (cottonseed) and moringa oleifera seeds before characterization. In transesterification process, a 4-factor-3-level experiment was conducted using an optimal design of Response Surface Methodology. The effects of methanol/oil molar ratio, catalyst concentration (%), temperature (°C) and time (mins), on the yield of methyl ester for both cottonseed and moringa oleifera oils were determined. The design consisted of 25 experimental runs (5 lack of fit points, five replicate points, 0 additional center points and I optimality) and provided sufficient information to fit a second-degree polynomial model. The experimental results suggested that optimum conditions were as follows; cottonseed yield (96.231%), catalyst concentration (0.972%), temperature (55oC), time (60mins) and methanol/oil molar ratios (8/1) respectively while moringa oleifera optimum values were yield (80.811%), catalyst concentration (1.0%), temperature (54.7oC), time (30mins ) and methanol/oil molar ratios (8/1) respectively. This optimized conditions were validated with the actual biodiesel yield in experimental trials and literature.Keywords: optimization, Gossypium herbaceum, Moringa oleifera, biodiesel
Procedia PDF Downloads 1462143 In Response to Worldwide Disaster: Academic Libraries’ Functioning During COVID-19 Pandemic Without a Policy
Authors: Dalal Albudaiwi, Mike Allen, Talal Alhaji, Shahnaz Khadimehzadah
Abstract:
As a pandemic, COVID-19 has impacted the whole world since November 2019. In other words, every organization, industry, and institution has been negatively affected by the Coronavirus. The uncertainty of how long the pandemic will last caused chaos at all levels. As with any other institution, public libraries were affected and transmitted into online services and resources. As internationally, have been witnessed that some public libraries were well-prepared for such disasters as the pandemic, and therefore, collections, users, services, technologies, staff, and budgets were all influenced. Public libraries’ policies did not mention any plan regarding such a pandemic. Instead, there are several rules in the guidelines about disasters in general, such as natural disasters. In this pandemic situation, libraries have been involved in different uneasy circumstances. However, it has always been apparent to public libraries the role they play in serving their communities in excellent and critical times. It dwells into the traditional role public libraries play in providing information services and sources to satisfy their information-based community needs. Remarkably increasing people’s awareness of the importance of informational enrichment and enhancing society’s skills in dealing with information and information sources. Under critical circumstances, libraries play a different role. It goes beyond the traditional part of information providers to the untraditional role of being a social institution that serves the community with whatever capabilities they have. This study takes two significant directions. The first focuses on investigating how libraries have responded to COVID-19 and how they manage disasters within their organization. The second direction focuses on how libraries help their communities to act during disasters and how to recover from the consequences. The current study examines how libraries prepare for disasters and the role of public libraries during disasters. We will also propose “measures” to be a model that libraries can use to evaluate the effectiveness of their response to disasters. We intend to focus on how libraries responded to this new disaster. Therefore, this study aims to develop a comprehensive policy that includes responding to a crisis such as Covid-19. An analytical lens inside the libraries as an organization and outside the organization walls will be documented based on analyzing disaster-related literature published in the LIS publication. The study employs content analysis (CA) methodology. CA is widely used in the library and information science. The critical contribution of this work is to propose solutions it provides to libraries and planers to prepare crisis management plans/ policies, specifically to face a new global disaster such as the COVID-19 pandemic. Moreover, the study will help library directors to evaluate their strategies and to improve them properly. The significance of this study lies in guiding libraries’ directors to enhance the goals of the libraries to guarantee crucial issues such as: saving time, avoiding loss, saving budget, acting quickly during a crisis, maintaining libraries’ role during pandemics, finding out the best response to disasters, and creating plan/policy as a sample for all libraries.Keywords: Covid-19, policy, preparedness, public libraries
Procedia PDF Downloads 802142 Design of Cylindrical Crawler Robot Inspired by Amoeba Locomotion
Authors: Jun-ya Nagase
Abstract:
Recently, the need of colonoscopy is increasing because of the rise of colonic disorder including cancer of the colon. However, current colonoscopy depends on doctor's skill strongly. Therefore, a large intestine endoscope that does not depend on the techniques of a doctor with high safety is required. In this research, we aim at development a novel large intestine endoscope that can realize safe insertion without specific techniques. A wheel movement type robot, a snake-like robot and an earthworm-like robot are all described in the relevant literature as endoscope robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a small cylindrical crawler robot inspired by amoeba locomotion, which does not need large space to move and which has high ground-covering ability, is proposed. In addition, we developed a prototype of the large intestine endoscope using the proposed crawler mechanism. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.Keywords: tracked-crawler, endoscopic robot, narrow path, amoeba locomotion.
Procedia PDF Downloads 3842141 Incorporation of Copper for Performance Enhancement in Metal-Oxides Resistive Switching Device and Its Potential Electronic Application
Authors: B. Pavan Kumar Reddy, P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu
Abstract:
In this work, the fabrication and characterization of copper-doped zinc oxide (Cu:ZnO) based memristor devices with aluminum (Al) and indium tin oxide (ITO) metal electrodes are reported. The thin films of Cu:ZnO was synthesized using low-cost and low-temperature chemical process. The Cu:ZnO was then deposited onto ITO bottom electrodes using spin-coater technique, whereas the top electrode Al was deposited utilizing physical vapor evaporation technique. Ellipsometer was employed in order to measure the Cu:ZnO thickness and it was found to be 50 nm. Several surface and materials characterization techniques were used to study the thin-film properties of Cu:ZnO. To ascertain the efficacy of Cu:ZnO for memristor applications, electrical characterizations such as current-voltage (I-V), data retention and endurance were obtained, all being the critical parameters for next-generation memory. The I-V characteristic exhibits switching behavior with asymmetrical hysteresis loops. This work imputes the resistance switching to the positional drift of oxygen vacancies associated with respect to the Al/Cu:ZnO junction. Further, a non-linear curve fitting regression techniques were utilized to determine the equivalent circuit for the fabricated Cu:ZnO memristors. Efforts were also devoted in order to establish its potentiality for different electronic applications.Keywords: copper doped, metal-oxides, oxygen vacancies, resistive switching
Procedia PDF Downloads 1622140 Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications
Authors: Manel Bouloudenine, Karima Djeddou, Hadjer Ben Manser, Hana Soualah Alila, Mohmed Bououdina
Abstract:
This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones.Keywords: silvers nanoparticles, microwaves, EDS, TEM
Procedia PDF Downloads 1472139 Thermal Cracking Approach Investigation to Improve Biodiesel Properties
Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli
Abstract:
Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.Keywords: biodiesel, castor oil, fuel properties, thermal cracking
Procedia PDF Downloads 2602138 An Integrated Solid Waste Management Strategy for Semi-Urban and Rural Areas of Pakistan
Authors: Z. Zaman Asam, M. Ajmal, R. Saeed, H. Miraj, M. Muhammad Ahtisham, B. Hameed, A. -Sattar Nizami
Abstract:
In Pakistan, environmental degradation and consequent human health deterioration has rapidly accelerated in the past decade due to solid waste mismanagement. As the situation worsens with time, establishment of proper waste management practices is urgently needed especially in semi urban and rural areas of Pakistan. This study uses a concept of Waste Bank, which involves a transfer station for collection of sorted waste fractions and its delivery to the targeted market such as recycling industries, biogas plants, composting facilities etc. The management efficiency and effectiveness of Waste Bank depend strongly on the proficient sorting and collection of solid waste fractions at household level. However, the social attitude towards such a solution in semi urban/rural areas of Pakistan demands certain prerequisites to make it workable. Considering these factors the objectives of this study are to: [A] Obtain reliable data about quantity and characteristics of generated waste to define feasibility of business and design factors, such as required storage area, retention time, transportation frequency of the system etc. [B] Analyze the effects of various social factors on waste generation to foresee future projections. [C] Quantify the improvement in waste sorting efficiency after awareness campaign. We selected Gujrat city of Central Punjab province of Pakistan as it is semi urban adjoined by rural areas. A total of 60 houses (20 from each of the three selected colonies), belonging to different social status were selected. Awareness sessions about waste segregation were given through brochures and individual lectures in each selected household. Sampling of waste, that households had attempted to sort, was then carried out in the three colored bags that were provided as part of the awareness campaign. Finally, refined waste sorting, weighing of various fractions and measurement of dry mass was performed in environmental laboratory using standard methods. It was calculated that sorting efficiency of waste improved from 0 to 52% as a result of the awareness campaign. The generation of waste (dry mass basis) on average from one household was 460 kg/year whereas per capita generation was 68 kg/year. Extrapolating these values for Gujrat Tehsil, the total waste generation per year is calculated to be 101921 tons dry mass (DM). Characteristics found in waste were (i) organic decomposable (29.2%, 29710 tons/year DM), (ii) recyclables (37.0%, 37726 tons/year DM) that included plastic, paper, metal and glass, and (iii) trash (33.8%, 34485 tons/year DM) that mainly comprised of polythene bags, medicine packaging, pampers and wrappers. Waste generation was more in colonies with comparatively higher income and better living standards. In future, data collection for all four seasons and improvements due to expansion of awareness campaign to educational institutes will be quantified. This waste management system can potentially fulfill vital sustainable development goals (e.g. clean water and sanitation), reduce the need to harvest fresh resources from the ecosystem, create business and job opportunities and consequently solve one of the most pressing environmental issues of the country.Keywords: integrated solid waste management, waste segregation, waste bank, community development
Procedia PDF Downloads 1412137 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems
Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis
Abstract:
Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties
Procedia PDF Downloads 1542136 Electromechanical-Traffic Model of Compression-Based Piezoelectric Energy Harvesting System
Authors: Saleh Gareh, B. C. Kok, H. H. Goh
Abstract:
Piezoelectric energy harvesting has advantages over other alternative sources due to its large power density, ease of applications, and capability to be fabricated at different scales: macro, micro, and nano. This paper presents an electromechanical-traffic model for roadway compression-based piezoelectric energy harvesting system. A two-degree-of-freedom (2-DOF) electromechanical model has been developed for the piezoelectric energy harvesting unit to define its performance in power generation under a number of external excitations on road surface. Lead Zirconate Titanate (PZT-5H) is selected as the piezoelectric material to be used in this paper due to its high Piezoelectric Charge Constant (d) and Piezoelectric Voltage Constant (g) values. The main source of vibration energy that has been considered in this paper is the moving vehicle on the road. The effect of various frequencies on possible generated power caused by different vibration characteristics of moving vehicle has been studied. A single unit of circle-shape Piezoelectric Cymbal Transducer (PCT) with diameter of 32 mm and thickness of 0.3 mm be able to generate about 0.8 mW and 3 mW of electric power under 4 Hz and 20 Hz of excitation, respectively. The estimated power to be generated for multiple arrays of PCT is approximately 150 kW/ km. Thus, the developed electromechanical-traffic model has enormous potential to be used in estimating the macro scale of roadway power generation system.Keywords: piezoelectric energy harvesting, cymbal transducer, PZT (lead zirconate titanate), 2-DOF
Procedia PDF Downloads 355