Search results for: point cloud imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6718

Search results for: point cloud imaging

6118 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: maximum power point tracking, neural networks, photovoltaic, P&O

Procedia PDF Downloads 339
6117 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 29
6116 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 84
6115 Analysis of Network Performance Using Aspect of Quantum Cryptography

Authors: Nisarg A. Patel, Hiren B. Patel

Abstract:

Quantum cryptography is described as a point-to-point secure key generation technology that has emerged in recent times in providing absolute security. Researchers have started studying new innovative approaches to exploit the security of Quantum Key Distribution (QKD) for a large-scale communication system. A number of approaches and models for utilization of QKD for secure communication have been developed. The uncertainty principle in quantum mechanics created a new paradigm for QKD. One of the approaches for use of QKD involved network fashioned security. The main goal was point-to-point Quantum network that exploited QKD technology for end-to-end network security via high speed QKD. Other approaches and models equipped with QKD in network fashion are introduced in the literature as. A different approach that this paper deals with is using QKD in existing protocols, which are widely used on the Internet to enhance security with main objective of unconditional security. Our work is towards the analysis of the QKD in Mobile ad-hoc network (MANET).

Keywords: cryptography, networking, quantum, encryption and decryption

Procedia PDF Downloads 184
6114 Comparison of the Indocyanine Green Dye Method versus the Combined Method of Indigo Carmine Blue Dye with Indocyanine Green Fluorescence Imaging for Sentinel Lymph Node Biopsy in Breast Conservative Therapy for Early Breast Cancer

Authors: Nobuyuki Takemoto, Ai Koyanagi, Masanori Yasuda, Hiroshi Yamamoto

Abstract:

Background: Fluorescence imaging (FI) is one of the methods to identify sentinel lymph nodes (SLNs). However, the procedure is technically complicated and requires procedural skills, as SLN biopsy must be conducted in dim light conditions. As an improved version of this method, we introduced a combined method (Combined mixed dye and fluorescence; CMF) consisting of indigo carmine blue dye and FI. The direct visualization of SLNs under shadowless surgical light conditions is facilitated by the addition of the blue dye. We compared the SLN detection rates of CMF with that of the indocyanine green (ICG) dye method (ICG-D). Methods: A total of 202 patients with stage ≤ IIA breast cancer who underwent breast conservative therapy with separate incision from January 2004 to February 2017 were reviewed. Details of the two methods are as follows: (1) ICG-D: 2ml of ICG (10mg) was used and the green-stained SLNs were resected via a 3-4cm axillary incision; (2) CMF: A combination of 1ml of ICG (5mg) and 1-3ml of indigo carmine (4-12mg) was used. Using Photodynamic Eye (PDE), a 1.5-2 cm incision was made near the point of disappearance of the fluorescence and SLNs with intermediate color of blue and green were resected. Results: There were 92 ICG-D and 110 CMF cases. CMF resulted in a significantly higher detection rate than ICG-D (96.4% vs. 83.7%; p=0.003). This difference was particularly notable in those aged ≥ 60 years (98.3% vs. 74.3%) and individuals with BMI ≥ 25kg/m2 (90.3% vs. 58.3%). Conclusion: CMF is an effective method to identify SLNs which is safe, efficient, and cost-effective. Furthermore, radiation exposure can be avoided, and it can be performed in institutes without nuclear medicine facilities. CMF achieves a high SLN identification rate, and most of this procedure is feasible under shadowless surgical light conditions. CMF can reliably perform SLN biopsy even in those aged ≥ 60 years and individuals with BMI ≥ 25 kg/m2.

Keywords: sentinel lymph node biopsy, identification rate, indocyanine green (ICG), indigocarmine, fluorescence

Procedia PDF Downloads 171
6113 Dual Set Point Governor Control Structure with Common Optimum Temporary Droop Settings for both Islanded and Grid Connected Modes

Authors: Deepen Sharma, Eugene F. Hill

Abstract:

For nearly 100 years, hydro-turbine governors have operated with only a frequency set point. This natural governor action means that the governor responds with changing megawatt output to disturbances in system frequency. More and more, power system managers are demanding that governors operate with constant megawatt output. One way of doing this is to introduce a second set point in the control structure called a power set point. The control structure investigated and analyzed in this paper is unique in the way that it utilizes a power reference set point in addition to the conventional frequency reference set point. An optimum set of temporary droop parameters derived based on the turbine-generator inertia constant and the penstock water start time for stable islanded operation are shown to be also equally applicable for a satisfactory rate of generator loading during its grid connected mode. A theoretical development shows why this is the case. The performance of the control structure has been investigated and established based on the simulation study made in MATLAB/Simulink as well as through testing the real time controller performance on a 15 MW Kaplan Turbine and generator. Recordings have been made using the labVIEW data acquisition platform. The hydro-turbine governor control structure and its performance investigated in this paper thus eliminates the need to have a separate set of temporary droop parameters, one valid for islanded mode and the other for interconnected operations mode.

Keywords: frequency set point, hydro governor, interconnected operation, isolated operation, power set point

Procedia PDF Downloads 367
6112 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy

Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather

Abstract:

Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.

Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging

Procedia PDF Downloads 247
6111 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
6110 Blended Cloud Based Learning Approach in Information Technology Skills Training and Paperless Assessment: Case Study of University of Cape Coast

Authors: David Ofosu-Hamilton, John K. E. Edumadze

Abstract:

Universities have come to recognize the role Information and Communication Technology (ICT) skills plays in the daily activities of tertiary students. The ability to use ICT – essentially, computers and their diverse applications – are important resources that influence an individual’s economic and social participation and human capital development. Our society now increasingly relies on the Internet, and the Cloud as a means to communicate and disseminate information. The educated individual should, therefore, be able to use ICT to create and share knowledge that will improve society. It is, therefore, important that universities require incoming students to demonstrate a level of computer proficiency or trained to do so at a minimal cost by deploying advanced educational technologies. The training and standardized assessment of all in-coming first-year students of the University of Cape Coast in Information Technology Skills (ITS) have become a necessity as students’ most often than not highly overestimate their digital skill and digital ignorance is costly to any economy. The one-semester course is targeted at fresh students and aimed at enhancing the productivity and software skills of students. In this respect, emphasis is placed on skills that will enable students to be proficient in using Microsoft Office and Google Apps for Education for their academic work and future professional work whiles using emerging digital multimedia technologies in a safe, ethical, responsible, and legal manner. The course is delivered in blended mode - online and self-paced (student centered) using Alison’s free cloud-based tutorial (Moodle) of Microsoft Office videos. Online support is provided via discussion forums on the University’s Moodle platform and tutor-directed and assisted at the ICT Centre and Google E-learning laboratory. All students are required to register for the ITS course during either the first or second semester of the first year and must participate and complete it within a semester. Assessment focuses on Alison online assessment on Microsoft Office, Alison online assessment on ALISON ABC IT, Peer assessment on e-portfolio created using Google Apps/Office 365 and an End of Semester’s online assessment at the ICT Centre whenever the student was ready in the cause of the semester. This paper, therefore, focuses on the digital culture approach of hybrid teaching, learning and paperless examinations and the possible adoption by other courses or programs at the University of Cape Coast.

Keywords: assessment, blended, cloud, paperless

Procedia PDF Downloads 248
6109 Assessment of Breast, Lung and Liver Effective Doses in Heart Imaging by CT-Scan 128 Dual Sources with Use of TLD-100 in RANDO Phantom

Authors: Seyedeh Sepideh Amini, Navideh Aghaei Amirkhizi, Seyedeh Paniz Amini, Seyed Soheil Sayyahi, Mohammad Reza Davar Panah

Abstract:

CT-Scan is one of the lateral and sectional imaging methods that produce 3D-images with use of rotational x-ray tube around central axis. This study is about evaluation and calculation of effective doses around heart organs such as breast, lung and liver with CT-Scan 128 dual sources with TLD_100 and RANDO Phantom by spiral, flash and conventional protocols. In results, it is showed that in spiral protocol organs have maximum effective dose and minimum in flash protocol. Thus flash protocol advised for children and risk persons.

Keywords: X-ray computed tomography, dosimetry, TLD-100, RANDO, phantom

Procedia PDF Downloads 474
6108 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology

Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad

Abstract:

This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.

Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts

Procedia PDF Downloads 138
6107 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging

Authors: Ramin Ghasemi Shayan, Morteza Janebifam

Abstract:

Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.

Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET

Procedia PDF Downloads 146
6106 Integrated Geophysical Approach for Subsurface Delineation in Srinagar, Uttarakhand, India

Authors: Pradeep Kumar Singh Chauhan, Gayatri Devi, Zamir Ahmad, Komal Chauhan, Abha Mittal

Abstract:

The application of geophysical methods to study the subsurface profile for site investigation is becoming popular globally. These methods are non-destructive and provide the image of subsurface at shallow depths. Seismic refraction method is one of the most common and efficient method being used for civil engineering site investigations particularly for knowing the seismic velocity of the subsurface layers. Resistivity imaging technique is a geo-electrical method used to image the subsurface, water bearing zone, bedrock and layer thickness. Integrated approach combining seismic refraction and 2-D resistivity imaging will provide a better and reliable picture of the subsurface. These are economical and less time-consuming field survey which provide high resolution image of the subsurface. Geophysical surveys carried out in this study include seismic refraction and 2D resistivity imaging method for delineation of sub-surface strata in different parts of Srinagar, Garhwal Himalaya, India. The aim of this survey was to map the shallow subsurface in terms of geological and geophysical properties mainly P-wave velocity, resistivity, layer thickness, and lithology of the area. Both sides of the river, Alaknanda which flows through the centre of the city, have been covered by taking two profiles on each side using both methods. Seismic and electrical surveys were carried out at the same locations to complement the results of each other. The seismic refraction survey was carried out using ABEM TeraLoc 24 channel Seismograph and 2D resistivity imaging was performed using ABEM Terrameter LS equipment. The results show three distinct layers on both sides of the river up to the depth of 20 m. The subsurface is divided into three distinct layers namely, alluvium extending up to, 3 m depth, conglomerate zone lying between the depth of 3 m to 15 m, and compacted pebbles and cobbles beyond 15 m. P-wave velocity in top layer is found in the range of 400 – 600 m/s, in second layer it varies from 700 – 1100 m/s and in the third layer it is 1500 – 3300 m/s. The resistivity results also show similar pattern and were in good agreement with seismic refraction results. The results obtained in this study were validated with an available exposed river scar at one site. The study established the efficacy of geophysical methods for subsurface investigations.

Keywords: 2D resistivity imaging, P-wave velocity, seismic refraction survey, subsurface

Procedia PDF Downloads 258
6105 Virtual Dimension Analysis of Hyperspectral Imaging to Characterize a Mining Sample

Authors: L. Chevez, A. Apaza, J. Rodriguez, R. Puga, H. Loro, Juan Z. Davalos

Abstract:

Virtual Dimension (VD) procedure is used to analyze Hyperspectral Image (HIS) treatment-data in order to estimate the abundance of mineral components of a mining sample. Hyperspectral images coming from reflectance spectra (NIR region) are pre-treated using Standard Normal Variance (SNV) and Minimum Noise Fraction (MNF) methodologies. The endmember components are identified by the Simplex Growing Algorithm (SVG) and after adjusted to the reflectance spectra of reference-databases using Simulated Annealing (SA) methodology. The obtained abundance of minerals of the sample studied is very near to the ones obtained using XRD with a total relative error of 2%.

Keywords: hyperspectral imaging, minimum noise fraction, MNF, simplex growing algorithm, SGA, standard normal variance, SNV, virtual dimension, XRD

Procedia PDF Downloads 158
6104 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping

Procedia PDF Downloads 125
6103 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 422
6102 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding

Authors: A. Seddiki, M. Djebbouri, D. Guerchi

Abstract:

Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.

Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images

Procedia PDF Downloads 367
6101 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 135
6100 Following the Modulation of Transcriptional Activity of Genes by Chromatin Modifications during the Cell Cycle in Living Cells

Authors: Sharon Yunger, Liat Altman, Yuval Garini, Yaron Shav-Tal

Abstract:

Understanding the dynamics of transcription in living cells has improved since the development of quantitative fluorescence-based imaging techniques. We established a method for following transcription from a single copy gene in living cells. A gene tagged with MS2 repeats, used for mRNA tagging, in its 3' UTR was integrated into a single genomic locus. The actively transcribing gene was detected and analyzed by fluorescence in situ hybridization (FISH) and live-cell imaging. Several cell clones were created that differed in the promoter regulating the gene. Thus, comparative analysis could be obtained without the risk of different position effects at each integration site. Cells in S/G2 phases could be detected exhibiting two adjacent transcription sites on sister chromatids. A sharp reduction in the transcription levels was observed as cells progressed along the cell cycle. We hypothesized that a change in chromatin structure acts as a general mechanism during the cell cycle leading to down-regulation in the activity of some genes. We addressed this question by treating the cells with chromatin decondensing agents. Quantifying and imaging the treated cells suggests that chromatin structure plays a role both in regulating transcriptional levels along the cell cycle, as well as in limiting an active gene from reaching its maximum transcription potential at any given time. These results contribute to understanding the role of chromatin as a regulator of gene expression.

Keywords: cell cycle, living cells, nucleus, transcription

Procedia PDF Downloads 311
6099 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming

Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe

Abstract:

Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.

Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel

Procedia PDF Downloads 208
6098 Process Mining as an Ecosystem Platform to Mitigate a Deficiency of Processes Modelling

Authors: Yusra Abdulsalam Alqamati, Ahmed Alkilany

Abstract:

The teaching staff is a distinct group whose impact is on the educational process and which plays an important role in enhancing the quality of the academic education process. To improve the management effectiveness of the academy, the Teaching Staff Management System (TSMS) proposes that all teacher processes be digitized. Since the BPMN approach can accurately describe the processes, it lacks a clear picture of the process flow map, something that the process mining approach has, which is extracting information from event logs for discovery, monitoring, and model enhancement. Therefore, these two methodologies were combined to create the most accurate representation of system operations, the ability to extract data records and mining processes, recreate them in the form of a Petri net, and then generate them in a BPMN model for a more in-depth view of process flow. Additionally, the TSMS processes will be orchestrated to handle all requests in a guaranteed small-time manner thanks to the integration of the Google Cloud Platform (GCP), the BPM engine, and allowing business owners to take part throughout the entire TSMS project development lifecycle.

Keywords: process mining, BPM, business process model and notation, Petri net, teaching staff, Google Cloud Platform

Procedia PDF Downloads 141
6097 MPPT Control with (P&O) and (FLC) Algorithms of Solar Electric Generator

Authors: Dib Djalel, Mordjaoui Mourad

Abstract:

The current trend towards the exploitation of various renewable energy resources has become indispensable, so it is important to improve the efficiency and reliability of the GPV photovoltaic systems. Maximum Power Point Tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions. This paper presents a new fuzzy logic control based MPPT algorithm for solar panel. The solar panel is modeled and analyzed in Matlab/Simulink. The Solar panel can produce maximum power at a particular operating point called Maximum Power Point(MPP). To produce maximum power and to get maximum efficiency, the entire photovoltaic panel must operate at this particular point. Maximum power point of PV panel keeps on changing with changing environmental conditions such as solar irradiance and cell temperature. Thus, to extract maximum available power from a PV module, MPPT algorithms are implemented and Perturb and Observe (P&O) MPPT and fuzzy logic control FLC, MPPT are developed and compared. Simulation results show the effectiveness of the fuzzy control technique to produce a more stable power.

Keywords: MPPT, photovoltaic panel, fuzzy logic control, modeling, solar power

Procedia PDF Downloads 483
6096 Optical Coherence Tomography in Differentiation of Acute and Non-Healing Wounds

Authors: Ananya Barui, Provas Banerjee, Jyotirmoy Chatterjee

Abstract:

Application of optical technology in medicine and biology has a long track-record. In this endeavor, OCT is able to attract both engineers and biologists to work together in the field of photonics for establishing a striking non-invasive imaging technology. In contrast to other in vivo imaging modalities like Raman imaging, confocal imaging, two-photon microscopy etc. which can perform in vivo imaging upto 100-200 micron depth due to limitation in numerical aperture or scattering, however, OCT can achieve high-resolution imaging upto few millimeters of tissue structures depending on their refractive index in different anatomical location. This tomographic system depends on interference of two light waves in an interferometer to produce a depth profile of specimen. In wound healing, frequent collection of biopsies for follow-up of repair process could be avoided by such imaging technique. Real time skin OCT (the optical biopsy) has efficacy in deeper and faster illumination of cutaneou tissue to acquire high resolution cross sectional images of their internal micro-structure. Swept Source-OCT (SS-OCT), a novel imaging technique, can generate high-speed depth profile (~ 2 mm) of wound at a sweeping rate of laser with micron level resolution and optimum coherent length of 5-6 mm. Normally multi-layered skin tissue depicts different optical properties along with variation in thickness, refractive index and composition (i.e. keratine layer, water, fat etc.) according to their anatomical location. For instance, stratum corneum, the upper-most and relatively dehydrated layer of epidermis reflects more light and produces more lucid and a sharp demarcation line with rest of the hydrated epidermal region. During wound healing or regeneration, optical properties of cutaneous tissue continuously altered with maturation of wound bed. More mature and less hydrated tissue component reflects more light and becomes visible as a brighter area in comparison to immature region which content higher amount water or fat that depicts as a darker area in OCT image. Non-healing wound possess prolonged inflammation and inhibits nascent proliferative stage. Accumulation of necrotic tissues also prevents the repair of non-healing wounds. Due to high resolution and potentiality to reflect the compositional aspects of tissues in terms of their optical properties, this tomographic method may facilitate in differentiating non-healing and acute wounds in addition to clinical observations. Non-invasive OCT offers better insight regarding specific biological status of tissue in health and pathological conditions, OCT images could be associated with histo-pathological ‘gold standard’. This correlated SS-OCT and microscopic evaluation of the wound edges can provide information regarding progressive healing and maturation of the epithelial components. In the context of searching analogy between two different imaging modalities, their relative performances in imaging of healing bed were estimated for probing an alternative approach. Present study validated utility of SS-OCT in revealing micro-anatomic structure in the healing bed with newer information. Exploring precise correspondence of OCT images features with histo-chemical findings related to epithelial integrity of the regenerated tissue could have great implication. It could establish the ‘optical biopsy’ as a potent non-invasive diagnostic tool for cutaneous pathology.

Keywords: histo-pathology, non invasive imaging, OCT, wound healing

Procedia PDF Downloads 279
6095 A pH-Activatable Nanoparticle Self-Assembly Triggered by 7-Amino Actinomycin D Demonstrating Superior Tumor Fluorescence Imaging and Anticancer Performance

Authors: Han Xiao

Abstract:

The development of nanomedicines has recently achieved several breakthroughs in the field of cancer treatment; however, the biocompatibility and targeted burst release of these medications remain a limitation, which leads to serious side effects and significantly narrows the scope of their applications. The self-assembly of intermediate filament protein (IFP) peptides was triggered by a hydrophobic cation drug 7-amino actinomycin D (7-AAD) to synthesize pH-activatable nanoparticles (NPs) that could simultaneously locate tumors and produce antitumor effects. The designed IFP peptide included a target peptide (arginine–glycine–aspartate), a negatively charged region, and an α-helix sequence. It also possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. 7-AAD molecules with excellent near-infrared fluorescence properties could be target delivered into tumor cells by NPs and released immediately in the acidic environments of tumors and endosome/lysosomes, ultimately inducing cytotoxicity by arresting the tumor cell cycle with inserted DNA. It is noteworthy that the IFP/7-AAD NPs tail vein injection approach demonstrated not only high tumor-targeted imaging potential, but also strong antitumor therapeutic effects in vivo. The proposed strategy may be used in the delivery of cationic antitumor drugs for precise imaging and cancer therapy.

Keywords: 7-amino actinomycin D, intermediate filament protein, nanoparticle, tumor image

Procedia PDF Downloads 138
6094 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data

Procedia PDF Downloads 195
6093 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging

Procedia PDF Downloads 133
6092 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform

Authors: Hana Rabbouch

Abstract:

In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.

Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets

Procedia PDF Downloads 141
6091 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer

Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos

Abstract:

High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.

Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization

Procedia PDF Downloads 211
6090 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 109
6089 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection

Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón

Abstract:

Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.

Keywords: aerial thermography, data processing, drone, low-cost, point cloud

Procedia PDF Downloads 143