Search results for: chemical process safety
20535 Simulation of a Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 45720534 Integrating Assurance and Risk Management of Complex Systems
Authors: Odd Ivar Haugen
Abstract:
This paper explores the relationship between assurance, risk, and risk management in the context of complex safety-related systems. It introduces a nuanced understanding of assurance and argues that the foundation for grounds for justified confidence in claims made about a complex system is related to the system behaviour. It emphasises the importance of knowledge as the cornerstone of assurance. The paper addresses the challenges of epistemic and aleatory uncertainties inherent in safety-critical systems. A systems approach is proposed to model emergent properties and complexity using the composition, environment, structure, mechanisms (CESM) metamodel, offering a structured framework for analysing system behaviour. The interplay between assurance and risk management is conceptualised through two models: the domain model and the control model. Assurance and risk management are mutually dependent on each other to reduce uncertainty and control risk levels. This work highlights the dual roles of assurance in risk management, acting as an epistemic actuator on the one side and providing feedback about the strength of the justification on the other. Assurance and risk management have inseparable roles in ensuring safety in complex systems.Keywords: assurance, CESM metamodel, confidence, emergent properties, knowledge, objectivity, risk, system behaviour, system safety
Procedia PDF Downloads 620533 Occupational Safety Need Analysis for Turkey and Europe
Authors: Ismail Muratoglu, Ahmet Meyveci, Abdurrahman Tuncer, Erkan Demirci
Abstract:
This study is dedicated to the analysis of the problems of occupational safety in Turkey, Italy and Poland. The need analysis was applied to three different countries which are Turkey; 4, Poland; 1, Italy; 1 state. The number of the subjects is 891 in Turkey. The number of the subjects is 26 in Italy and the number of the subjects is 19 in Poland. The total number of samples of study is 936. Four different forms (Job Security Experts Form, Student Form, Teacher Form and Company Form) were applied. Results of experts of job security forms are rate of 7.1%. Then, the students’ forms are rate of 34.3%, teacher or instructor forms are rate of 9.9%. The last corporation forms are rate of 48.7%.Keywords: Europe, need analysis, occupational safety, Turkey, vocational education
Procedia PDF Downloads 43220532 LED Lighting Interviews and Assessment in Forest Machines
Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen
Abstract:
The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.Keywords: forest machines, health, LED, safety
Procedia PDF Downloads 43120531 Numerical Simulation of the Flow Channel in the Curved Plane Oil Skimmer
Authors: Xing Feng, Yuanbin Li
Abstract:
Oil spills at sea can cause severe marine environmental damage, including bringing huge hazards to living resources and human beings. In situ burning or chemical dispersant methods can be used to handle the oil spills sometimes, but these approaches will bring secondary pollution and fail in some situations. Oil recovery techniques have also been developed to recover oil using oil skimmer equipment installed on ships, while the hydrodynamic process of the oil flowing through the oil skimmer is very complicated and important for evaluating the recovery efficiency. Based on this, a two-dimensional numerical simulation platform for simulating the hydrodynamic process of the oil flowing through the oil skimmer is established based on the Navier-Stokes equations for viscous, incompressible fluid. Finally, the influence of the design of the flow channel in the curved plane oil skimmer on the hydrodynamic process of the oil flowing through the oil skimmer is investigated based on the established simulation platform.Keywords: curved plane oil skimmer, flow channel, CFD, VOF
Procedia PDF Downloads 29520530 Rejuvenation of Aged Kraft-Cellulose Insulating Paper Used in Transformers
Authors: Y. Jeon, A. Bissessur, J. Lin, P. Ndungu
Abstract:
Most transformers employ the usage of cellulose paper, which has been chemically modified through the Kraft process that acts as an effective insulator. Cellulose ageing and oil degradation are directly linked to fouling of the transformer and accumulation of large quantities of waste insulating paper. In addition to technical difficulties, this proves costly for power utilities to deal with. Currently there are no cost effective method for the rejuvenation of cellulose paper that has been documented nor proposed, since renewal of used insulating paper is implemented as the best option. This study proposes and contrasts different rejuvenation methods of accelerated aged cellulose insulating paper by chemical and bio-bleaching processes. Of the three bleaching methods investigated, two are, conventional chlorine-based sodium hypochlorite (m/v), and chlorine-free hydrogen peroxide (v/v), whilst the third is a bio-bleaching technique that uses a bacterium isolate, Acinetobacter strain V2. Through chemical bleaching, varying the strengths of the bleaching reagents at 0.3 %, 0.6 %, 0.9 %, 1.2 %, 1.5 % and 1.8 % over 4 hrs. were analyzed. Bio-bleaching implemented a bacterium isolate, Acinetobacter strain V2, to bleach the aged Kraft paper over 4 hrs. The determination of the amount of alpha cellulose, degree of polymerization and viscosity carried out on Kraft-cellulose insulating paper before and after bleaching. Overall the investigated techniques of chemical and bio-bleaching were successful and effective in treating degraded and accelerated aged Kraft-cellulose insulating paper, however, to varying extents. Optimum conditions for chemical bleaching were attained at bleaching strengths of 1.2 % (m/v) NaOCl and 1.5 % (v/v) H2O2 yielding alpha cellulose contents of 82.4 % and 80.7 % and degree of polymerizations of 613 and 616 respectively. Bio-bleaching using Acinetobacter strain V2 proved to be the superior technique with alpha cellulose levels of 89.0 % and a degree of polymerization of 620. Chemical bleaching techniques require careful and controlled clean-up treatments as it is chlorine and hydrogen peroxide based while bio-bleaching is an extremely eco-friendly technique.Keywords: alpha cellulose, bio-bleaching, degree of polymerization, Kraft-cellulose insulating paper, transformer, viscosity
Procedia PDF Downloads 27020529 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China
Authors: Danying Gu, Xiaoyan Li, Yuanlei He
Abstract:
As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle
Procedia PDF Downloads 27320528 Safety Tolerance Zone for Driver-Vehicle-Environment Interactions under Challenging Conditions
Authors: Matjaž Šraml, Marko Renčelj, Tomaž Tollazzi, Chiara Gruden
Abstract:
Road safety is a worldwide issue with numerous and heterogeneous factors influencing it. On the side, driver state – comprising distraction/inattention, fatigue, drowsiness, extreme emotions, and socio-cultural factors highly affect road safety. On the other side, the vehicle state has an important role in mitigating (or not) the road risk. Finally, the road environment is still one of the main determinants of road safety, defining driving task complexity. At the same time, thanks to technological development, a lot of detailed data is easily available, creating opportunities for the detection of driver state, vehicle characteristics and road conditions and, consequently, for the design of ad hoc interventions aimed at improving driver performance, increase awareness and mitigate road risks. This is the challenge faced by the i-DREAMS project. i-DREAMS, which stands for a smart Driver and Road Environment Assessment and Monitoring System, is a 3-year project funded by the European Union’s Horizon 2020 research and innovation program. It aims to set up a platform to define, develop, test and validate a ‘Safety Tolerance Zone’ to prevent drivers from getting too close to the boundaries of unsafe operation by mitigating risks in real-time and after the trip. After the definition and development of the Safety Tolerance Zone concept and the concretization of the same in an Advanced driver-assistance system (ADAS) platform, the system was tested firstly for 2 months in a driving simulator environment in 5 different countries. After that, naturalistic driving studies started for a 10-month period (comprising a 1-month pilot study, 3-month baseline study and 6 months study implementing interventions). Currently, the project team has approved a common evaluation approach, and it is developing the assessment of the usage and outcomes of the i-DREAMS system, which is turning positive insights. The i-DREAMS consortium consists of 13 partners, 7 engineering universities and research groups, 4 industry partners and 2 partners (European Transport Safety Council - ETSC - and POLIS cities and regions for transport innovation) closely linked to transport safety stakeholders, covering 8 different countries altogether.Keywords: advanced driver assistant systems, driving simulator, safety tolerance zone, traffic safety
Procedia PDF Downloads 6820527 Preparation of Magnetic Hydroxyapatite Composite by Wet Chemical Process for Phycobiliproteins Adsorption
Authors: Shu-Jen Chen, Yi-Chien Wan, Ruey-Chi Wang
Abstract:
Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) can be applied to the fabrication of bone replacement materials, the composite of dental filling, and the adsorption of biomolecules and dyes. The integration of HAp and magnetic materials would offer several advantages for bio-separation process because the magnetic adsorbents is capable of recovered by applied magnetic field. C-phycocyanin (C-PC) and Allophycocyanin (APC), isolated from Spirulina platensis, can be used in fluorescent labeling probes, health care foods and clinical diagnostic reagents. Although the purification of C-PC and APC are reported by HAp adsorption, the adsorption of C-PC and APC by magnetic HAp composites was not reported yet. Therefore, the fabrication of HAp with magnetic silica nanoparticles for proteins adsorption was investigated in this work. First, the magnetic silica particles were prepared by covering silica layer on Fe3O4 nanoparticles with a reverse micelle method. Then, the Fe3O4@SiO2 nanoparticles were mixed with calcium carbonate to obtain magnetic silica/calcium carbonate composites (Fe3O4@SiO2/CaCO3). The Fe3O4@SiO2/CaCO3 was further reacted with K2HPO4 for preparing the magnetic silica/hydroxyapatite composites (Fe3O4@SiO2/HAp). The adsorption experiments indicated that the adsorption capacity of Fe3O4@SiO2/HAp toward C-PC and APC were highest at pH 6. The adsorption of C-PC and APC by Fe3O4@SiO2/HAp could be correlated by the pseudo-second-order model, indicating chemical adsorption dominating the adsorption process. Furthermore, the adsorption data showed that the adsorption of Fe3O4@SiO2/HAp toward C-PC and APC followed the Langmuir isotherm. The isoelectric points of C-PC and APC were around 5.0. Additionally, the zeta potential data showed the Fe3O4@SiO2/HAp composite was negative charged at pH 6. Accordingly, the adsorption mechanism of Fe3O4@SiO2/HAp toward C-PC and APC should be governed by hydrogen bonding rather than electrostatic interaction. On the other hand, as compared to C-PC, the Fe3O4@SiO2/HAp shows higher adsorption affinity toward APC. Although the Fe3O4@SiO2/HAp cannot recover C-PC and APC from Spirulina platensis homogenate, the Fe3O4@SiO2/HAp can be applied to separate C-PC and APC.Keywords: hydroxyapatite, magnetic, C-phycocyanin, allophycocyanin
Procedia PDF Downloads 15220526 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route
Authors: Sudhir Kumar Sharma, Ramesh Jagannathan
Abstract:
The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route
Procedia PDF Downloads 13620525 Laboratory Investigation on the Waste Road Construction Material Using Conventional and Chemical Additives
Authors: Paulos Meles Yihdego
Abstract:
To address the environmental impact of the cement industry and road building waste, the use of chemical stabilizers in conjunction with recycled asphalt and cement components was investigated. The silica-based chemical stabilizers and their potential effects on the base layer stabilized by cement are discussed in this paper. Strength, moisture compaction interaction, and microstructural characteristics are all examined. According to the outcome, using this stabilizer has improved the mechanical properties. The inclusion of chemical stabilizers in the combination, which is responsible for the mixture's improved strength, raised the intensity of the C-S-H (Calcium Silicate Hydrate) gel, according to a microstructural study. The design was demonstrated to be durable by the little ettringites found in the later phases. The application of this stabilizer ensures a strong, eco-friendly, durable base layer.Keywords: ettringites, microstructure analysis, durability properties, cement stabilized base
Procedia PDF Downloads 6120524 Production of High Purity Cellulose Products from Sawdust Waste Material
Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole
Abstract:
Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp
Procedia PDF Downloads 18620523 Environmental Performance of Different Lab Scale Chromium Removal Processes
Authors: Chiao-Cheng Huang, Pei-Te Chiueh, Ya-Hsuan Liou
Abstract:
Chromium-contaminated wastewater from electroplating industrial activity has been a long-standing environmental issue, as it can degrade surface water quality and is harmful to soil ecosystems. The traditional method of treating chromium-contaminated wastewater has been to use chemical coagulation processes. However, this method consumes large amounts of chemicals such as sulfuric acid, sodium hydroxide, and sodium bicarbonate in order to remove chromium. However, a series of new methods for treating chromium-containing wastewater have been developed. This study aimed to compare the environmental impact of four different lab scale chromium removal processes: 1.) chemical coagulation process (the most common and traditional method), in which sodium metabisulfite was used as reductant, 2.) electrochemical process using two steel sheets as electrodes, 3.) reduction by iron-copper bimetallic powder, and 4.) photocatalysis process by TiO2. Each process was run in the lab, and was able to achieve 100% removal of chromium in solution. Then a Life Cycle Assessment (LCA) study was conducted based on the experimental data obtained from four different case studies to identify the environmentally preferable alternative to treat chromium wastewater. The model used for calculating the environmental impact was TRACi, and the system scope includes the production phase and use phase of chemicals and electricity consumed by the chromium removal processes, as well as the final disposal of chromium containing sludge. The functional unit chosen in this study was the removal of 1 mg of chromium. Solution volume of each case study was adjusted to 1 L in advance and the chemicals and energy consumed were proportionally adjusted. The emissions and resources consumed were identified and characterized into 15 categories of midpoint impacts. The impact assessment results show that the human ecotoxicity category accounts for 55 % of environmental impact in Case 1, which can be attributed to the sulfuric acid used for pH adjustment. In Case 2, production of steel sheet electrodes is an energy-intensive process, thus contributed to 20 % of environmental impact. In Case 3, sodium bicarbonate is used as an anti-corrosion additive, which results mainly in 1.02E-05 Comparative Toxicity Unit (CTU) in the human toxicity category and 0.54E-05 (CTU) in acidification of air. In Case 4, electricity consumption for power supply of UV lamp gives 5.25E-05 (CTU) in human toxicity category, 1.15E-05 (kg Neq) in eutrophication. In conclusion, Case 3 and Case 4 have higher environmental impacts than Case 1 and Case 2, which can be attributed mostly to higher energy and chemical consumption, leading to high impacts in the global warming and ecotoxicity categories.Keywords: chromium, lab scale, life cycle assessment, wastewater
Procedia PDF Downloads 26520522 The Influence of Gender on Job-Competencies Requirements of Chemical-Based Industries and Undergraduate-Competencies Acquisition of Chemists in South West, Nigeria
Authors: Rachael Olatoun Okunuga
Abstract:
Developing young people’s employability is a key policy issue for ensuring their successful transition to the labour market and their access to career oriented employment. The youths of today irrespective of their gender need to acquire the knowledge, skills and attitudes that will enable them to create or find jobs as well as cope with unpredictable labour market changes throughout their working lives. In a study carried out to determine the influence of gender on job-competencies requirements of chemical-based industries and undergraduate-competencies acquisition by chemists working in the industries, all chemistry graduates working in twenty (20) chemical-based industries that were randomly selected from six sectors of chemical-based industries in Lagos and Ogun States of Nigeria were administered with Job-competencies required and undergraduate-competencies acquired assessment questionnaire. The data were analysed using means and independent sample t-test. The findings revealed that the population of female chemists working in chemical-based industries is low compared with the number of male chemists; furthermore, job-competencies requirements are found not to be gender sensitive while there is no significant difference in undergraduate-competencies acquisition of male and female chemists. This suggests that females should be given the same opportunity of employment in chemical-based industries as their male counterparts. The study also revealed the level of acquisition of undergraduate competencies as related to the needs of chemical-based industries.Keywords: knowledge, skill, attitude, acquired, required, employability
Procedia PDF Downloads 37920521 Physico-Chemical and Phytoplankton Analyses of Kazaure Dam, Jigawa State, Nigeria
Authors: Aminu Musa Muhammad, Muhammad Kabiru Abubakar
Abstract:
Monthly changes in Phytoplankton periodicity, nutrient levels, temperature, pH, suspended solids, dissolved solids, conductivity, dissolved oxygen and biochemical oxygen demand of Kazaure Dam, Jigawa State, Nigeria were studied for a period of six months (July-Dec.-2011). Physico-chemical result showed that temperature and pH ranged between17-25˚C and 5.5-7.5, while dissolved solids and suspended solids ranged between 95-155 mg/L and 0.13-112 mg/L respectively. Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Chemical oxygen demand (COD), conductivity, nitrate, phosphate and sulphate ion concentrations were within the ranges of 3.5-3.6 mg/L, 4.8-7.2 mg/L, 8.10-12.30 mg/L, 21-58µΩ/cm, 0.2-8.1 mg/L, 2.4-18.1 mg/L, and 1.22-15.60 mg/L respectively. A total of 4514 Org/L phytoplankton were recorded, of which four classes of algae were identified. These comprised of Chlorophyta (44.1%), Cyanophyta(30.62%), Bacillariophyta(3.2%), Euglenophyta (32.1%). Descriptive statistics of the result showed that phytoplankton count varied with variation of physico-chemical parameters at 5% level during the study period. The abundance and distribution of the algae varied with the variation in the physico-chemical parameters. Pearson correlation showed that temperature and nutrients were significantly correlated with phytoplankton, while DO, sulphate and pH were insignificantly correlated, while there was no significant correlation with COD and phytoplankton.Keywords: correlation, phytoplankton, physico chemical, kazaure dam
Procedia PDF Downloads 57120520 Sustainable Urban Mobility: Rethinking the Bus Stop Infrastructures of Dhaka South
Authors: Hasnun Wara Khondker, M. Tarek Morad
Abstract:
Bangladesh is one of the most populous countries of the world in terms of density. Dhaka, the capital of Bangladesh currently has a population of approximately 15-16 million of which around 9 million people are accommodated in Dhaka South City Corporation (DSCC) within around 109 square kilometer area. Despite having various urban issues, country is at its pick of economic progress and Dhaka is the core of this economic growth. To ensure the proper economic development and citizens wellbeing, city needs an ingenious, congestion-free public transportation network. Bus stop/bus bay is an essential infrastructure for ensuring efficient public transportation flow within the city along with enhancing accessibility, user comfort, and safety through public amenities. At present, there is no established Mass Rapid Transit or Bus Rapid Transit network within the city and therefore these private owned buses are the only major mode of mass transportation of Dhaka city. DSCC has undertaken a project to re-design several bus stops and bus bays according to the universal standard for better urban mobility and user satisfaction. This paper will analyze the design approach of the bus stop/bay infrastructure within Dhaka South, putting the research lens on sustainable urban mobility with case studies of similar kind of urban context. The paper will also study the design process with setting several parameters, i.e., accessibility, passenger safety, comfort, sustainability, etc. Moreover, this research will recommend a guideline for designing a bus stop based on the analysis of the design methods.Keywords: bus stop, Dhaka, public transportation, sustainable urban mobility, universal accessibility, user safety
Procedia PDF Downloads 38120519 Automated Process Quality Monitoring and Diagnostics for Large-Scale Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Continuous monitoring of industrial plants is one of necessary tasks when it comes to ensuring high-quality final products. In terms of monitoring and diagnosis, it is quite critical and important to detect some incipient abnormal events of manufacturing processes in order to improve safety and reliability of operations involved and to reduce related losses. In this work a new multivariate statistical online diagnostic method is presented using a case study. For building some reference models an empirical discriminant model is constructed based on various past operation runs. When a fault is detected on-line, an on-line diagnostic module is initiated. Finally, the status of the current operating conditions is compared with the reference model to make a diagnostic decision. The performance of the presented framework is evaluated using a dataset from complex industrial processes. It has been shown that the proposed diagnostic method outperforms other techniques especially in terms of incipient detection of any faults occurred.Keywords: data mining, empirical model, on-line diagnostics, process fault, process monitoring
Procedia PDF Downloads 40120518 Status of Radiation Protection at Radiation Oncology, BPKM Cancer Hospital, Nepal
Authors: Surendra B. Chand, P. P. Chaurasia, M. P. Adhikari, R. N. Yadav
Abstract:
Objective: The objective of this work was to evaluate all the safety procedures toward the radiation protection for workers in the radiation oncology department. Materials and Methods: The annual thermoluminescent dosimeters (TLDs) reports for five years of the staffs were evaluated, radiation surveys were done in the control consoles, radiotherapy machines room and waiting areas of all machines using Aloka survey meter. Results: The five years TLD reports shows that the whole body dose of the individual staffs is found within the annual dose limit except the accidental exposures. Radiation exposures in the working areas are also safe limits. Conclusion: The radiation safety practices for radiation protection are satisfactory and the radiation workers of the departments are found working within the safe limit.Keywords: radiation protection, safety, ICRP, dose limits, TLD, radiation devices
Procedia PDF Downloads 57020517 Analysis of Efficacy and Safety of Abatacept for Rheumatoid Arthritis: A Systematic Review and Meta Analysis
Authors: Hamida Memon
Abstract:
Rheumatoid arthritis (RA) is a persistent inflammation of the joints caused by an aggressive immune reaction leading to pain, stiffness, and limited function. Abatacept, a selective co-modulator, is a promising option for treatment and may have better safety profiles compared to other interventions. This meta-analysis aims at assessing the effectiveness and safety of abatacept in contrast to various RA treatments such as placebos, biological DMARDs and conventional DMARDs. The analysis assesses how abatacept influences disease activity, pain intensity and overall patient functionality. It weighs the risk factor of abatacept with other drugs such as tocilizumab, with the numbers being lower for abatacept. This meta-analysis aims at assessing the effectiveness and safety of abatacept in contrast to various RA treatments such as placebos, biological DMARDs and conventional DMARDs. The analysis assesses how abatacept influences disease activity, pain intensity and overall patient functionality. It weighs the risk factor of abatacept with other drugs such as tocilizumab, with the numbers being lower for abatacept.Keywords: Rheumatoid arthritis, abatacept, control group, bone disease
Procedia PDF Downloads 2420516 Impact of Biological Treatment Effluent on the Physico-Chemical Quality of a Receiving Stream in Ile-Ife, Southwest Nigeria
Authors: Asibor Godwin, Adeniyi Funsho
Abstract:
This study was carried out to investigate the impact of biological treated effluent on the physico-chemical properties of receiving waterbodies and also to establish its suitability for other purposes. It focused on the changes of some physic-chemical variables as one move away from the point of discharge downstream of the waterbodies. Water samples were collected from 14 sampling stations made up of the untreated effluent, treated effluent and receiving streams (before and after treated effluent discharge) over a period of 6 months spanning the dry and rainy seasons. Analyses were carried out on the following: temperature, turbidity, pH, conductivity, major anions and cation, dissolved oxygen, percentage oxygen Saturation, biological oxygen demand (BOD), solids (total solids, suspended solids and dissolved solids), nitrates, phosphates, organic matter and flow discharge using standard analytical methods. The relationships between investigated sites with regards to their physico-chemical properties were analyzed using student-t statistics. Also changes in the treated effluent receiving streams after treated effluent outfall was discussed fully. The physico-chemical water quality of the receiving water bodies meets most of the general water requirements for both domestic and industrial uses. The untreated effluent quality was shown to be of biological origin based on the biological oxygen demand, chloride, dissolved oxygen, total solids, pH and organic matter. The treated effluent showed significant improvement over the raw untreated effluent based on most parameters assessed. There was a significant difference (p<0.05) between the physico-chemical quality of untreated effluent and the treated effluent for the most of the investigated physico-chemical quality. The difference between the discharged treated effluent and the unimpacted section of the receiving waterbodies was also significant (p<0.05) for the most of the physico-chemical parameters.Keywords: eflluent, Opa River, physico-chemical, waterbody
Procedia PDF Downloads 26220515 Proinflammatory Response of Agglomerated TiO2 Nanoparticles in Human-Immune Cells
Authors: Vaiyapuri Subbarayn Periasamy, Jegan Athinarayanan, Ali A. Alshatwi
Abstract:
The widespread use of Titanium oxide nanoparticles (TiO2-NPs), now are found with different physic-chemical properties (size, shape, chemical properties, agglomeration, etc.) in many processed foods, agricultural chemicals, biomedical products, food packaging and food contact materials, personal care products, and other consumer products used in daily life. Growing evidences have been highlighted that there are risks of physico-chemical properties dependent toxicity with special attention to “TiO2-NPs and human immune system”. Unfortunately, agglomeration and aggregation have frequently been ignored in immuno-toxicological studies, even though agglomeration and aggregation would be expected to affect nanotoxicity since it changes the size, shape, surface area, and other properties of the TiO2-NPs. In this present investigation, we assessed the immune toxic effect of TiO2-NPs on human immune cells Total WBC including Lymphocytes (T cells (CD3+), T helper cells (CD3+, CD4+), Suppressor/cytotoxic T cells (CD3+/CD8+) and NK cells (CD3-/CD16+ and CD56+), Monocytes (CD14+, CD3-) and B lymphocytes (CD19+, CD3-) in order to find the immunological response (IL1A, IL1B, IL2 IL-4, IL5 IL-6, IL-10, IL-12, IL-13, IFN-γ, TGF-β, and TNF-a) and redox gene regulation (TNF, p53, BCl-2, CAT, GSTA4, TNF, CYP1A, POR, SOD1, GSTM3, GPX1, and GSR1)-linking physicochemical properties with special reference to agglomeration of TiO2-NPs. Our findings suggest that TiO2-NPs altered cytokine production, enhanced phagocytic indexing, metabolic stress through specific immune regulatory- genes expression in different WBC subsets and may contribute to pro-inflammatory response. Although TiO2-NPs have great advantages in the personal care products, biomedical, food and agricultural products, its chronic and acute immune-toxicity still need to be assessed carefully with special reference to food and environmental safety.Keywords: TiO2 nanoparticles, oxidative stress, cytokine, human immune cells
Procedia PDF Downloads 39720514 Road Safety in the Great Britain: An Exploratory Data Analysis
Authors: Jatin Kumar Choudhary, Naren Rayala, Abbas Eslami Kiasari, Fahimeh Jafari
Abstract:
The Great Britain has one of the safest road networks in the world. However, the consequences of any death or serious injury are devastating for loved ones, as well as for those who help the severely injured. This paper aims to analyse the Great Britain's road safety situation and show the response measures for areas where the total damage caused by accidents can be significantly and quickly reduced. In this paper, we do an exploratory data analysis using STATS19 data. For the past 30 years, the UK has had a good record in reducing fatalities. The UK ranked third based on the number of road deaths per million inhabitants. There were around 165,000 accidents reported in the Great Britain in 2009 and it has been decreasing every year until 2019 which is under 120,000. The government continues to scale back road deaths empowering responsible road users by identifying and prosecuting the parameters that make the roads less safe.Keywords: road safety, data analysis, openstreetmap, feature expanding.
Procedia PDF Downloads 14020513 Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites
Authors: J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, M. D. Banea
Abstract:
In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment.Keywords: chemical treatment, hybrid composite, jute, thermal
Procedia PDF Downloads 30920512 A Multilevel Authentication Protocol: MAP in VANET for Human Safety
Authors: N. Meddeb, A. M. Makhlouf, M. A. Ben Ayed
Abstract:
Due to the real-time requirement of message in Vehicular Ad hoc NETworks (VANET), it is necessary to authenticate vehicles to achieve security, efficiency, and conditional privacy-preserving. Privacy is of utmost relevance in VANETs. For this reason, we have proposed a new protocol called ‘Multilevel Authentication Protocol’ (MAP) that considers different vehicle categories. The proposed protocol is based on our Multilevel Authentication protocol for Vehicular networks (MAVnet). But the MAP leads to human safety, where the priority is given to the ambulance vehicles. For evaluation, we used the Java language to develop a demo application and deployed it on the Network Security Simulation (Nessi2). Compared with existing authentication protocols, MAP markedly enhance the communication overhead and decreases the delay of exchanging messages while preserving conditional privacy.Keywords: Vehicular Ad hoc NETworks (VANET), vehicle categories, safety, databases, privacy, authentication, throughput, delay
Procedia PDF Downloads 29720511 Determination of Economic and Ecological Potential of Bio Hydrogen Generated through Dark Photosynthesis Process
Authors: Johannes Full, Martin Reisinger, Alexander Sauer, Robert Miehe
Abstract:
The use of biogenic residues for the biotechnological production of chemical energy carriers for electricity and heat generation as well as for mobile applications is an important lever for the shift away from fossil fuels towards a carbon dioxide neutral post-fossil future. A multitude of promising biotechnological processes needs, therefore, to be compared against each other. For this purpose, a multi-objective target system and a corresponding methodology for the evaluation of the underlying key figures are presented in this paper, which can serve as a basis for decisionmaking for companies and promotional policy measures. The methodology considers in this paper the economic and ecological potential of bio-hydrogen production using the example of hydrogen production from fruit and milk production waste with the purple bacterium R. rubrum (so-called dark photosynthesis process) for the first time. The substrate used in this cost-effective and scalable process is fructose from waste material and waste deposits. Based on an estimation of the biomass potential of such fructose residues, the new methodology is used to compare different scenarios for the production and usage of bio-hydrogen through the considered process. In conclusion, this paper presents, at the example of the promising dark photosynthesis process, a methodology to evaluate the ecological and economic potential of biotechnological production of bio-hydrogen from residues and waste.Keywords: biofuel, hydrogen, R. rubrum, bioenergy
Procedia PDF Downloads 19720510 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton
Authors: komal verma, V. S. Moholkar
Abstract:
In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity
Procedia PDF Downloads 7220509 Dissolved Black Carbon Accelerates the Photo-Degradation of Polystyrene Microplastics
Authors: Qin Ou, Yanghui Xu, Xintu Wang, Kim Maren Lompe, Gang Liu, Jan Peter Van Der Hoek
Abstract:
Microplastics (MPs) can undergo the photooxidation process under ultraviolet (UV) exposure, which determines their transformation and fate in environments. The presence of dissolved organic matter (DOM) can interact with MPs and take participate in the photo-degradation of MPs. As an important DOM component, dissolved black carbon (DBC), widely distributed in aquatic environments, can accelerate or inhibit the sunlight-driven photo-transformation of environmental pollutants. However, the role and underlying mechanism of DBC in the photooxidation of MPs are not clear. Herein, the DBC (< 0.45 µm) was extracted from wood biochar and fractionated by molecular weight (i.e., <3 KDa, 3 KDa−30 KDa, 30 KDa−0.45 µm). The effects of DBC chemical composition (i.e., molecular weight and chemical structure) in DBC-mediated photo-transformation of polystyrene (PS) MPs were investigated. The results showed that DBC initially inhibited the photo-degradation of MPs due to light shielding. Under UV exposure for 6−24 h, the presence of 5 mg/L DBC decreased the carbonyl index of MPs compared to the control. This inhibitory effect of DBC was found to decrease with increasing irradiation time. Notably, DBC initially decreased but then increased the hydroxyl index with aging time, suggesting that the role of DBC may shift from inhibition to acceleration. In terms of the different DBC fractions, the results showed that the smallest fraction of DBC (<3 KDa) significantly accelerated the photooxidation of PS MPs since it acted as reactive oxygen species (ROS) generators, especially in promoting the production of ¹O₂ and ³DBC* and •OH. With the increase in molecular weight, the acceleration effect of DBC on the degradation of MPs was decreased due to the increase of light shielding and possible decrease of photosensitization ability. This study thoroughly investigated the critical role of DBC chemical composition in the photooxidation process, which helps to assess the duration of aging and transformation of MPs during long-term weathering in natural waters.Keywords: microplastics, photo-degradation, dissolved black carbon, molecular weight, photosensitization
Procedia PDF Downloads 7820508 Effect of a Mixture of Phenol, O-Cresol, P-Cresol, and M-Cresol on the Nitrifying Process in a Sequencing Batch Reactor
Authors: Adriana Sosa, Susana Rincon, Chérif Ben, Diana Cabañas, Juan E. Ruiz, Alejandro Zepeda
Abstract:
The complex chemical composition (mixtures of ammonium and recalcitrant compounds) of the effluents from the chemical, pharmaceutical and petrochemical industries represents a challenge in their biological treatment. This treatment involves nitrification process that can suffer an inhibition due to the presence of aromatic compounds giving as a result the decrease of the process efficiency. The inhibitory effects on nitrification in the presence of aromatic compounds have already been studied; however a few studies have considered the presence of phenolic compounds in the form of mixtures, which is the form that they are present in real context. For this reason, we realized a kinetic study on the nitrifying process in the presence of different concentrations of a mixture of phenol, o-cresol, m-cresol and p-cresol (0 - 320 mg C/L) in a sequencing batch reactor (SBR). Firstly, the nitrifying process was evaluated in absence of the phenolic mixture (control 1) in a SBR with 2 L working volume and 176 mg/L of nitrogen of microbial protein. Total oxidation of initial ammonium (efficiency; ENH4+ of 100 %) to nitrate (nitrifying yield; YNO3- of 0.95) were obtained with specific rates of ammonium consumption (qN-NH4+) and nitrate production (qN-NO3-) (of 1.11 ± 0.04 h-1 and 0.67 h-1 ± 0.11 respectively. During the phase of acclimation with 40 mg C/L of the phenolic mixture, an inhibitory effect on the nitrifying process was observed, provoking a decrease in ENH4+ and YNO3- (11 and 54 % respectively) as well as in the specific rates (89 y 46 % respectively), being the ammonia oxidizing bacteria (BAO) the most affected. However, in the next cycles without the phenolic mixture (control 2), the nitrifying consortium was able to recover its nitrifying capacity (ENH4+ = 100% and YNO3-=0.98). Afterwards the SBR was fed with 10 mg C/L of the phenolic mixture, obtaining and ENH4+ of 100%, YNO3- and qN-NH4+ 0.62 ± 0.006 and 0.13 ± 0.004 respectively, while the qN-NO3- was 0.49 ± 0.007. Moreover, with the increase of the phenolic concentrations (10-160 mg C/L) and the number of cycles the nitrifying consortium was able to oxidize the ammonia with ENH4+ of 100 % and YNO3- close to 1. However a decrease in the values of the nitrification specific rates and increase in the oxidation in phenolic compounds (70 to 94%) were observed. Finally, in the presence of 320 mg C/L, the nitrifying consortium was able to simultaneously oxidize the ammonia (ENH4+= 100%) and the phenolic mixture (p-cresol>phenol>m-cresol>o-cresol) being the o-cresol the most recalcitrant compound. In all the experiments the use of a SBR allowed a respiratory adaptation of the consortium to oxidize the phenolic mixture achieving greater adaptation of the nitrite-oxidizing bacteria (NOB) than in the ammonia-oxidizing bacteria (AOB).Keywords: cresol, inhibition, nitrification, phenol, sequencing batch reactor
Procedia PDF Downloads 36120507 Building Safety Through Real-time Design Fire Protection Systems
Authors: Mohsin Ali Shaikh, Song Weiguo, Muhammad Kashan Surahio, Usman Shahid, Rehmat Karim
Abstract:
When the area of a structure that is threatened by a disaster affects personal safety, the effectiveness of disaster prevention, evacuation, and rescue operations can be summarized by three assessment indicators: personal safety, property preservation, and attribution of responsibility. These indicators are applicable regardless of the disaster that affects the building. People need to get out of the hazardous area and to a safe place as soon as possible because there's no other way to respond. The results of the tragedy are thus closely related to how quickly people are advised to evacuate and how quickly they are rescued. This study considers present fire prevention systems to address catastrophes and improve building safety. It proposes the methods of Prevention Level for Deployment in Advance and Spatial Transformation by Human-Machine Collaboration. We present and prototype a real-time fire protection system architecture for building disaster prevention, evacuation, and rescue operations. The design encourages the use of simulations to check the efficacy of evacuation, rescue, and disaster prevention procedures throughout the planning and design phase of the structure.Keywords: prevention level, building information modeling, quality management system, simulated reality
Procedia PDF Downloads 6920506 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety
Authors: Ashraf Aly
Abstract:
The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues
Procedia PDF Downloads 65