Search results for: offline estimation
1465 Women's Cyber Intimate Partner Violence Victimization
Authors: Mylène Fernet, Geneviève Brodeur, Martine Hébert
Abstract:
Background: The growth of information and communication technologies has led to an increase in the prevalence of cyber intimate partner violence among women in early adulthood. However, there is a lack of research addressing the intervention needs of women who have been victims of cyber intimate partner violence. This qualitative study aimed to identify the knowledge, resources, and tools that women require to better respond to such violence. Methodology: Semi-structured individual interviews and four online discussion groups were conducted with 28 Canadian women aged 18 to 29 who had experienced cyber intimate partner violence by a romantic or intimate partner or an ex-partner. The data were analyzed using thematic analysis. Findings: The key elements identified suggest that women need information to help them recognize the signs and varied forms of cyber intimate partner violence, particularly those that are more nuanced and harder to detect. Furthermore, participants emphasized the importance of having access to both online and offline support to aid in their recovery from cyber intimate partner violence. Additionally, the women's narratives also highlighted their need for resources on how to protect themselves from cyber intimate partner violence. Conclusion: Based on the findings from this study, it is essential to develop prevention and intervention strategies for cyber intimate partner violence that address these knowledge gaps, provide support options, and offer prevention tools tailored to adult women.Keywords: women, cyberviolence, intimate partner violence, prevention strategies
Procedia PDF Downloads 201464 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing
Authors: S. Bouhouche, R. Drai, J. Bast
Abstract:
This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement
Procedia PDF Downloads 2831463 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack
Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo
Abstract:
The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications
Procedia PDF Downloads 1251462 Internet of Things Based Patient Health Monitoring System
Authors: G. Yoga Sairam Teja, K. Harsha Vardhan, A. Vinay Kumar, K. Nithish Kumar, Ch. Shanthi Priyag
Abstract:
The emergence of the Internet of Things (IoT) has facilitated better device control and monitoring in the modern world. The constant monitoring of a patient would be drastically altered by the usage of IoT in healthcare. As we've seen in the case of the COVID-19 pandemic, it's important to keep oneself untouched while continuously checking on the patient's heart rate and temperature. Additionally, patients with paralysis should be closely watched, especially if they are elderly and in need of special care. Our "IoT BASED PATIENT HEALTH MONITORING SYSTEM" project uses IoT to track patient health conditions in an effort to address these issues. In this project, the main board is an 8051 microcontroller that connects a number of sensors, including a heart rate sensor, a temperature sensor (LM-35), and a saline water measuring circuit. These sensors are connected via an ESP832 (WiFi) module, which enables the sending of recorded data directly to the cloud so that the patient's health status can be regularly monitored. An LCD is used to monitor the data in offline mode, and a buzzer will sound if any variation from the regular readings occurs. The data in the cloud may be viewed as a graph, making it simple for a user to spot any unusual conditions.Keywords: IoT, ESP8266, 8051 microcontrollers, sensors
Procedia PDF Downloads 871461 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil
Authors: P. S. Jain, K. D. Bobade, S. J. Surana
Abstract:
A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.Keywords: naftopidil, HPTLC, validation, stability, degradation
Procedia PDF Downloads 4001460 Capture-recapture to Estimate Completeness of Pulmonary Tuberculosis with Two Sources
Authors: Ratchadaporn Ungcharoen, Lily Ingsrisawang
Abstract:
Capture-recapture methods are popular techniques for indirect estimation the size of wildlife populations and the completeness of cases in epidemiology and social sciences. The aim of this study was to estimate the completeness of pulmonary tuberculosis cases confirmed by two sources of hospital registrations and surveillance systems in 2013 in Nakhon Pathom province, Thailand. Several estimators of population size were considered: the Lincoln-Petersen estimator, the Chapman estimator, the Chao’s lower bound estimator, the Zelterman’s estimator, etc. We focus on the Chapman and Chao’s lower bound estimators for estimating the completeness of pulmonary tuberculosis from two sources. The retrieved pulmonary tuberculosis data from two sources were analyzed and bootstrapped for 30 samples, with 241 observations from source 1 and 305 observations from source 2 per sample, for additional exploration of the completeness of pulmonary tuberculosis. The results from the original data show that the Chapman’s estimator gave the estimation of a total 360 (95% CI: 349-371) pulmonary tuberculosis cases, resulting in 57% estimated completeness cases. But the Chao’s lower bound estimator estimated the total of 365 (95% CI: 354-376) pulmonary tuberculosis cases and its estimated completeness cases was 55.9%. For the results from bootstrap samples, the Chapman and the Chao’s lower bound estimators gave an estimated 347 (95% CI: 309-385) and 353 (95% CI: 315-390) pulmonary tuberculosis cases, respectively. If for two sources recoding systems are available, record-linkage and capture-recapture analysis can be useful for estimating the completeness of different registration system. Both Chapman and Chao’s lower bound estimator approaches produce very close estimates.Keywords: capture-recapture, Chao, Chapman, pulmonary tuberculosis
Procedia PDF Downloads 5161459 Engine Thrust Estimation by Strain Gauging of Engine Mount Assembly
Authors: Rohit Vashistha, Amit Kumar Gupta, G. P. Ravishankar, Mahesh P. Padwale
Abstract:
Accurate thrust measurement is required for aircraft during takeoff and after ski-jump. In a developmental aircraft, takeoff from ship is extremely critical and thrust produced by the engine should be known to the pilot before takeoff so that if thrust produced is not sufficient then take-off can be aborted and accident can be avoided. After ski-jump, thrust produced by engine is required because the horizontal speed of aircraft is less than the normal takeoff speed. Engine should be able to produce enough thrust to provide nominal horizontal takeoff speed to the airframe within prescribed time limit. The contemporary low bypass gas turbine engines generally have three mounts where the two side mounts transfer the engine thrust to the airframe. The third mount only takes the weight component. It does not take any thrust component. In the present method of thrust estimation, the strain gauging of the two side mounts is carried out. The strain produced at various power settings is used to estimate the thrust produced by the engine. The quarter Wheatstone bridge is used to acquire the strain data. The engine mount assembly is subjected to Universal Test Machine for determination of equivalent elasticity of assembly. This elasticity value is used in the analytical approach for estimation of engine thrust. The estimated thrust is compared with the test bed load cell thrust data. The experimental strain data is also compared with strain data obtained from FEM analysis. Experimental setup: The strain gauge is mounted on the tapered portion of the engine mount sleeve. Two strain gauges are mounted on diametrically opposite locations. Both of the strain gauges on the sleeve were in the horizontal plane. In this way, these strain gauges were not taking any strain due to the weight of the engine (except negligible strain due to material's poison's ratio) or the hoop's stress. Only the third mount strain gauge will show strain when engine is not running i.e. strain due to weight of engine. When engine starts running, all the load will be taken by the side mounts. The strain gauge on the forward side of the sleeve was showing a compressive strain and the strain gauge on the rear side of the sleeve shows a tensile strain. Results and conclusion: the analytical calculation shows that the hoop stresses dominate the bending stress. The estimated thrust by strain gauge shows good accuracy at higher power setting as compared to lower power setting. The accuracy of estimated thrust at max power setting is 99.7% whereas at lower power setting is 78%.Keywords: engine mounts, finite elements analysis, strain gauge, stress
Procedia PDF Downloads 4831458 Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design
Authors: Saurabh Satija, Munish Garg
Abstract:
Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world.Keywords: berberine, microwave, optimization, Taguchi
Procedia PDF Downloads 3471457 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir
Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi
Abstract:
Determination of water saturation in sandstone is a vital question to determine the initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting accepted values of Archie’s parameters and, consequently, reliable water saturation values. This work focuses on Archie’s parameters determination techniques; conventional technique, CAPE technique, and 3-D technique, and then the calculation of water saturation using current. Using the same data, a hybrid parallel self-organizing neural network (PSONN) algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted with statistical analysis, indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir
Procedia PDF Downloads 1281456 Estimation of Relative Permeabilities and Capillary Pressures in Shale Using Simulation Method
Authors: F. C. Amadi, G. C. Enyi, G. Nasr
Abstract:
Relative permeabilities are practical factors that are used to correct the single phase Darcy’s law for application to multiphase flow. For effective characterisation of large-scale multiphase flow in hydrocarbon recovery, relative permeability and capillary pressures are used. These parameters are acquired via special core flooding experiments. Special core analysis (SCAL) module of reservoir simulation is applied by engineers for the evaluation of these parameters. But, core flooding experiments in shale core sample are expensive and time consuming before various flow assumptions are achieved for instance Darcy’s law. This makes it imperative for the application of coreflooding simulations in which various analysis of relative permeabilities and capillary pressures of multiphase flow can be carried out efficiently and effectively at a relative pace. This paper presents a Sendra software simulation of core flooding to achieve to relative permeabilities and capillary pressures using different correlations. The approach used in this study was three steps. The first step, the basic petrophysical parameters of Marcellus shale sample such as porosity was determined using laboratory techniques. Secondly, core flooding was simulated for particular scenario of injection using different correlations. And thirdly the best fit correlations for the estimation of relative permeability and capillary pressure was obtained. This research approach saves cost and time and very reliable in the computation of relative permeability and capillary pressures at steady or unsteady state, drainage or imbibition processes in oil and gas industry when compared to other methods.Keywords: relative permeabilty, porosity, 1-D black oil simulator, capillary pressures
Procedia PDF Downloads 4421455 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques
Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba
Abstract:
The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry
Procedia PDF Downloads 1901454 Satellite LiDAR-Based Digital Terrain Model Correction using Gaussian Process Regression
Authors: Keisuke Takahata, Hiroshi Suetsugu
Abstract:
Forest height is an important parameter for forest biomass estimation, and precise elevation data is essential for accurate forest height estimation. There are several globally or nationally available digital elevation models (DEMs) like SRTM and ASTER. However, its accuracy is reported to be low particularly in mountainous areas where there are closed canopy or steep slope. Recently, space-borne LiDAR, such as the Global Ecosystem Dynamics Investigation (GEDI), have started to provide sparse but accurate ground elevation and canopy height estimates. Several studies have reported the high degree of accuracy in their elevation products on their exact footprints, while it is not clear how this sparse information can be used for wider area. In this study, we developed a digital terrain model correction algorithm by spatially interpolating the difference between existing DEMs and GEDI elevation products by using Gaussian Process (GP) regression model. The result shows that our GP-based methodology can reduce the mean bias of the elevation data from 3.7m to 0.3m when we use airborne LiDAR-derived elevation information as ground truth. Our algorithm is also capable of quantifying the elevation data uncertainty, which is critical requirement for biomass inventory. Upcoming satellite-LiDAR missions, like MOLI (Multi-footprint Observation Lidar and Imager), are expected to contribute to the more accurate digital terrain model generation.Keywords: digital terrain model, satellite LiDAR, gaussian processes, uncertainty quantification
Procedia PDF Downloads 1831453 Bayesian Estimation of Hierarchical Models for Genotypic Differentiation of Arabidopsis thaliana
Authors: Gautier Viaud, Paul-Henry Cournède
Abstract:
Plant growth models have been used extensively for the prediction of the phenotypic performance of plants. However, they remain most often calibrated for a given genotype and therefore do not take into account genotype by environment interactions. One way of achieving such an objective is to consider Bayesian hierarchical models. Three levels can be identified in such models: The first level describes how a given growth model describes the phenotype of the plant as a function of individual parameters, the second level describes how these individual parameters are distributed within a plant population, the third level corresponds to the attribution of priors on population parameters. Thanks to the Bayesian framework, choosing appropriate priors for the population parameters permits to derive analytical expressions for the full conditional distributions of these population parameters. As plant growth models are of a nonlinear nature, individual parameters cannot be sampled explicitly, and a Metropolis step must be performed. This allows for the use of a hybrid Gibbs--Metropolis sampler. A generic approach was devised for the implementation of both general state space models and estimation algorithms within a programming platform. It was designed using the Julia language, which combines an elegant syntax, metaprogramming capabilities and exhibits high efficiency. Results were obtained for Arabidopsis thaliana on both simulated and real data. An organ-scale Greenlab model for the latter is thus presented, where the surface areas of each individual leaf can be simulated. It is assumed that the error made on the measurement of leaf areas is proportional to the leaf area itself; multiplicative normal noises for the observations are therefore used. Real data were obtained via image analysis of zenithal images of Arabidopsis thaliana over a period of 21 days using a two-step segmentation and tracking algorithm which notably takes advantage of the Arabidopsis thaliana phyllotaxy. Since the model formulation is rather flexible, there is no need that the data for a single individual be available at all times, nor that the times at which data is available be the same for all the different individuals. This allows to discard data from image analysis when it is not considered reliable enough, thereby providing low-biased data in large quantity for leaf areas. The proposed model precisely reproduces the dynamics of Arabidopsis thaliana’s growth while accounting for the variability between genotypes. In addition to the estimation of the population parameters, the level of variability is an interesting indicator of the genotypic stability of model parameters. A promising perspective is to test whether some of the latter should be considered as fixed effects.Keywords: bayesian, genotypic differentiation, hierarchical models, plant growth models
Procedia PDF Downloads 3031452 Price Effect Estimation of Tobacco on Low-wage Male Smokers: A Causal Mediation Analysis
Authors: Kawsar Ahmed, Hong Wang
Abstract:
The study's goal was to estimate the causal mediation impact of tobacco tax before and after price hikes among low-income male smokers, with a particular emphasis on the effect estimating pathways framework for continuous and dichotomous variables. From July to December 2021, a cross-sectional investigation of observational data (n=739) was collected from Bangladeshi low-wage smokers. The Quasi-Bayesian technique, binomial probit model, and sensitivity analysis using a simulation of the computational tools R mediation package had been used to estimate the effect. After a price rise for tobacco products, the average number of cigarettes or bidis sticks taken decreased from 6.7 to 4.56. Tobacco product rising prices have a direct effect on low-income people's decisions to quit or lessen their daily smoking habits of Average Causal Mediation Effect (ACME) [effect=2.31, 95 % confidence interval (C.I.) = (4.71-0.00), p<0.01], Average Direct Effect (ADE) [effect=8.6, 95 percent (C.I.) = (6.8-0.11), p<0.001], and overall significant effects (p<0.001). Tobacco smoking choice is described by the mediated proportion of income effect, which is 26.1% less of following price rise. The curve of ACME and ADE is based on observational figures of the coefficients of determination that asses the model of hypothesis as the substantial consequence after price rises in the sensitivity analysis. To reduce smoking product behaviors, price increases through taxation have a positive causal mediation with income that affects the decision to limit tobacco use and promote low-income men's healthcare policy.Keywords: causal mediation analysis, directed acyclic graphs, tobacco price policy, sensitivity analysis, pathway estimation
Procedia PDF Downloads 1121451 The Phatic Function and the Socializing Element of Personal Blogs
Authors: Emelia Noronha, Milind Malshe
Abstract:
The phatic function of communication is a vital element of any conversation. This research paper looks into this function with respect to personal blogs maintained by Indian bloggers. This paper is a study into the phenomenon of phatic communication maintained by bloggers through their blogs. Based on a linguistic analysis of the posts of twenty eight Indian bloggers, writing in English, studied over a period of three years, the study indicates that though the blogging phenomenon is not conversational in the same manner as face-to-face communication, it does make ample provision for feedback that is conversational in nature. Ordinary day to day offline conversations use conventionalized phatic utterances; those on the social media are in a perpetual mode of innovation and experimentation in order to sustain contact with its readers. These innovative methods and means are the focus of this study. Though the personal blogger aims to chronicle his/her personal life through the blog, the socializing function is crucial to these bloggers. In comparison to the western personal blogs which focus on the presentation of the ‘bounded individual self’, we find Indian personal bloggers engage in the presentation of their ‘social selves’. These bloggers yearn to reach out to the readers on the internet and the phatic function serves to initiate, sustain and renew social ties on the blogosphere thereby consolidating the social network of readers and bloggers.Keywords: personal blogs, phatic, social-selves, blog readers
Procedia PDF Downloads 3621450 A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data
Authors: Georgiana Onicescu, Yuqian Shen
Abstract:
Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered.Keywords: Lasso, Bayesian analysis, spatial analysis, variable selection
Procedia PDF Downloads 1441449 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets
Authors: Ece Cigdem Mutlu, Burak Alakent
Abstract:
Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.Keywords: average run length, M-estimators, quality control, robust estimators
Procedia PDF Downloads 1901448 Wind Resource Estimation and Economic Analysis for Rakiraki, Fiji
Authors: Kaushal Kishore
Abstract:
Immense amount of imported fuels are used in Fiji for electricity generation, transportation and for carrying out miscellaneous household work. To alleviate its dependency on fossil fuel, paramount importance has been given to instigate the utilization of renewable energy sources for power generation and to reduce the environmental dilapidation. Amongst the many renewable energy sources, wind has been considered as one of the best identified renewable sources that are comprehensively available in Fiji. In this study the wind resource assessment for three locations in Rakiraki, Fiji has been carried out. The wind resource estimation at Rokavukavu, Navolau and at Tuvavatu has been analyzed. The average wind speed at 55 m above ground level (a.g.l) at Rokavukavu, Navolau, and Tuvavatu sites are 5.91 m/s, 8.94 m/s and 8.13 m/s with the turbulence intensity of 14.9%, 17.1%, and 11.7% respectively. The moment fitting method has been used to estimate the Weibull parameter and the power density at each sites. A high resolution wind resource map for the three locations has been developed by using Wind Atlas Analysis and Application Program (WAsP). The results obtained from WAsP exhibited good wind potential at Navolau and Tuvavatu sites. A wind farm has been proposed at Navolau and Tuvavatu site that comprises six Vergnet 275 kW wind turbines at each site. The annual energy production (AEP) for each wind farm is estimated and an economic analysis is performed. The economic analysis for the proposed wind farms at Navolau and Tuvavatu sites showed a payback period of 5 and 6 years respectively.Keywords: annual energy production, Rakiraki Fiji, turbulence intensity, Weibull parameter, wind speed, Wind Atlas Analysis and Application Program
Procedia PDF Downloads 1891447 Tracing Sources of Sediment in an Arid River, Southern Iran
Authors: Hesam Gholami
Abstract:
Elevated suspended sediment loads in riverine systems resulting from accelerated erosion due to human activities are a serious threat to the sustainable management of watersheds and ecosystem services therein worldwide. Therefore, mitigation of deleterious sediment effects as a distributed or non-point pollution source in the catchments requires reliable provenance information. Sediment tracing or sediment fingerprinting, as a combined process consisting of sampling, laboratory measurements, different statistical tests, and the application of mixing or unmixing models, is a useful technique for discriminating the sources of sediments. From 1996 to the present, different aspects of this technique, such as grouping the sources (spatial and individual sources), discriminating the potential sources by different statistical techniques, and modification of mixing and unmixing models, have been introduced and modified by many researchers worldwide, and have been applied to identify the provenance of fine materials in agricultural, rural, mountainous, and coastal catchments, and in large catchments with numerous lakes and reservoirs. In the last two decades, efforts exploring the uncertainties associated with sediment fingerprinting results have attracted increasing attention. The frameworks used to quantify the uncertainty associated with fingerprinting estimates can be divided into three groups comprising Monte Carlo simulation, Bayesian approaches and generalized likelihood uncertainty estimation (GLUE). Given the above background, the primary goal of this study was to apply geochemical fingerprinting within the GLUE framework in the estimation of sub-basin spatial sediment source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three sub-basin spatial sources was evaluated using 10 virtual sediments (VS) samples with known source contributions using the root mean square error (RMSE) and mean absolute error (MAE). Based on the results, the contributions modeled by GLUE for the western, central and eastern sub-basins are 1-42% (overall mean 20%), 0.5-30% (overall mean 12%) and 55-84% (overall mean 68%), respectively. According to the mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness-of-fit (GOF; ≥ 99% for all samples), our suggested modeling approach is an accurate technique to quantify the source of sediments in the catchments. Overall, the estimated source proportions can help watershed engineers plan the targeting of conservation programs for soil and water resources.Keywords: sediment source tracing, generalized likelihood uncertainty estimation, virtual sediment mixtures, Iran
Procedia PDF Downloads 741446 Survey and Analysis of the Operational Dilemma of the Existing Used Clothes Recycling Model in the Community
Authors: Qiaohui Zhong, Yiqi Kuang, Wanxun Cai, Libin Huang
Abstract:
As a community public facility, the popularity and perfection of old clothes recycling products directly affect people's impression of the whole city, which is related to the happiness index of residents' lives and is of great significance to the construction of eco-civilized cities and the realization of sustainable urban development. At present, China's waste clothing is characterized by large production and a high utilization rate, but the current rate of old clothes recycling is low, and the ‘one-size-fits-all’ recycling model makes people's motivation for old clothes recycling low, and old clothes recycling is in a dilemma. Based on the two online and offline recycling modes of old clothes recycling in Chinese communities, this paper conducts an in-depth survey on the public, operators, and regulators from the aspects of activity scene analysis, crowd attributes analysis, and community space analysis summarizes the difficulties of old clothes recycling for the public - nowhere to recycle, inconvenient to recycle and unwilling to recycle, and analyzes the factors that lead to these difficulties, and gives a solution with foreign experience to solve these problems. It also analyzes the factors that lead to these difficulties and gives targeted suggestions in combination with foreign experience, exploring and proposing a set of appropriate modern old-clothes recycling modes.Keywords: community, old clothes recycling, recycling mode, sustainable urban development
Procedia PDF Downloads 461445 Estimation of Constant Coefficients of Bourgoyne and Young Drilling Rate Model for Drill Bit Wear Prediction
Authors: Ahmed Z. Mazen, Nejat Rahmanian, Iqbal Mujtaba, Ali Hassanpour
Abstract:
In oil and gas well drilling, the drill bit is an important part of the Bottom Hole Assembly (BHA), which is installed and designed to drill and produce a hole by several mechanisms. The efficiency of the bit depends on many drilling parameters such as weight on bit, rotary speed, and mud properties. When the bit is pulled out of the hole, the evaluation of the bit damage must be recorded very carefully to guide engineers in order to select the bits for further planned wells. Having a worn bit for hole drilling may cause severe damage to bit leading to cutter or cone losses in the bottom of hole, where a fishing job will have to take place, and all of these will increase the operating cost. The main factor to reduce the cost of drilling operation is to maximize the rate of penetration by analyzing real-time data to predict the drill bit wear while drilling. There are numerous models in the literature for prediction of the rate of penetration based on drilling parameters, mostly based on empirical approaches. One of the most commonly used approaches is Bourgoyne and Young model, where the rate of penetration can be estimated by the drilling parameters as well as a wear index using an empirical correlation, provided all the constants and coefficients are accurately determined. This paper introduces a new methodology to estimate the eight coefficients for Bourgoyne and Young model using the gPROMS parameters estimation GPE (Version 4.2.0). Real data collected form similar formations (12 ¼’ sections) in two different fields in Libya are used to estimate the coefficients. The estimated coefficients are then used in the equations and applied to nearby wells in the same field to predict the bit wear.Keywords: Bourgoyne and Young model, bit wear, gPROMS, rate of penetration
Procedia PDF Downloads 1541444 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment
Authors: R. Sharma, S. Kumar, C. Sharma
Abstract:
A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.Keywords: chlorophenolics, effluent, electrochemical treatment, wastewater
Procedia PDF Downloads 3871443 Explaining the Changes in Contentious Politics of China: A Comparative Study of Falun Gong and 'Diaosi'
Authors: Larry Lai, Evans Leung
Abstract:
Falun gong is a self-proclaimed religious group that has been under crackdown by Beijing for more than two decades. Diaosi, on the other hand, is an emerging community with members loosely connected on the internet through different online social platforms, centering around the sharing of different hobbies and interests. Diaosi community has been transformed from a potential threat to the Chinese authority for different causes to a pro-government force. This paper seeks to explain the different strategies adopted by the People's Republic of China (PRC) regime in handling these two potential threatening communities. Both communities share some obvious similarities: (1) both have massive nation-wide participation; (2) both have attempted to challenge the PRC's authority through contentious means; (3) both have high level of mobility, online or offline; and (4) both have at first been unnoticed until the threat against the PRC have taken form. But the strategies the PRC endorsed against the communities were, in many ways, different. The question is: if the strategy against Falun Gong has been an effective one, why used other strategies against Diaosi? The authors argue that the main reason for using different strategies lies in the differences between the two communities in terms of (i) the nature of the groups, and (ii) the group dynamics. Lastly, based on this analysis, the authors attempt to explore the possible strategies that the PRC would adopt against the Hong Kong cyber-world political community in light of the latest national security law in Hong Kong.Keywords: contentious politics, Diaosi, Falun Gong, Hong Kong, People's Republic of China
Procedia PDF Downloads 1451442 Government Size and Economic Growth: Testing the Non-Linear Hypothesis for Nigeria
Authors: R. Santos Alimi
Abstract:
Using time-series techniques, this study empirically tested the validity of existing theory which stipulates there is a nonlinear relationship between government size and economic growth; such that government spending is growth-enhancing at low levels but growth-retarding at high levels, with the optimal size occurring somewhere in between. This study employed three estimation equations. First, for the size of government, two measures are considered as follows: (i) share of total expenditures to gross domestic product, (ii) share of recurrent expenditures to gross domestic product. Second, the study adopted real GDP (without government expenditure component), as a variant measure of economic growth other than the real total GDP, in estimating the optimal level of government expenditure. The study is based on annual Nigeria country-level data for the period 1970 to 2012. Estimation results show that the inverted U-shaped curve exists for the two measures of government size and the estimated optimum shares are 19.81% and 10.98%, respectively. Finally, with the adoption of real GDP (without government expenditure component), the optimum government size was found to be 12.58% of GDP. Our analysis shows that the actual share of government spending on average (2000 - 2012) is about 13.4%.This study adds to the literature confirming that the optimal government size exists not only for developed economies but also for developing economy like Nigeria. Thus, a public intervention threshold level that fosters economic growth is a reality; beyond this point economic growth should be left in the hands of the private sector. This finding has a significant implication for the appraisal of government spending and budgetary policy design.Keywords: public expenditure, economic growth, optimum level, fully modified OLS
Procedia PDF Downloads 4201441 Estimation of Endogenous Brain Noise from Brain Response to Flickering Visual Stimulation Magnetoencephalography Visual Perception Speed
Authors: Alexander N. Pisarchik, Parth Chholak
Abstract:
Intrinsic brain noise was estimated via magneto-encephalograms (MEG) recorded during perception of flickering visual stimuli with frequencies of 6.67 and 8.57 Hz. First, we measured the mean phase difference between the flicker signal and steady-state event-related field (SSERF) in the occipital area where the brain response at the flicker frequencies and their harmonics appeared in the power spectrum. Then, we calculated the probability distribution of the phase fluctuations in the regions of frequency locking and computed its kurtosis. Since kurtosis is a measure of the distribution’s sharpness, we suppose that inverse kurtosis is related to intrinsic brain noise. In our experiments, the kurtosis value varied among subjects from K = 3 to K = 5 for 6.67 Hz and from 2.6 to 4 for 8.57 Hz. The majority of subjects demonstrated leptokurtic kurtosis (K < 3), i.e., the distribution tails approached zero more slowly than Gaussian. In addition, we found a strong correlation between kurtosis and brain complexity measured as the correlation dimension, so that the MEGs of subjects with higher kurtosis exhibited lower complexity. The obtained results are discussed in the framework of nonlinear dynamics and complex network theories. Specifically, in a network of coupled oscillators, phase synchronization is mainly determined by two antagonistic factors, noise, and the coupling strength. While noise worsens phase synchronization, the coupling improves it. If we assume that each neuron and each synapse contribute to brain noise, the larger neuronal network should have stronger noise, and therefore phase synchronization should be worse, that results in smaller kurtosis. The described method for brain noise estimation can be useful for diagnostics of some brain pathologies associated with abnormal brain noise.Keywords: brain, flickering, magnetoencephalography, MEG, visual perception, perception time
Procedia PDF Downloads 1481440 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils
Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha
Abstract:
Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering
Procedia PDF Downloads 3381439 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1721438 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model
Authors: Aid Abdelkrim
Abstract:
A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading
Procedia PDF Downloads 3961437 Foreign Direct Investment on Economic Growth by Industries in Central and Eastern European Countries
Authors: Shorena Pharjiani
Abstract:
The Present empirical paper investigates the relationship between FDI and economic growth by 10 selected industries in 10 Central and Eastern European countries from the period 1995 to 2012. Different estimation approaches were used to explore the connection between FDI and economic growth, for example OLS, RE, FE with and without time dummies. Obtained empirical results leads to some main consequences: First, the Central and East European countries (CEEC) attracted foreign direct investment, which raised the productivity of industries they entered in. It should be concluded that the linkage between FDI and output growth by industries is positive and significant enough to suggest that foreign firm’s participation enhanced the productivity of the industries they occupied. There had been an endogeneity problem in the regression and fixed effects estimation approach was used which partially corrected the regression analysis in order to make the results less biased. Second, it should be stressed that the results show that time has an important role in making FDI operational for enhancing output growth by industries via total factor productivity. Third, R&D positively affected economic growth and at the same time, it should take some time for research and development to influence economic growth. Fourth, the general trends masked crucial differences at the country level: over the last 20 years, the analysis of the tables and figures at the country level show that the main recipients of FDI of the 11 Central and Eastern European countries were Hungary, Poland and the Czech Republic. The main reason was that these countries had more open door policies for attracting the FDI. Fifth, according to the graphical analysis, while Hungary had the highest FDI inflow in this region, it was not reflected in the GDP growth as much as in other Central and Eastern European countries.Keywords: central and East European countries (CEEC), economic growth, FDI, panel data
Procedia PDF Downloads 2371436 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.Keywords: ANFIS, MGT, prediction modeling, rail track degradation
Procedia PDF Downloads 336