Search results for: surface wave
1499 Utilization of Logging Residue to Reduce Soil Disturbance of Timber Harvesting
Authors: Juang R. Matangaran, Qi Adlan
Abstract:
Industrial plantation forest in Indonesia was developed in 1983, and since then, several companies have been successfully planted a total area of concessionaire approximately 10 million hectares. Currently, these plantation forests have their annual harvesting period. In the timber harvesting process, amount part of the trees generally become logging residue. Tree parts such as branches, twigs, defected stem and leaves are unused section of tree on the ground after timber harvesting. The use of heavy machines in timber harvesting area has caused damage to the forest soil. The negative impact of such machines includes loss of topsoil, soil erosion, and soil compaction. Forest soil compaction caused reduction of forest water infiltration, increase runoff and causes difficulty for root penetration. In this study, we used logging residue as soil covers on the passages passed by skidding machines in order to observe the reduction soil compaction. Bulk density of soil was measured and analyzed after several times of skidding machines passage on skid trail. The objective of the research was to analyze the effect of logging residue on reducing soil compaction. The research was taken place at one of the industrial plantation forest area of South Sumatra Indonesia. The result of the study showed that percentage increase of soil compaction bare soil was larger than soil surface covered by logging residue. The maximum soil compaction occurred after 4 to 5 passes on soil without logging residue or bare soil and after 7 to 8 passes on soil cover by logging residue. The use of logging residue coverings could reduce soil compaction from 45% to 60%. The logging residue was effective in decreasing soil disturbance of timber harvesting at the plantation forest area.Keywords: bulk density, logging residue, plantation forest, soil compaction, timber harvesting
Procedia PDF Downloads 4051498 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide
Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz
Abstract:
In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide
Procedia PDF Downloads 1661497 Mordenite as Catalyst Support for Complete Volatile Organic Compounds Oxidation
Authors: Yuri A. Kalvachev, Totka D. Todorova
Abstract:
Zeolite mordenite has been investigated as a transition metal support for the preparation of efficient catalysts in the oxidation of volatile organic compounds (VOCs). The highly crystalline mordenite samples were treated with hydrofluoric acid and ammonium fluoride to get hierarchical material with secondary porosity. The obtained supports by this method have a high active surface area, good diffusion properties and prevent the extraction of metal components during catalytic reactions. The active metal phases platinum and copper were loaded by impregnation on both mordenite materials (parent and acid treated counterparts). Monometalic Pt and Cu, and bimetallic Pt/Cu catalysts were obtained. The metal phases were fine dispersed as nanoparticles on the functional porous materials. The catalysts synthesized in this way were investigated in the reaction of complete oxidation of propane and benzene. Platinum, copper and platinum/copper were loaded and there catalytic activity was investigated and compared. All samples are characterized by X-ray diffraction analysis, nitrogen adsorption, scanning electron microscopy (SEM), X-ray photoelectron measurements (XPS) and temperature programed reduction (TPR). The catalytic activity of the samples obtained is investigated in the reaction of complete oxidation of propane and benzene by using of Gas Chromatography (GC). The oxidation of three organic molecules was investigated—methane, propane and benzene. The activity of metal loaded mordenite catalysts for methane oxidation is almost the same for parent and treated mordenite as a support. For bigger molecules as propane and benzene, the activity of catalysts based on treated mordenite is higher than those based on parent zeolite.Keywords: metal loaded catalysts, mordenite, VOCs oxidation, zeolites
Procedia PDF Downloads 1321496 Differential Diagnosis of an Asymptomatic Lesion in Contact with the Bladder
Authors: Angelis P. Barlampas
Abstract:
PURPOSE: Presentation of an interesting finding in an asymptomatic patient. MATERIAL: A patient came at hospital because of dysuric complaints and after a urologist’s prescription of a US exam of the urogenital system. The simple ultrasound examination of the lower abdomen revealed a moderate hypertrophy of the prostate and a solitary large bladder stone. The kidneys were normal. Then, the patient underwent a CT scan, which depicted the bladder stone and, as an incidental finding, a cystic lesion in contact with the upper anterior right surface of the bladder, with mural calcifications. METHOD: Abdominal ultrasound and abdominal computed tomography before and after intravenous contrast administration. RESULTS: The repeated US exam showed a cylindrical cystic lesion with a double wall and two mural hyperechoic foci, with partial posterior shadowing. Blood flow was not recognized on color doppler. The CT exam confirmed the cystic-like anechoic lesion, in the right iliac fossa, with the presence of two foci of mural calcifications. The differential diagnosis includes cases of enteric cyst, intestinal duplication cyst, chronic abscess, urachal cyst, Meckel's diverticulum, bladder diverticulum, old hematoma, thrombosed vascular aneurysm, diverticular abscess, etc. The patient refused surgical removal and is being monitored by ultrasound. CONCLUSIONS: The careful examination of the wider peri-abdominal area, especially during the routine ultrasound examination, can contribute to the identification of important asymptomatic findings. The radiologist must not be solely focused in a certain area of examination, even if the clinical doctor asks so, but should give attention to the neighboring areas, too.Keywords: enteric cyst, US, CT, urogenital tract, miscellaneous findings
Procedia PDF Downloads 561495 Innovative Technologies for Aeration and Feeding of Fish in Aquaculture with Minimal Impact on the Environment
Authors: Vasile Caunii, Andreea D. Serban, Mihaela Ivancia
Abstract:
The paper presents a new approach in terms of the circular economy of technologies for feeding and aeration of accumulations and water basins for fish farming and aquaculture. Because fish is and will be one of the main foods on the planet, the use of bio-eco-technologies is a priority for all producers. The technologies proposed in the paper want to reduce by a substantial percentage the costs of operation of ponds and water accumulation, using non-polluting technologies with minimal impact on the environment. The paper proposes two innovative, intelligent systems, fully automated that use a common platform, completely eco-friendly. One system is intended to aerate the water of the fish pond, and the second is intended to feed the fish by dispersing an optimal amount of fodder, depending on population size, age and habits. Both systems use a floating platform, regenerative energy sources, are equipped with intelligent and innovative systems, and in addition to fully automated operation, significantly reduce the costs of aerating water accumulations (natural or artificial) and feeding fish. The intelligent system used for feeding, in addition, to reduce operating costs, optimizes the amount of food, thus preventing water pollution and the development of bacteria, microorganisms. The advantages of the systems are: increasing the yield of fish production, these are green installations, with zero pollutant emissions, can be arranged anywhere on the water surface, depending on the user's needs, can operate autonomously or remotely controlled, if there is a component failure, the system provides the operator with accurate data on the issue, significantly reducing maintenance costs, transmit data about the water physical and chemical parameters.Keywords: bio-eco-technologies, economy, environment, fish
Procedia PDF Downloads 1501494 Computational Fluid Dynamics Simulation on Heat Transfer of Hot Air Bubble Injection into Water Column
Authors: Jae-Yeong Choi, Gyu-Mok Jeon, Jong-Chun Park, Yong-Jin Cho, Seok-Tae Yoon
Abstract:
When air flow is injected into water, bubbles are formed in various types inside the water pool along with the air flow rate. The bubbles are floated in equilibrium with forces such as buoyancy, surface tension and shear force. Single bubble generated at low flow rate maintains shape, but bubbles with high flow rate break up to make mixing and turbulence. In addition to this phenomenon, as the hot air bubbles are injected into the water, heat affects the interface of phases. Therefore, the main scope of the present work reveals how to proceed heat transfer between water and hot air bubbles injected into water. In the present study, a series of CFD simulation for the heat transfer of hot bubbles injected through a nozzle near the bottom in a cylindrical water column are performed using a commercial CFD software, STAR-CCM+. The governing equations for incompressible and viscous flow are the continuous and the RaNS (Reynolds- averaged Navier-Stokes) equations and discretized by the FVM (Finite Volume Method) manner. For solving multi-phase flow, the Eulerian multiphase model is employed and the interface is defined by VOF (Volume-of-Fluid) technique. As a turbulence model, the SST k-w model considering the buoyancy effects is introduced. For spatial differencing the 3th-order MUSCL scheme is adopted and the 2nd-order implicit scheme for time integration. As the results, the dynamic behavior of the rising hot bubbles with the flow rate injected and regarding heat transfer mechanism are discussed based on the simulation results.Keywords: heat transfer, hot bubble injection, eulerian multiphase model, flow rate, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 1531493 Oxygen-Tolerant H₂O₂ Reduction Catalysis by Iron Phosphate Coated Iron Oxides
Authors: Chia-Ting Chang, Chia-Yu Lin
Abstract:
We report on the decisive role of iron phosphate (FePO₄), formed in-situ during the electrochemical characterization, played in the electrocatalytic activity, especially its oxygen tolerance of iron oxides towards H₂O₂ reduction. Iron oxides studied including, Nanorod arrays (NRs) of β-FeOOH, γ-Fe₂O₃, α-Fe₂O₃, α-Fe₂O₃ nanosheets (α-Fe₂O₃NS), α-Fe₂O₃ nanoparticles (α-Fe₂O₃NP), were synthesized using chemical bath deposition. The nanostructure was controlled simply by adjusting the composition of precursor solution and reaction duration for CBD process, whereas the crystal phase was controlled by adjusting the annealing temperature. It was found that iron phosphate (FePO₄) was deposited in-situ onto the surface of this nanostructured α-Fe₂O₃ during the electrochemical pretreatment in the phosphate electrolyte, and both FePO₄ and α-Fe₂O₃ showed the activity in catalysing the electrochemical reduction of H₂O₂. In addition, the interaction/compatibility between deposited FePO₄ and iron oxides has a decisive effect on the overall electrocatalytic activity of the resultant electrodes; FePO₄ only showed synergetic effect on the overall electrocatalytic activity of α-Fe₂O₃NR and α-Fe2O₃NS. Both α-Fe₂O₃NR and α-Fe₂O₃NS showed two reduction peaks in phosphate electrolyte containing H₂O₂, one being pH-dependent and related to the electrocatalytic properties of FePO₄, and the other one being pH-independent and only related to the intrinsic electrocatalytic properties of α-Fe₂O₃NR and α-Fe₂O₃NS. However, all iron oxides showed only one pH-independent reductive peak in non-phosphate electrolyte containing H₂O₂. The synergesitic catalysis exerted by FePO₄ with α-Fe₂O₃NR or α-Fe₂O₃NS providing additional oxygen-insensitive active site for H₂O₂ reduction, which allows their applications to electrochemical detection of H₂O₂ without the interference of O₂ involving in oxidase-catalyzed chemical processes.Keywords: H₂O₂ reduction, Iron oxide, iron phosphate, O₂ tolerance
Procedia PDF Downloads 4151492 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration
Authors: Dina Magdy Abdo, Ayat N. El-Shazly, Hamdy Maamoun Abdel-Ghafar, E. A. Abdel-Aal
Abstract:
Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of the doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.Keywords: forword, membrane, solar, water treatment
Procedia PDF Downloads 811491 Treatment and Conservation of an Antique Stone Stela by Nano Calcium Hydroxide with Nano Silica in Egyptian Museum of Cairo
Authors: Elhussein Ahmed Elsayed
Abstract:
An ancient limestone stela dating back to the epoch of the middle kingdom and displayed in the exhibition hall of the middle kingdom, it was discovered in Lisht in Giza, registered with No. 3045 and as a result of its display in an inappropriate display as a result of the use of natural lighting in the display, Represented in sunlight through windows opened day and night. The alternation of these daily changes between the temperature degrees of night and day, both daily and seasonally, causes the expansion and contraction of the rocks and then weakens their cohesion, causing fragmentation. This is indeed the current situation of this stela displayed in the hall, in addition to the damage and fading of colors, as well as the use of a high-viscosity restoration material in the consolidation that led to the attraction of dust and dirt and its adhesion to the surface. The color faded as a result of the lack of lighting control inside the exhibition hall, the remnants of the existing colors were blurred as a result of applying a consolidation material with a high viscosity, which led to the attraction of dust and dirt, and then blurring the colors on the inscription. Examinations and analyzes were carried out on the block, and the results of the examination with a polarized microscope showed that it is of primitive limestone, which contains fossils and microorganisms, which helps to damage. The analysis using the Raman device also showed that the high-viscosity material used in restoration in the past is Paralloid B72. The stone stela was consolidated by using two materials; Nano calcium hydroxide with Nano silica in the form of (Core-shell) at a concentration of 10% and it was applied using the brush.Keywords: Egyptian museum, stone stela, treatment, nano materials, nano silica
Procedia PDF Downloads 771490 Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells
Authors: B. Samuel Raj, Solomon R. D. Jebakumar
Abstract:
Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy.Keywords: microbial fuel cell, biofilm, soil microbial fuel cell, plant microbial fuel cell
Procedia PDF Downloads 3501489 Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids
Authors: Parminder Kaur, Chandrajit B. Majumder
Abstract:
The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants.Keywords: bioremediation, fungi, pyrethroids, soil
Procedia PDF Downloads 1481488 Highly Oriented and Conducting SNO2 Doped Al and SB Layers Grown by Automatic Spray Pyrolysis Method
Authors: A.Boularouk, F. Chouikh, M. Lamri, H. Moualkia, Y. Bouznit
Abstract:
The principal aim of this study is to considerably reduce the resistivity of the SnO2 thin layers. In this order, we have doped tin oxide with aluminum and antimony incorporation with different atomic percentages (0 and 4%). All the pure and doped SnO2 films were grown by simple, flexible and cost-effective Automatic Spray Pyrolysis Method (ASPM) on glass substrates at a temperature of 350 °C. The microstructural, optical, morphological and electrical properties of the films have been studied. The XRD results demonstrate that all films have polycrystalline nature with a tetragonal rutile structure and exhibit the (200) preferential orientation. It has been observed that all the dopants are soluble in the SnO2 matrix without forming secondary phases. However, dopant introduction does not modify the film growth orientation. The crystallite size of the pure SnO2 film is about 36 nm. The films are highly transparent in the visible region with an average transmittance reaching up to 80% and it slightly reduces with increasing doping concentration (Al and Sb). The optical band gap value was evaluated between 3.60 eV and 3.75 eV as a function of doping. The SEM image reveals that all films are nanostructured, densely continuous, with good adhesion to the substrate. We note again that the surface morphology change with the type and concentration dopant. The minimum resistivity is 0.689*10-4, which is observed for SnO2 film doped 4% Al. This film shows better properties and is considered the best among all films. Finally, we concluded that the physical properties of the pure and doped SnO2 films grown on a glass substrate by ASPM strongly depend on the type and concentration dopant (Al and Sb) and have highly desirable optical and electrical properties and are promising materials for several applications.Keywords: tin oxide, automatic spray, Al and Sb doped, transmittance, MEB, XRD and UV-VIS
Procedia PDF Downloads 681487 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation
Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana
Abstract:
For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH
Procedia PDF Downloads 1491486 Physicochemical and Thermal Characterization of Starch from Three Different Plantain Cultivars in Puerto Rico
Authors: Carmen E. Pérez-Donado, Fernando Pérez-Muñoz, Rosa N. Chávez-Jáuregui
Abstract:
Plantain contains starch as the majority component and represents a relevant source of this carbohydrate. Starches from different cultivars of plantain and bananas have been studied for industrialization purposes due to their morphological and thermal characteristics and their influence on food products. This study aimed to characterize the physical, chemical, and thermal properties of starch from three different plantains cultivated in Puerto Rico: Maricongo, Maiden, and FHIA 20. Amylose and amylopectin content, color, granular size, morphology, and thermal properties were determined. According to the content of amylose in starches, FHIA 20 starch presented minor content of the three cultivars studied. In terms of color, Maiden and FHIA 20 starch exhibited a significantly higher whiteness index comparing their values with Maricongo starch. The starches of the three cultivars had an elongated-ovoid morphology, with a smooth surface and a non-porous appearance. Regardless of similarities in their morphology, FHIA 20 showed a lower aspect ratio, which meant that their granules tended to be more elongated granules. Comparing the thermal properties of starches, it was found that the initial gelatinization temperature of the starch of the cultivars was similar. However, the final gelatinization temperatures of the starches belonging to the cultivars Maricongo (79.69°C) and Maiden (77.40°C) were similar, whereas FHIA 20 starch presented a noticeably higher final gelatinization temperature (87.95°C) and transition enthalpy. Despite source similarities, starches from plantain cultivars showed differences in their composition and thermal behavior. Therefore, this represents an opportunity to diversify their use in food-related applications.Keywords: aspect ratio, morphology, Musa spp., starch, thermal properties
Procedia PDF Downloads 2651485 The Simultaneous Application of Chemical and Biological Markers to Identify Reliable Indicators of Untreated Human Waste and Fecal Pollution in Urban Philadelphia Source Waters
Authors: Stafford Stewart, Hui Yu, Rominder Suri
Abstract:
This paper publishes the results of the first known study conducted in urban Philadelphia waterways that simultaneously utilized anthropogenic chemical and biological markers to identify suitable indicators of untreated human waste and fecal pollution. A total of 13 outfall samples, 30 surface water samples, and 2 groundwater samples were analyzed for fecal contamination and untreated human waste using a suite of 25 chemical markers and 5 bio-markers. Pearson rank correlation tests were conducted to establish associations between the abundances of bio-markers and the concentrations of chemical markers. Results show that 16S rRNA gene of human-associated Bacteroidales (BacH) was very strongly correlated (0.76 – 0.97, p < 0.05) with labile chemical markers acetaminophen, cotinine, estriol, and urobilin. Likewise, human-specific F- RNA coliphages (F-RNA-II) and labile chemical markers, urobilin, ibuprofen, cotinine and estriol, were significantly correlated (0.77 – 0.95, p < 0.05). Similarly, a strong positive correlation (0.67 – 0.91, p < 0.05) was evident between the abundances of bio-markers BacH and F-RNA-II, and the concentrations of the conservative markers, trimethoprim, meprobamate, diltiazem, triclocarban, metformin, sucralose, gemfibrozil, sulfamethoxazole, and carbamazepine. Human mitochondrial DNA (MitoH) correlated moderately with labile markers nicotine and salicylic acid as well as with conservative markers metformin and triclocarban (0.31 – 0.47, p<0.05). This study showed that by associating chemical and biological markers, a robust technique was developed for fingerprinting source-specific untreated waste and fecal contamination in source waters.Keywords: anthropogenic markers, bacteroidales, fecal pollution, source waters, wastewater
Procedia PDF Downloads 161484 Rainwater Harvesting for Household Consumption in Rural Demonstration Sites of Nong Khai Province, Thailand
Authors: Shotiros Protong
Abstract:
In recent years, Thailand has been affected by climate change phenomenon, which is clearly seen from the season change for different times. The occurrence of violent storms, heavy rains, floods, and drought were found in several areas. In a long dry period, the water supply is not adequate in drought areas. Nowadays, it is renowned that there is a significant decrease of rainwater use for household consumption in rural area of Thailand. Rainwater harvesting is the practice of collection and storage of rainwater in storage tanks before it is lost as surface run-off. Rooftop rainwater harvesting is used to provide drinking water, domestic water, and water for livestock. Rainwater harvesting in households is an alternative for people to readily prepare water resources for their own consumptions during the drought season, can help mitigate flooding of flooded plains, and also may reduce demand on the basin and well. It also helps in the availability of potable water, as rainwater is substantially free of salts. Application of rainwater harvesting in rural water system provide a substantial benefit for both water supply and wastewater subsystems by reducing the need for clean water in water distribution systems, less generated storm water in sewer systems, and a reduction in storm water runoff polluting freshwater bodies. The combination of rainwater quality and rainfall quantity is used to determine proper rainwater harvesting for household consumption to be safe and adequate for survivals. Rainwater quality analysis is compared with the drinking water standard. In terms of rainfall quantity, the observed rainfall data are interpolated by GIS 10.5 and showed by map during 1980 to 2020, used to assess the annual yield for household consumptions.Keywords: rainwater harvesting, drinking water standard, annual yield, rainfall quantity
Procedia PDF Downloads 1601483 Harnessing Earth's Electric Field and Transmission of Electricity
Authors: Vaishakh Medikeri
Abstract:
Energy in this Universe is the most basic characteristic of every particle. Since the birth of life on this planet, there has been a quest undertaken by the living beings to analyze, understand and harness the precious natural facts of the nature. In this quest, one of the greatest undertaken is the process of harnessing the naturally available energy. Scientists around the globe have discovered many ways to harness the freely available energy. But even today we speak of “Power Crisis”. Nikola Tesla once said “Nature has stored up in this universe infinite energy”. Energy is everywhere around us in unlimited quantities; all of it waiting to be harnessed by us. Here in this paper a method has been proposed to harness earth's electric field and transmit the stored electric energy using strong magnetic fields and electric fields. In this paper a new technique has been proposed to harness earth's electric field which is everywhere around the world in infinite quantities. Near the surface of the earth there is an electric field of about 120V/m. This electric field is used to charge a capacitor with high capacitance. Later the energy stored is allowed to pass through a device which converts the DC stored into AC. The AC so produced is then passed through a step down transformer to magnify the incoming current. Later the current passes through the RLC circuit. Later the current can be transmitted wirelessly using the principle of resonant inductive coupling. The proposed apparatus can be placed in most of the required places and any circuit tuned to the frequency of the transmitted current can receive the energy. The new source of renewable energy is of great importance if implemented since the apparatus is not costly and can be situated in most of the required places. And also the receiver which receives the transmitted energy is just an RLC circuit tuned to the resonant frequency of the transmitted energy. By using the proposed apparatus the energy losses can be reduced to a very large extent.Keywords: capacitor, inductive resonant coupling, RLC circuit, transmission of electricity
Procedia PDF Downloads 3731482 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery
Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand
Abstract:
Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles
Procedia PDF Downloads 4191481 Moisture Resistant K-loaded ZIF-8 Catalyst for Glycerol Carbonate Production
Authors: Anshu Tyagi
Abstract:
Zeolitic imidazolate frameworks (ZIFs), a subclass of metal-organic frameworks (MOFs) with structures resembling aluminosilicate zeolites, are gaining significant attention due to their unique properties. ZIF-8, in particular, has shown high surface area and enhanced hydrophobicity, making it a promising candidate for catalytic applications. In this study, ZIF-8 was synthesized in an aqueous medium by mixing 2-methylimidazole (mIm) with zinc nitrate hexahydrate (Zn) in deionized water. To improve the basicity and catalytic performance of ZIF-8, a series of K-loaded ZIF-8 catalysts (K/ZIF-8) were prepared by varying the KOH content from 5 to 10 wt%. Characterization of the synthesized catalysts was conducted using powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and temperature-programmed desorption (TPD) techniques. The ZIF-8 and K/ZIF-8 catalysts were applied in the transesterification of glycerol (GL) and dimethyl carbonate (DMC) to form glycerol carbonate (GLC). Various reaction parameters, including DMC/GL molar ratio, KOH loading, catalyst amount, and reaction temperature, were systematically studied to optimize the GLC yield. Under optimized conditions, the 10 wt% KOH-loaded ZIF-8 catalyst (10-K/ZIF-8) demonstrated excellent catalytic activity, achieving up to 95% GLC yield at a DMC/GL molar ratio of 3:1 within 0.5 hours. Remarkably, despite the hygroscopic nature of potassium, the catalyst exhibited significant water resistance, maintaining performance with up to 5 wt% water in relation to GL. Furthermore, the catalyst retained its activity after three recycling cycles without any notable loss in catalytic efficiency. This study highlights the potential of K/ZIF-8 as an efficient, water-tolerant catalyst for the transesterification of GL with DMC, offering high GLC yields and recyclability.Keywords: metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs), transesterification, sustainable catalytic
Procedia PDF Downloads 51480 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions
Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem
Abstract:
The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative
Procedia PDF Downloads 451479 Potential Risks of Using Disconnected Composite Foundation Systems in Active Seismic Zones
Authors: Mohamed ElMasry, Ahmad Ragheb, Tareq AbdelAziz, Mohamed Ghazy
Abstract:
Choosing the suitable infrastructure system is becoming more challenging with the increase in demand for heavier structures contemporarily. This is the case where piled raft foundations have been widely used around the world to support heavy structures without extensive settlement. In the latter system, piles are rigidly connected to the raft, and most of the load goes to the soil layer on which the piles are bearing. In spite of that, when soil profiles contain thicker soft clay layers near the surface, or at relatively shallow depths, it is unfavorable to use the rigid piled raft foundation system. Consequently, the disconnected piled raft system was introduced as an alternative approach for the rigidly connected system. In this system, piles are disconnected from the raft using a cushion of soil, mostly of a granular interlayer. The cushion is used to redistribute the stresses among the piles and the subsoil. Piles are also used to stiffen the subsoil, and by this way reduce the settlement without being rigidly connected to the raft. However, the seismic loading effect on such disconnected foundation systems remains a problem, since the soil profiles may include thick clay layers which raise risks of amplification of the dynamic earthquake loads. In this paper, the effects of seismic behavior on the connected and disconnected piled raft systems are studied through a numerical model using Midas GTS NX Software. The study concerns the soil-structure interaction and the expected behavior of the systems. Advantages and disadvantages of each foundation approach are studied, and a comparison between the results are presented to show the effects of using disconnected piled raft systems in highly seismic zones. This was done by showing the excitation amplification in each of the foundation systems.Keywords: soil-structure interaction, disconnected piled-raft, risks, seismic zones
Procedia PDF Downloads 2651478 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant
Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro
Abstract:
The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.Keywords: acoustic impact, industrial noise, mitigation, rocket noise
Procedia PDF Downloads 1461477 21st-Century Middlebrow Film: A Critical Examination of the Spectator Experience in Malayalam Film
Authors: Anupama A. P.
Abstract:
The Malayalam film industry, known as Mollywood, has a rich tradition of storytelling and cultural significance within Indian cinema. Middlebrow films have emerged as a distinct influential category, particularly in the 1980s, with directors like K.G. George, who engaged with female subjectivity and drew inspiration from the ‘women’s cinema’ of the 1950s and 1960s. In recent decades, particularly post-2010, the industry has transformed significantly with a new generation of filmmakers diverging from melodrama and new wave of the past, incorporating advanced technology and modern content. This study examines the evolution and impact of Malayalam middlebrow cinema in the 21st century, focusing on post-2000 films and their influence on contemporary spectator experiences. These films appeal to a wide range of audiences without compromising on their artistic integrity, tackling social issues and personal dramas with thematic and narrative complexity. Historically, middlebrow films in Malayalam cinema have portrayed realism and addressed the socio-political climate of Kerala, blending realism with reflexivity and moving away from traditional sentimentality. This shift is evident in the new generation of Malayalam films, which present a global representation of characters and a modern treatment of individuals. To provide a comprehensive understanding of this evolution, the study analyzes a diverse selection of films such as Kerala Varma Pazhassi Raja (2009), Drishyam (2013), Maheshinte Prathikaaram (2016), Take Off (2017), and Thondimuthalum Driksakshiyum (2017) and Virus (2019) illustrating the broad thematic range and innovative narrative techniques characteristic of this genre. These films exemplify how middlebrow cinema continues to evolve, adapting to changing societal contexts and audience expectations. This research employs a theoretical methodology, drawing on cultural studies and audience reception theory, utilizing frameworks such as Bordwell’s narrative theory, Deleuze’s concept of deterritorialization, and Hall’s encoding/decoding model to analyze the changes in Malayalam middlebrow cinema and interpret the storytelling methods, spectator experience, and audience reception of these films. The findings indicate that Malayalam middlebrow cinema post-2010 offers a spectator experience that is both intellectually stimulating and broadly appealing. This study highlights the critical role of middlebrow cinema in reflecting and shaping societal values, making it a significant cultural artefact within the broader context of Indian and global cinema. By bridging entertainment with thought-provoking narratives, these films engage audiences and contribute to wider cultural discourse, making them pivotal in contemporary cinematic landscapes. To conclude, this study highlights the importance of Malayalam middle-brow cinema in influencing contemporary cinematic tastes. The nuanced and approachable narratives of post-2010 films are posited to assume an increasingly pivotal role in the future of Malayalam cinema. By providing a deeper understanding of Malayalam middlebrow cinema and its societal implications, this study enriches theoretical discourse, promotes regional cinema, and offers valuable insights into contemporary spectator experiences and the future trajectory of Malayalam cinema.Keywords: Malayalam cinema, middlebrow cinema, spectator experience, audience reception, deterritorialization
Procedia PDF Downloads 321476 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks
Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova
Abstract:
CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.Keywords: adsorption, CO₂, high pressure, porous materials
Procedia PDF Downloads 1611475 Fluorescing Aptamer-Gold Nanoparticle Complex for the Sensitive Detection of Bisphenol A
Authors: Eunsong Lee, Gae Baik Kim, Young Pil Kim
Abstract:
Bisphenol A (BPA) is one of the endocrine disruptors (EDCs), which have been suspected to be associated with reproductive dysfunction and physiological abnormality in human. Since the BPA has been widely used to make plastics and epoxy resins, the leach of BPA from the lining of plastic products has been of major concern, due to its environmental or human exposure issues. The simple detection of BPA based on the self-assembly of aptamer-mediated gold nanoparticles (AuNPs) has been reported elsewhere, yet the detection sensitivity still remains challenging. Here we demonstrate an improved AuNP-based sensor of BPA by using fluorescence-combined AuNP colorimetry in order to overcome the drawback of traditional AuNP sensors. While the anti-BPA aptamer (full length or truncated ssDNA) triggered the self-assembly of unmodified AuNP (citrate-stabilized AuNP) in the presence of BPA at high salt concentrations, no fluorescence signal was observed by the subsequent addition of SYBR Green, due to a small amount of free anti-BPA aptamer. In contrast, the absence of BPA did not cause the self-assembly of AuNPs (no color change by salt-bridged surface stabilization) and high fluorescence signal by SYBP Green, which was due to a large amount of free anti-BPA aptamer. As a result, the quantitative analysis of BPA was achieved using the combination of absorption of AuNP with fluorescence intensity of SYBR green as a function of BPA concentration, which represented more improved detection sensitivity (as low as 1 ppb) than did in the AuNP colorimetric analysis. This method also enabled to detect high BPA in water-soluble extracts from thermal papers with high specificity against BPS and BPF. We suggest that this approach will be alternative for traditional AuNP colorimetric assays in the field of aptamer-based molecular diagnosis.Keywords: bisphenol A, colorimetric, fluoroscence, gold-aptamer nanobiosensor
Procedia PDF Downloads 1881474 An Extensive Review of Drought Indices
Authors: Shamsulhaq Amin
Abstract:
Drought can arise from several hydrometeorological phenomena that result in insufficient precipitation, soil moisture, and surface and groundwater flow, leading to conditions that are considerably drier than the usual water content or availability. Drought is often assessed using indices that are associated with meteorological, agricultural, and hydrological phenomena. In order to effectively handle drought disasters, it is essential to accurately determine the kind, intensity, and extent of the drought using drought characterization. This information is critical for managing the drought before, during, and after the rehabilitation process. Over a hundred drought assessments have been created in literature to evaluate drought disasters, encompassing a range of factors and variables. Some models utilise solely hydrometeorological drivers, while others employ remote sensing technology, and some incorporate a combination of both. Comprehending the entire notion of drought and taking into account drought indices along with their calculation processes are crucial for researchers in this discipline. Examining several drought metrics in different studies requires additional time and concentration. Hence, it is crucial to conduct a thorough examination of approaches used in drought indices in order to identify the most straightforward approach to avoid any discrepancies in numerous scientific studies. In case of practical application in real-world, categorizing indices relative to their usage in meteorological, agricultural, and hydrological phenomena might help researchers maximize their efficiency. Users have the ability to explore different indexes at the same time, allowing them to compare the convenience of use and evaluate the benefits and drawbacks of each. Moreover, certain indices exhibit interdependence, which enhances comprehension of their connections and assists in making informed decisions about their suitability in various scenarios. This study provides a comprehensive assessment of various drought indices, analysing their types and computation methodologies in a detailed and systematic manner.Keywords: drought classification, drought severity, drought indices, agriculture, hydrological
Procedia PDF Downloads 411473 Experimental Exploration of Recycled Materials for Potential Application in Interior Design
Authors: E. P. Bhowmik, R. Singh
Abstract:
Certain materials casually thrown away as by-product household waste, such as used tea leaves, used coffee remnants, eggshells, peanut husks, coconut coir, unwanted paper, and pencil shavings- have scope in the hidden properties that they offer as recyclable raw ingredients. This paper aims to explore and experiment with the sustainable potential of such disposed wastes, obtained from domestic and commercial backgrounds, that could otherwise contribute to the field of interior design if mass-collected and repurposed. Research has been conducted on available recorded methods of mass-collection, storage, and processing of such materials by certain brands, designers, and researchers, as well as the various application and angles possible with regards to re-usage. A questionnaire survey was carried out to understand the willingness of the demographics for efforts of the mass collection and their openness to such unconventional materials for interiors. An experiment was also conducted where the selected waste ingredients were used to create small samples that could be used as decorative panels. Comparisons were made for properties like color, smell, texture, relative durability, and weight- and accordingly, applications were suggested. The experiment, therefore, helped to propose to recycle of the common household as a potential surface finish for floors, walls, and ceilings, and even founding material for furniture and decor accessories such as pottery and lamp shades; for non-structural application in both residential and commercial interiors. Common by-product wastes often see their ends at landfills- laymen unaware of their sustainable possibilities dispose of them. However, processing these waste materials and repurposing them by incorporating them into interiors would serve as a sustainable alternative to ethical dilemmas in the construction of interior design/architecture elements.Keywords: interior materials, mass-collection, sustainable, waste recycle
Procedia PDF Downloads 1041472 Ultrasonic Treatment of Baker’s Yeast Effluent
Authors: Emine Yılmaz, Serap Fındık
Abstract:
Baker’s yeast industry uses molasses as a raw material. Molasses is end product of sugar industry. Wastewater from molasses processing presents large amount of coloured substances that give dark brown color and high organic load to the effluents. The main coloured compounds are known as melanoidins. Melanoidins are product of Maillard reaction between amino acid and carbonyl groups in molasses. Dark colour prevents sunlight penetration and reduces photosynthetic activity and dissolved oxygen level of surface waters. Various methods like biological processes (aerobic and anaerobic), ozonation, wet air oxidation, coagulation/flocculation are used to treatment of baker’s yeast effluent. Before effluent is discharged adequate treatment is imperative. In addition to this, increasingly stringent environmental regulations are forcing distilleries to improve existing treatment and also to find alternative methods of effluent management or combination of treatment methods. Sonochemical oxidation is one of the alternative methods. Sonochemical oxidation employs ultrasound resulting in cavitation phenomena. In this study, decolorization of baker’s yeast effluent was investigated by using ultrasound. Baker’s yeast effluent was supplied from a factory which is located in the north of Turkey. An ultrasonic homogenizator used for this study. Its operating frequency is 20 kHz. TiO2-ZnO catalyst has been used as sonocatalyst. The effects of molar proportion of TiO2-ZnO, calcination temperature and time, catalyst amount were investigated on the decolorization of baker’s yeast effluent. The results showed that prepared composite TiO2-ZnO with 4:1 molar proportion treated at 700°C for 90 min provides better result. Initial decolorization rate at 15 min is 3% without catalyst, 14,5% with catalyst treated at 700°C for 90 min respectively.Keywords: baker’s yeast effluent, decolorization, sonocatalyst, ultrasound
Procedia PDF Downloads 4741471 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed
Authors: Nedal N. Marei, Nashaat Nassar
Abstract:
Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.Keywords: adsorption, column, nanoparticles, methylene
Procedia PDF Downloads 2691470 In vitro Study on Characterization and Viability of Vero Cell Lines after Supplementation with Porcine Follicular Fluid Proteins in Culture Medium
Authors: Mayuva Youngsabanant, Suphaphorn Rabiab, Hatairuk Tungkasen, Nongnuch Gumlungpat, Mayuree Pumipaiboon
Abstract:
The porcine follicular fluid proteins (pFF) of healthy small size ovarian follicles (1-3 mm in diameters) of Large White pig ovaries were collected by sterile technique. They were used for testing the effect on cell viability and characterization of Vero cell lines using MTT assay. Two hundred microliter of round shape Vero cell lines were culture in 96 well plates with DMEM for 24 h. After that, they were attachment to substrate and some changed into fibroblast shape and spread over the surface after culture for 48 h. Then, Vero cell lines were treated with pFF at concentration of 2, 4, 20, 40, 200, 400, 500, and 600 µg proteins/mL for 24 h. Yields of the best results were analyzed by using one-way ANOVA. MTT assay reviewed an increasing in percentage of viability of Vero cell lines indicated that at concentration of 400-600 µg proteins/mL showed higher percentage of viability (115.64 ± 6.95, 106.91 ± 5.27 and 116.73 ± 20.15) than control group. They were significantly different from the control group (p < 0.05) but lower than the positive control group (DMEM with 10% heat treated fetal bovine serum). Cell lines showed normal character in fibroblast elongate shape after treated with pFF except in high concentration of pFF. This result implies that pFF of small size ovarian follicle at concentration of 400-600 µg proteins/mL could be optimized concentration for using as a supplement in Vero cell line culture medium to promote cell viability instead of growth hormone from fetal bovine serum. This merit could be applied in other cell biotechnology researches. Acknowledgements: This work was funded by a grant from Silpakorn University and Faculty of Science, Silpakorn University, Thailand.Keywords: cell viability, porcine follicular fluid, MTT assay, Vero cell line
Procedia PDF Downloads 133