Search results for: standard tubular diameter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6306

Search results for: standard tubular diameter

6 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 55
5 Open Science Philosophy, Research and Innovation

Authors: C.Ardil

Abstract:

Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.

Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data

Procedia PDF Downloads 107
4 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 4
3 Recent Trends in Transportable First Response Healthcare Architecture

Authors: Stephen Verderber

Abstract:

The World Health Organization (WHO) calls for research and development on ecologically sustainable, resilient structures capable of effectively responding to disaster events globally, in response to climate change, politically based diasporas, earthquakes, and other adverse events upending the rhythms of everyday life globally. By 2050, nearly 80% of the world’s population will reside in coastal zones, and this, coupled with the increasingly dire impacts of climate change, constitute a recipe for further chaos and disruption, and in light of these events, architects have yet to rise up to meet the challenge. In the arena of healthcare, rapidly deployable clinics and field hospitals can provide immediate assistance in medically underserved disaster strike zones. Transportable facilities offer multiple advantages over conventional, fixed-site hospitals, as lightweight, comparatively unencumbered alternatives. These attributes have been proven repeatedly in 20th century vehicular and tent-based structures deployed in frontline combat theaters and in prior natural disasters. Prefab transportable clinics and trauma centers recently responded adroitly to medical emergencies in the aftermath of the Haitian (2010) and Ecuadorian (2016) earthquakes, and in North American post-hurricane relief efforts (2017) while architects continue to be castigated by their engineer colleagues as chronically poor first responders. Architecturally based portable structures for healthcare currently include Redeployable Health Centers (RHCs), Redeployable Trauma Centers (RTCs), and Permanent Modular Installations (PMIs). Five tectonic variants within this typology have recently been operationalized in the field: 1. Vehicular-based Nomadics: Prefab modules installed on a truck chassis with interior compartments dropped in prior to final assembly. Alternately, a two-component apparatus is preferred, with a truck cab pulling a modular medical unit, with independent transiting component; 2. Tent and Pneumatic Systems: Tent/yurt precursors and inflatable systems lightweight and responsive to topographically challenging terrain and diverse climates; 3. Containerized Systems: The standard modular intermodal-shipping container affords structural strength, resiliency in difficult transiting conditions, and can be densely close-packed and these can be custom-built or hold flat-pack systems; 4. Flat-Packs and Pop-Up Systems: These kit-of-part assemblies are shipped in standardized or specially-designed ISO containers; and 5. Hybrid Systems: These consist of composite facilities representing a synthesis of mobile vehicular components and/or tent or shipping containers, fused with conventional or pneumatically activated tent systems. Hybrids are advantageous in many installation contexts from an aesthetic, fabrication, and transiting perspective. Advantages/disadvantages of various modular systems are comparatively examined, followed by presentation of a compendium of 80 evidence (research)-based planning and design considerations addressing site/context, transiting and commissioning, triage, decontamination/intake, diagnostic and treatment, facility tectonics, and administration/total environment. The benefits of offsite pre-manufactured fabrication are examined, as is anticipated growth in international demand for transportable healthcare facilities to meet the challenges posed by accelerating global climate change and global conflicts. This investigation into rapid response facilities for pre and post-disaster zones is drawn from a recent book by the author, the first on architecture on this topic (Innovations in Transportable Healthcare Architecture).

Keywords: disaster mitigation, rapid response healthcare architecture, offsite prefabrication

Procedia PDF Downloads 97
2 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 91
1 Maternity Care Model during Natural Disaster or Humanitarian Emegerncy Setting in Rural Pakistan

Authors: Humaira Maheen, Elizabeth Hoban, Catherine Bennette

Abstract:

Background: Globally, role of Community Health Workers (CHW) as front line disaster health work force is underutilized. Developing countries which are at risk of natural disasters or humanitarian emergencies should lay down effective strategies especially to ensure adequate access to maternity care during crisis situation by using CHW as they are local, trained, and most of them possess a good relationship with the community. The Minimum Initial Service Package (MISP) is a set of universal guidelines that addresses women’s reproductive health needs during the first phase of an emergency. According to the MISP, pregnant women should have access to a skilled birth attendant and adequate transportation arrangements so they can access a maternity care facility. Pakistan is one of the few countries which has been severely affected by a number of natural disaster as well as humanitarian emergencies in last decade. Pakistan has a young and structured National Disaster Management System in place, where District Authorities play a vital role in disaster management. The District Health Department develops the contingency health plan for an emergency situation and implements it under the existing district health human resources (health workers and medical staff at the health facility) and infrastructure (health care facilities). Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. The district health department didn’t make transportation arrangement for labouring women from relief camp to the nearest health care facility. As a result 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth. Of the 332 women who were pregnant at the time of the floods, 26 had adverse birth outcomes; 10 had miscarriages, 14 had stillbirths and there were four neonatal deaths. Conclusion: The district health department was not able to provide access to adequate maternity care during according to the international standard during the floods in 2011. We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps. Methods: A mixed methods study was conducted in rural villages of Sindh adjacent to the river Indus, and included in-depth interviews with 15 women who gave birth during the floods, structured interviews with 668 women who were pregnant during 2010-2014, and in-depth interviews with 25 community health workers (CHW) and 30 key informants. Results: Women said that giving birth in the relief camps during the floods was one of the most challenging times of their life. Nearly 91.2% women gave birth in temporary shelters with the help of a traditional birth attendant (Dai) with no clean physical space available to birth, and the health camp was mostly accessed by men and always overcrowded. There was no obstetric trained medical staff in the health camps or transportation provided to take women with complications to the nearest health facility. The rate of adverse outcome following disaster was 22.2% (95% CI: 8.62% – 42.2%) amongst 27 women who did not evacuate as compare to 7.91% (95% CI: 5.03% – 11.8%) among 278 women who lived in relief camp study participants. There were 27 women who evacuated on pre-flood warning and had 0% rate of adverse outcome. Conclusion: We propose a model where CHWs will be used as frontline maternity care providers during any emergency or disaster situations in Pakistan. A separate "birthing station" should be mandatory in all district relief camps, managed by CHWs. Community midwives (CMW) would and the Lady Health Workers (LHW) would provide antenatal and postnatal care alongside, vaccination for pregnant women, neonates and children under five. There must be an ambulance facility for emergency obstetric cases and all district health facilities should have at least two medical staff identified and trained for emergency obstetric management. The District Health Department must provide clean birthing kits and regular and emergency contraceptives in the relief camps.

Keywords: natural disaster, maternity care model, rural, Pakistan, community health workers

Procedia PDF Downloads 236