Search results for: pre-trained language models
3842 Stories of Digital Technology and Online Safety: Storytelling as a Tool to Find out Young Children’s Views on Digital Technology and Online Safety
Authors: Lindsey Watson
Abstract:
This research is aimed at facilitating and listening to the voices of younger children, recognising their contributions to research about the things that matter to them. Digital technology increasingly impacts on the lives of young children, therefore this study aimed at increasing children’s agency through recognising and involving their perspectives to help contribute to a wider understanding of younger children’s perceptions of online safety. Using a phenomenological approach, the paper discusses how storytelling as a creative methodological approach enabled an agentic space for children to express their views, knowledge, and perceptions of their engagement with the digital world. Setting and parental informed consent were gained in addition to an adapted approach to child assent through the use of child-friendly language and emoji stickers, which was also recorded verbally. Findings demonstrate that younger children are thinking about many aspects of digital technology and how this impacts on their lives and that storytelling as a research method is a useful tool to facilitate conversations with young children. The paper thus seeks to recognise and evaluate how creative methodologies can provide insights into children’s understanding of online safety and how this can influence practitioners and parents in supporting younger children in a digital world.Keywords: early childhood, family, online safety, phenomenology, storytelling
Procedia PDF Downloads 1293841 Numerical Analysis of Fire Performance of Timber Structures
Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume
Abstract:
An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.Keywords: Timber panels, heat transfer, thermal properties, standard fire tests
Procedia PDF Downloads 3423840 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 1563839 Humor and Public Hygiene: A Critical Social Semiotic Analysis of Singapore’s National Campaigns
Authors: Kelsi Matwick, Keri Matwick
Abstract:
This presentation focuses on national campaigns as a government tactic of social behavior and order. Focusing on one of Singapore’s first national campaigns, Keep Singapore Clean (1968), particularly its iterations of public hygiene in recent years: Keep the Toilets Clean (2012-2019) and UnLittering with Mary Chongo (2019), the study examines how humor and the use of multimodality reflect contemporary practices in political practice. A critical social semiotic analysis involving the textual (linguistic and visual design) and material (print cartoons and videos) is undertaken to show how these messages are communicated. Incongruity and parody are humorous mechanisms used to project the government as likeable, effectively capture the public attention, and instill individual responsibility for the greater community. In focusing on public hygiene national campaigns, the study further illustrates how humor offers a polite way to address crude behavior while providing models of exemplary behavior.Keywords: communication strategies, critical social semiotics, humor, national campaigns
Procedia PDF Downloads 1183838 Luxury in Fashion: Visual Analysis on Bag Advertising
Authors: Lama Ajinah
Abstract:
Luxury brands witnessed continuous growth which followed women’s desire towards individual distinctiveness and social glare. Bags are a woman’s best friend either for aesthetic or functional purposes when she leaves her home for leisure or work. One way of women constant aspiration for being distinguished while reflecting their wealth is through handbags. Subsequently, the demand and attraction by consumers towards the dazzle of luxurious brands for personal pleasure and social status have flourished. According to the literature review, a visual analysis on luxury brands has been explored yet a focus on bags was not discussed in details. Hence, a deep analysis will be dedicated on the two segments by showcasing examples of high-end bag advertising. The research is conducted to understand advertising strategies used in promoting for luxurious products. Furthermore, the paper explores the definition of the term luxury, the condition in which it is used in, and the visual language used along with the term. As luxury is an indicator of superior satisfaction, it is obtained on two levels: a personal and a social level. The examples of luxury brand ads are selected from the last five years to uncover the latest, most common strategies used to promote for luxurious brands. The methods employed in this paper consist of literature review, semiotic analysis, and content analysis. The researcher concludes with revealing the methods used in advertising while categorizing them into various themes.Keywords: advertising, brands, fashion, graphic design, luxury, semiotic analysis, semiology, visual analysis, visual communication
Procedia PDF Downloads 2443837 Economical Analysis of Optimum Insulation Thickness for HVAC Duct
Authors: D. Kumar, S. Kumar, A. G. Memon, R. A. Memon, K. Harijan
Abstract:
A considerable amount of energy is usually lost due to compression of insulation in Heating, ventilation, and air conditioning (HVAC) duct. In this paper, the economic impact of compression of insulation is estimated. Relevant mathematical models were used to estimate the optimal thickness at the points of compression. Furthermore, the payback period is calculated for the optimal thickness at the critical parts of supply air duct (SAD) and return air duct (RAD) considering natural gas (NG) and liquefied petroleum gas (LPG) as fuels for chillier operation. The mathematical model is developed using preliminary data obtained for an HVAC system of a pharmaceutical company. The higher heat gain and cooling loss, due to compression of thermal insulation, is estimated using relevant heat transfer equations. The results reveal that maximum energy savings (ES) in SAD is 34.5 and 40%, while in RAD is 22.9% and 29% for NG and LPG, respectively. Moreover, the minimum payback period (PP) for SAD is 2 and 1.6years, while in RAD is 4.3 and 2.7years for NG and LPG, respectively. The optimum insulation thickness (OIT) corresponding to maximum ES and minimum PP is estimated to be 35 and 42mm for SAD, while 30 and 38mm for RAD in case of NG and LPG, respectively.Keywords: optimum insulation thickness, life cycle cost analysis, payback period, HVAC system
Procedia PDF Downloads 2163836 Comics Scanlation and Publishing Houses Translation
Authors: Sharifa Alshahrani
Abstract:
Comics is a multimodal text wherein meaning is created by taking in all modes of expression at once. It uses two different semiotic modes, the verbal and the visual modes, together to make meaning and these different semiotic modes can be socially and culturally shaped to give meaning. Therefore, comics translation cannot treat comics as a monomodal text by translating only the verbal mode inside or outside the speech balloons as the cultural differences are encoded in the visual mode as well. Due to the development of the internet and editing software, comics translation is not anymore confined to the publishing houses and official translation as scanlation, or the fan translation took the initiative in translating comics for being emotionally attracted to the culture and genre. Scanlation is carried out by volunteering fans who translate out of passion. However, quality is one of the debatable issues relating to scanlation and fan translation. This study will investigate how the dynamic multimodal relationship in comics is exploited and interpreted in the translation by exploring the translation strategies and procedures adopted by the publishing houses and scanlation in interpreting comics into Arabic using three analytical frameworks; cultural references model, multimodal relation model and translation strategies and procedures models.Keywords: comics, multimodality, translation, scanlation
Procedia PDF Downloads 2123835 Shock and Particle Velocity Determination from Microwave Interrogation
Authors: Benoit Rougier, Alexandre Lefrancois, Herve Aubert
Abstract:
Microwave interrogation in the range 10-100 GHz is identified as an advanced technique to investigate simultaneously shock and particle velocity measurements. However, it requires the understanding of electromagnetic wave propagation in a multi-layered moving media. The existing models limit their approach to wave guides or evaluate the velocities with a fitting method, restricting therefore the domain of validity and the precision of the results. Moreover, few data of permittivity on high explosives at these frequencies under dynamic compression have been reported. In this paper, shock and particle velocities are computed concurrently for steady and unsteady shocks for various inert and reactive materials, via a propagation model based on Doppler shifts and signal amplitude. Refractive index of the material under compression is also calculated. From experimental data processing, it is demonstrated that Hugoniot curve can be evaluated. The comparison with published results proves the accuracy of the proposed method. This microwave interrogation technique seems promising for shock and detonation waves studies.Keywords: electromagnetic propagation, experimental setup, Hugoniot measurement, shock propagation
Procedia PDF Downloads 2133834 Place, Space and Asian/Hawaiian Identities in Gary Pak's My Friend Kammy and Ishmael Reed or Me
Authors: Jaroslav Kušnír
Abstract:
Hawaiian literature in English has been researched more intensively in the past decades, mostly in the context of Asian American literature. In his collection of stories Language of the Gecko's and Other Stories, Hawaiian author Gary Pak explores complex relationships between Asian, Native Hawaiian, and American characters living mostly in Hawaii. Through a depiction of these complex relationships, Pak also explores the interaction between different cultures in Hawaii as well as the formation of Asian/Hawaiian identity in the modern world. Based on a comparative approach and close analysis method, this paper will explore the role of place and its historical and cultural background in the formation of modern Asian/Hawaiian cultural identity as manifested in Pak's stories My Friend Kammy and Ishmael Reed or Me. At the same time, through the use of Bill Ashcroft´s concept of transnation, the author of this paper will analyze Pak's depiction of the formation of the cultural identity of characters from Gary Pak's stories My Friend Kammy and Ishmael Reed or Me, which are, in the author of this paper´s view, the characters close to the concept of Ashcroft's transnation which makes them different from traditional cosmopolitan or diasporic characters.Keywords: culture, cultural identity, Hawaiian identity, Hawaiian literature, place, transnation
Procedia PDF Downloads 713833 Heuristic of Style Transfer for Real-Time Detection or Classification of Weather Conditions from Camera Images
Authors: Hamed Ouattara, Pierre Duthon, Frédéric Bernardin, Omar Ait Aider, Pascal Salmane
Abstract:
In this article, we present three neural network architectures for real-time classification of weather conditions (sunny, rainy, snowy, foggy) from images. Inspired by recent advances in style transfer, two of these architectures -Truncated ResNet50 and Truncated ResNet50 with Gram Matrix and Attention- surpass the state of the art and demonstrate re-markable generalization capability on several public databases, including Kaggle (2000 images), Kaggle 850 images, MWI (1996 images) [1], and Image2Weather [2]. Although developed for weather detection, these architectures are also suitable for other appearance-based classification tasks, such as animal species recognition, texture classification, disease detection in medical images, and industrial defect identification. We illustrate these applications in the section “Applications of Our Models to Other Tasks” with the “SIIM-ISIC Melanoma Classification Challenge 2020” [3].Keywords: weather simulation, weather measurement, weather classification, weather detection, style transfer, Pix2Pix, CycleGAN, CUT, neural style transfer
Procedia PDF Downloads 43832 Research on Models and Selection of Entry Strategies for Catering Industry Based on the Evolutionary Game Theory
Authors: Jianxin Zhu, Na Liu
Abstract:
Entry strategies play a vital role in the development of new enterprises in the catering industry. Different entry strategies will have different effects on the development of new enterprise. Based on the research of scholars at home and abroad, and combining the characteristics of the catering industry, the entry strategies are divided into low-price entry strategies and high-quality entry strategies. Facing the entry of new enterprise, the strategies of incumbent enterprises are divided into response strategies and non-response strategies. This paper uses evolutionary game theory to study the strategic interaction mechanism between incumbent companies and new enterprises. When different initial values and parameter values are set, which strategy will the two-game subjects choose, respectively? Using matlab2016 for numerical simulation, the results show that the choice of strategies for new enterprise and incumbent enterprise is influenced by more than one factor, and the system has different evolution trends under different circumstances. When the parameters were set, the choice of two subjects' strategies mainly depends on the net profit between the strategies.Keywords: catering industry, entry strategy, evolutionary game, strategic interaction mechanism
Procedia PDF Downloads 1323831 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 503830 Simulation of 1D Dielectric Barrier Discharge in Argon Mixtures
Authors: Lucas Wilman Crispim, Patrícia Hallack, Maikel Ballester
Abstract:
This work aims at modeling electric discharges in gas mixtures. The mathematical model mimics the ignition process in a commercial spark-plug when a high voltage is applied to the plug terminals. A longitudinal unidimensional Cartesian domain is chosen for the simulation region. Energy and mass transfer are considered for a macroscopic fluid representation, while energy transfer in molecular collisions and chemical reactions are contemplated at microscopic level. The macroscopic model is represented by a set of uncoupled partial differential equations. Microscopic effects are studied within a discrete model for electronic and molecular collisions in the frame of ZDPlasKin, a plasma modeling numerical tool. The BOLSIG+ solver is employed in solving the electronic Boltzmann equation. An operator splitting technique is used to separate microscopic and macroscopic models. The simulation gas is a mixture of atomic Argon neutral, excited and ionized. Spatial and temporal evolution of such species and temperature are presented and discussed.Keywords: CFD, electronic discharge, ignition, spark plug
Procedia PDF Downloads 1623829 Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics
Authors: Saeb Ahmadi, Mohsen Vafaie Sefti, Mohammad Mahdi Shadman, Ebrahim Tangestani
Abstract:
Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models.Keywords: cerium, rare earth element, MWCNTs, adsorption, optimization
Procedia PDF Downloads 1673828 Musicals in Film Adaptation in Bollywood with Special Reference to Basu Bhattacharya's Film Teesari Kasam
Authors: Gokul G. Kshirsagar
Abstract:
Native folk theatre and folk songs have a significant influence on the origin and development of Indian cinema. Therefore, the presence of songs and music has been an integral part and special characteristics of Indian cinema which is popularly known as Bollywood. An Indian cinema without songs, either in Hindi or other regional languages, is simply unimaginable. The present paper, in the first part, attempts to explain the use and need of musical songs and also the psychology of Indian audience in this respect with reference to some of the films which give primary importance to songs. In the second part, the paper tries to situate the present study in the context by referring to the Hindi language drama film Teesari Kasam directed by Basu Bhattacharys. The film is based on the Hindi novelist Phanishwarnath Renu’s short story Teesari Kasam (Mare Gaye Gulfam) in this adapted film, the director has made use of eight songs, but these songs are the extensive versions of the songs as used in the original story. Thus, the main aim of the paper is to underscore the fact that through artistic use of the musical, the director has succeeded in transforming the central feelings conveyed in the original story. Eventually, through the present study of the film adaptation, the relevance of songs in films will be illustrated and understood.Keywords: Bollywood, folk theatre, folk songs, film adaptation
Procedia PDF Downloads 2213827 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells
Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba
Abstract:
Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer
Procedia PDF Downloads 4043826 Application of Applied Behavior Analysis Treatment to Children with Down Syndrome
Authors: Olha Yarova
Abstract:
This study is a collaborative project between the American University of Central Asia and parent association of children with Down syndrome ‘Sunterra’ that took place in Bishkek, Kyrgyzstan. The purpose of the study was to explore whether principles and techniques of applied behavior analysis (ABA) could be used to teach children with Down syndrome socially significant behaviors. ABA is considered to be one of the most effective treatment for children with autism, but little research is done on the particularity of using ABA to children with Down syndrome. The data for the study was received during clinical observations; work with children with Down syndrome and interviews with their mothers. The results show that many ABA principles make the work with children with Down syndrome more effective. Although such children very rarely demonstrate aggressive behavior, they show a lot of escape-driven and attention seeking behaviors that are reinforced by their parents and educators. Thus functional assessment can be done to assess the function of problem behavior and to determine appropriate treatment. Prompting and prompting fading should be used to develop receptive and expressive language skills, and enhance motor development. Even though many children with Down syndrome work for praise, it is still relevant to use tangible reinforcement and to know how to remove them. Based on the results of the study, the training for parents of children with Down syndrome will be developed in Kyrgyzstan, country, where children with Down syndrome are not accepted to regular kindergartens and where doctors in maternity hospitals tell parents that their child will never talk, walk and recognize themKeywords: down syndrome, applied behavior analysis, functional assessment, problem behavior, reinforcement
Procedia PDF Downloads 2753825 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5503824 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis
Authors: Petra Buzkova, Milos Kopa
Abstract:
Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression
Procedia PDF Downloads 2633823 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1503822 Loving is Universal, Dating is not: Dating Experiences of International Students in Vancouver
Authors: Nel Jayson Santos
Abstract:
The growing number of international students in post-secondary institutions in Canada has positively contributed to the country’s economy and educational systems while also enriching cultural diversity in the classrooms. However, international students face social and relational challenges as they try to adapt to their host nation’s culture. One specific area of cultural adaptation among international students that has yet to be studied extensively is dating experiences and romantic relationships. Although numerous studies have been done regarding the relational challenges and dating experiences of American international students, only a few studies have focused on international students based in Canada. Hence, this study examines the dating preferences, dating challenges, and dating adaptations of international students based in Vancouver, Canada. Using a social constructivist approach, a semi-structured interview was conducted among fifteen heterosexual international college students. Inductive thematic analysis was then used to analyze the gathered data and identify common themes. Findings suggest that students’ (1) preferences were influenced by racial background and parental approval of dating partners; (2) students experienced language barriers and cultural differences; (3) students adapted through constant communication and being open-minded. Finally, the analysis intends to help counselors and psychologists in various colleges to help understand the issues of international students in terms of intimate and romantic relationships.Keywords: higher education, international students, dating experiences, cultural adaptation
Procedia PDF Downloads 2093821 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm
Authors: Suparman Suparman
Abstract:
A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)
Procedia PDF Downloads 3553820 The Reach, Influence, and Acceptance of International Media Institutions in Local Language Broadcasting in Africa: A Case Study of VOA, DW, and BBC Amharic Services in Ethiopia
Authors: Aster Misganaw
Abstract:
This study investigates the reach, influence, and credibility of international broadcasters—specifically Voice of America (VOA), Deutsche Welle (DW), and British Broadcasting Corporation (BBC)—among Ethiopian audiences, comparing these perceptions to local media sources. Utilizing a mixed-methods approach that included quantitative surveys and qualitative interviews, the research reveals that the majority of respondents engage regularly with international broadcasters, with younger audiences showing a marked preference. Findings indicate that most of the participants perceive these international sources as more credible than local media, largely due to concerns over government influence on local reporting. Furthermore, the study finds that the majority of respondents believe international broadcasters significantly shape their understanding of both domestic and international issues, highlighting their critical role in public discourse. To enhance their relevance, it is recommended that international broadcasters incorporate more localized content while local media must work to improve their credibility and independence to better serve the Ethiopian public. This research contributes to the understanding of media consumption dynamics in Ethiopia, emphasizing the interplay between local and international narratives in shaping public opinion.Keywords: international media, BBC, Deutsche Welle, Ethiopian media, Voice of America, audience
Procedia PDF Downloads 153819 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants
Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst
Abstract:
Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles
Procedia PDF Downloads 1893818 Challenges and Lessons of Mentoring Processes for Novice Principals: An Exploratory Case Study of Induction Programs in Chile
Authors: Carolina Cuéllar, Paz González
Abstract:
Research has shown that school leadership has a significant indirect effect on students’ achievements. In Chile, evidence has also revealed that this impact is stronger in vulnerable schools. With the aim of strengthening school leadership, public policy has taken up the challenge of enhancing capabilities of novice principals through the implementation of induction programs, which include a mentoring component, entrusting the task of delivering these programs to universities. The importance of using mentoring or coaching models in the preparation of novice school leaders has been emphasized in the international literature. Thus, it can be affirmed that building leadership capacity through partnership is crucial to facilitate cognitive and affective support required in the initial phase of the principal career, gain role clarification and socialization in context, stimulate reflective leadership practice, among others. In Chile, mentoring is a recent phenomenon in the field of school leadership and it is even more new in the preparation of new principals who work in public schools. This study, funded by the Chilean Ministry of Education, sought to explore the challenges and lessons arising from the design and implementation of mentoring processes which are part of the induction programs, according to the perception of the different actors involved: ministerial agents, university coordinators, mentors and novice principals. The investigation used a qualitative design, based on a study of three cases (three induction programs). The sources of information were 46 semi-structured interviews, applied in two moments (at the beginning and end of mentoring). Content analysis technique was employed. Data focused on the uniqueness of each case and the commonalities within the cases. Five main challenges and lessons emerged in the design and implementation of mentoring within the induction programs for new principals from Chilean public schools. They comprised the need of (i) developing a shared conceptual framework on mentoring among the institutions and actors involved, which helps align the expectations for the mentoring component within the induction programs, along with assisting in establishing a theory of action of mentoring that is relevant to the public school context; (ii) recognizing trough actions and decisions at different levels that the role of a mentor differs from the role of a principal, which challenge the idea that an effective principal will always be an effective mentor; iii) improving mentors’ selection and preparation processes trough the definition of common guiding criteria to ensure that a mentor takes responsibility for developing critical judgment of novice principals, which implies not limiting the mentor’s actions to assist in the compliance of prescriptive practices and standards; (iv) generating common evaluative models with goals, instruments and indicators consistent with the characteristics of mentoring processes, which helps to assess expected results and impact; and (v) including the design of a mentoring structure as an outcome of the induction programs, which helps sustain mentoring within schools as a collective professional development practice. Results showcased interwoven elements that entail continuous negotiations at different levels. Taking action will contribute to policy efforts aimed at professionalizing the leadership role in public schools.Keywords: induction programs, mentoring, novice principals, school leadership preparation
Procedia PDF Downloads 1263817 On the Influence of Sleep Habits for Predicting Preterm Births: A Machine Learning Approach
Authors: C. Fernandez-Plaza, I. Abad, E. Diaz, I. Diaz
Abstract:
Births occurring before the 37th week of gestation are considered preterm births. A threat of preterm is defined as the beginning of regular uterine contractions, dilation and cervical effacement between 23 and 36 gestation weeks. To author's best knowledge, the factors that determine the beginning of the birth are not completely defined yet. In particular, the incidence of sleep habits on preterm births is weekly studied. The aim of this study is to develop a model to predict the factors affecting premature delivery on pregnancy, based on the above potential risk factors, including those derived from sleep habits and light exposure at night (introduced as 12 variables obtained by a telephone survey using two questionnaires previously used by other authors). Thus, three groups of variables were included in the study (maternal, fetal and sleep habits). The study was approved by Research Ethics Committee of the Principado of Asturias (Spain). An observational, retrospective and descriptive study was performed with 481 births between January 1, 2015 and May 10, 2016 in the University Central Hospital of Asturias (Spain). A statistical analysis using SPSS was carried out to compare qualitative and quantitative variables between preterm and term delivery. Chi-square test qualitative variable and t-test for quantitative variables were applied. Statistically significant differences (p < 0.05) between preterm vs. term births were found for primiparity, multi-parity, kind of conception, place of residence or premature rupture of membranes and interruption during nights. In addition to the statistical analysis, machine learning methods to look for a prediction model were tested. In particular, tree based models were applied as the trade-off between performance and interpretability is especially suitable for this study. C5.0, recursive partitioning, random forest and tree bag models were analysed using caret R-package. Cross validation with 10-folds and parameter tuning to optimize the methods were applied. In addition, different noise reduction methods were applied to the initial data using NoiseFiltersR package. The best performance was obtained by C5.0 method with Accuracy 0.91, Sensitivity 0.93, Specificity 0.89 and Precision 0.91. Some well known preterm birth factors were identified: Cervix Dilation, maternal BMI, Premature rupture of membranes or nuchal translucency analysis in the first trimester. The model also identifies other new factors related to sleep habits such as light through window, bedtime on working days, usage of electronic devices before sleeping from Mondays to Fridays or change of sleeping habits reflected in the number of hours, in the depth of sleep or in the lighting of the room. IF dilation < = 2.95 AND usage of electronic devices before sleeping from Mondays to Friday = YES and change of sleeping habits = YES, then preterm is one of the predicting rules obtained by C5.0. In this work a model for predicting preterm births is developed. It is based on machine learning together with noise reduction techniques. The method maximizing the performance is the one selected. This model shows the influence of variables related to sleep habits in preterm prediction.Keywords: machine learning, noise reduction, preterm birth, sleep habit
Procedia PDF Downloads 1483816 Online Handwritten Character Recognition for South Indian Scripts Using Support Vector Machines
Authors: Steffy Maria Joseph, Abdu Rahiman V, Abdul Hameed K. M.
Abstract:
Online handwritten character recognition is a challenging field in Artificial Intelligence. The classification success rate of current techniques decreases when the dataset involves similarity and complexity in stroke styles, number of strokes and stroke characteristics variations. Malayalam is a complex south indian language spoken by about 35 million people especially in Kerala and Lakshadweep islands. In this paper, we consider the significant feature extraction for the similar stroke styles of Malayalam. This extracted feature set are suitable for the recognition of other handwritten south indian languages like Tamil, Telugu and Kannada. A classification scheme based on support vector machines (SVM) is proposed to improve the accuracy in classification and recognition of online malayalam handwritten characters. SVM Classifiers are the best for real world applications. The contribution of various features towards the accuracy in recognition is analysed. Performance for different kernels of SVM are also studied. A graphical user interface has developed for reading and displaying the character. Different writing styles are taken for each of the 44 alphabets. Various features are extracted and used for classification after the preprocessing of input data samples. Highest recognition accuracy of 97% is obtained experimentally at the best feature combination with polynomial kernel in SVM.Keywords: SVM, matlab, malayalam, South Indian scripts, onlinehandwritten character recognition
Procedia PDF Downloads 5743815 The International Monetary Fund’s Treatment Towards Argentina and Brazil During Financial Negotiations for Their First Adjustment Programs, 1958-64
Authors: Fernanda Conforto de Oliveira
Abstract:
The International Monetary Fund (IMF) has a central role in global financial governance as the world’s leading crisis lender. Its practice of conditional lending – conditioning loans on the implementation of economic policy adjustments – is the primary lever by which the institution interacts with and influences the policy choices of member countries and has been a key topic of interest to scholars and public opinion. However, empirical evidence about the economic and (geo)political determinants of IMF lending behavior remains inconclusive, and no model that explains IMF policies has been identified. This research moves beyond panel analysis to focus on financial negotiations for the first IMF programs in Argentina and Brazil in the early post-war period. It seeks to understand why negotiations achieved distinct objectives: Argentinean officials cooperated and complied with IMF policies, whereas their Brazilian counterparts hesitated. Using qualitative and automated text analysis, this paper analyses the hypothesis about whether a differential IMF treatment could help to explain these distinct outcomes. This paper contributes to historical studies on IMF-Latin America relations and the broader literature in international policy economy about IMF policies.Keywords: international monetary fund, international history, financial history, Latin American economic history, natural language processing, sentiment analysis
Procedia PDF Downloads 633814 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 1533813 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals
Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi
Abstract:
Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition
Procedia PDF Downloads 406