Search results for: average cycle time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22786

Search results for: average cycle time

22186 An Ontology Model for Systems Engineering Derived from ISO/IEC/IEEE 15288: 2015: Systems and Software Engineering - System Life Cycle Processes

Authors: Lan Yang, Kathryn Cormican, Ming Yu

Abstract:

ISO/IEC/IEEE 15288: 2015, Systems and Software Engineering - System Life Cycle Processes is an international standard that provides generic top-level process descriptions to support systems engineering (SE). However, the processes defined in the standard needs improvement to lift integrity and consistency. The goal of this research is to explore the way by building an ontology model for the SE standard to manage the knowledge of SE. The ontology model gives a whole picture of the SE knowledge domain by building connections between SE concepts. Moreover, it creates a hierarchical classification of the concepts to fulfil different requirements of displaying and analysing SE knowledge.

Keywords: knowledge management, model-based systems engineering, ontology modelling, systems engineering ontology

Procedia PDF Downloads 421
22185 The Impact of Barefoot versus Shod Running on Lower Limb Gait Cycle Pattern among Recreational Club Runners in Durban, South Africa

Authors: Siyabonga Kunene, Calvin Shipley

Abstract:

Introduction: Despite health benefits that come with running, injuries are common with prevalence ranging between 18.2% and 92.4% worldwide. Differences in gait patterns between barefoot and shod running, can determine traits that could lead to running injuries. The aim was to assess and compare lower limb gait cycle patterns between barefoot and shod running among runners. Methods: An experimental same-subject study design was used. The study population consisted of male and female adult recreational runners who were injury free from a running club in Durban. A convenience sampling method was used and 14 participants were recruited. The study was conducted in the physiotherapy performance laboratory at the University of KwaZulu-Natal. A Woodway Desmo Treadmill and KinePro gait analysis system were used. Descriptive & inferential statistics were analysed using Microsoft Excel and Intercooled Stata. Results: Participants included a greater percentage of females (57.1%, n = 8) than males (42.9%, n = 6). The mean population age was 38.57. A significant difference (p < 0.0009) between barefoot cadence (177.9236steps/min) and shod cadence (171.9445steps/min) was observed. Right (0.261s) and left (0.257s) barefoot stand phase was shorter than right (0.273s) and left (0.270s) shod stand phase. Right barefoot swing phase exhibited less significant (0.420s) results when compared to right shod swing phase (0.427s), whereas left barefoot swing phase was quicker (0.416s) than left shod swing phase (0.432s). Significant differences between barefoot and shod stand (p < 0.009) and swing (p < 0.040) phase symmetry occurred. Conclusion: A considerable difference was found between barefoot and shod running gait cycle patterns among participants. This difference may play a role in prevention of running related injuries.

Keywords: barefoot running, shod running, gait cycle pattern, same-subject study design

Procedia PDF Downloads 248
22184 Furniture Embodied Carbon Calculator for Interior Design Projects

Authors: Javkhlan Nyamjav, Simona Fischer, Lauren Garner, Veronica McCracken

Abstract:

Current whole building life cycle assessments (LCA) primarily focus on structural and major architectural elements to measure building embodied carbon. Most of the interior finishes and fixtures are available on digital tools (such as Tally); however, furniture is still left unaccounted for. Due to its repeated refreshments and its complexity, furniture embodied carbon can accumulate over time, becoming comparable to structure and envelope numbers. This paper presents a method to calculate the Global Warming Potential (GWP) of furniture elements in commercial buildings. The calculator uses the quantity takeoff method with GWP averages gathered from environmental product declarations (EPD). The data was collected from EPD databases and furniture manufacturers from North America to Europe. A total of 48 GWP numbers were collected, with 16 GWP coming from alternative EPD. The finalized calculator shows the average GWP of typical commercial furniture and helps the decision-making process to reduce embodied carbon. The calculator was tested on MSR Design projects and showed furniture can account for more than half of the interior embodied carbon. The calculator highlights the importance of adding furniture to the overall conversation. However, the data collection process showed a) acquiring furniture EPD is not straightforward as other building materials; b) there are very limited furniture EPD, which can be explained from many perspectives, including the EPD price; c) the EPD themselves vary in terms of units, LCA scopes, and timeframes, which makes it hard to compare the products. Even though there are current limitations, the emerging focus on interior embodied carbon will create more demand for furniture EPD. It will allow manufacturers to represent all their efforts on reducing embodied carbon. In addition, the study concludes with recommendations on how designers can reduce furniture-embodied carbon through reuse and closed-loop systems.

Keywords: furniture, embodied carbon, calculator, tenant improvement, interior design

Procedia PDF Downloads 209
22183 Time Series Analysis of Radon Concentration at Different Depths in an Underground Goldmine

Authors: Theophilus Adjirackor, Frederic Sam, Irene Opoku-Ntim, David Okoh Kpeglo, Prince K. Gyekye, Frank K. Quashie, Kofi Ofori

Abstract:

Indoor radon concentrations were collected monthly over a period of one year in 10 different levels in an underground goldmine, and the data was analyzed using a four-moving average time series to determine the relationship between the depths of the underground mine and the indoor radon concentration. The detectors were installed in batches within four quarters. The measurements were carried out using LR115 solid-state nuclear track detectors. Statistical models are applied in the prediction and analysis of the radon concentration at various depths. The time series model predicted a positive relationship between the depth of the underground mine and the indoor radon concentration. Thus, elevated radon concentrations are expected at deeper levels of the underground mine, but the relationship was insignificant at the 5% level of significance with a negative adjusted R2 (R2 = – 0.021) due to an appropriate engineering and adequate ventilation rate in the underground mine.

Keywords: LR115, radon concentration, rime series, underground goldmine

Procedia PDF Downloads 37
22182 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications

Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour

Abstract:

Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.

Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile

Procedia PDF Downloads 91
22181 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method

Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh

Abstract:

Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.

Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel

Procedia PDF Downloads 450
22180 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces

Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic

Abstract:

Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

Keywords: contact time, impact dynamics, oscillation, pear-shape droplet

Procedia PDF Downloads 450
22179 A Theoretical Study of Multi-Leaf Spring in Seismic Response Control

Authors: M. Ezati Kooshki , H. Pourmohamad

Abstract:

Leaf spring dampers are used for commercial vehicles and heavy tracks. The main function of this damper in these vehicles is protection against damage and providing comfort for drivers by creating suspension between road and vehicle. This paper presents a new device, circular leaf spring damper, which is frequently used on vehicles, aiming to gain seismic protection of structures. Finite element analyses were conducted on several one-story structures using finite element software (Abaqus, v6.10-1). The time history analysis was conducted on the records of Kobe (1995) and San Fernando (1971) ground motions to demonstrate the advantages of using leaf spring in structures as compared to simple bracing system. This paper also suggests extending the use of this damper in structures, considering its large control force despite high cycle fatigue properties and low prices.

Keywords: bracing system, finite element analysis, leaf spring, seismic protection, time history analysis

Procedia PDF Downloads 399
22178 Islamic Banking and Finance in Theory and Practice: The Experience of Malaysia and Algeria

Authors: Zidane Abderrezaq

Abstract:

This paper’s primary objective is to identify the relative importance of various Islamic financial products, in theory and in practice, by examining the financing records of the Bank Islam Malaysia (Berhad) and the Algeria Islamic Bank. Currently, seven available Islamic financing products are considered viable alternatives to interest-based conventional contracts: mudarabah (trust financing), musharakah (equity financing), ijarah (lease financing), murabahah (trade financing), qard al-hassan (welfare loan), bay` bi al-thaman al-ajil (deferred payment financing), and istisna` (progressive payments). Among these financial products, mudarabah and musharakah are the most distinct. Their unique characteristics (at least in theory) make Islamic banks and Islamic financing viable alternatives to the conventional interest-based financial system. The question before us is to determine the extent of mudarabah and musharakah in Islamic financing in practice. The data are as follows: the average mudarabah is 5% of total financing, and the average musharakah is less than 3%. The combined average of mudarabah and musharakah for the two Islamic banks is less than 4% of the total finance and advances. The average qard al-hassan is about 4%, while istisna` does not yet exist in practice. Murabahah is the most popular and dominates all other modes of Islamic financing. The average use of murabahah is over 54%. When the bay` bi al-thaman al-ajil is added to the murabahah, the percentage of total financing is shown to be 82.68%. This paper also explores some possible reasons why these two Islamic banks appear to prefer murabahah to mudarabah and musharakah.

Keywords: Islamic banking, Islamic finance, Islamic banking rofitability, investment banking

Procedia PDF Downloads 476
22177 Developing Variable Repetitive Group Sampling Control Chart Using Regression Estimator

Authors: Liaquat Ahmad, Muhammad Aslam, Muhammad Azam

Abstract:

In this article, we propose a control chart based on repetitive group sampling scheme for the location parameter. This charting scheme is based on the regression estimator; an estimator that capitalize the relationship between the variables of interest to provide more sensitive control than the commonly used individual variables. The control limit coefficients have been estimated for different sample sizes for less and highly correlated variables. The monitoring of the production process is constructed by adopting the procedure of the Shewhart’s x-bar control chart. Its performance is verified by the average run length calculations when the shift occurs in the average value of the estimator. It has been observed that the less correlated variables have rapid false alarm rate.

Keywords: average run length, control charts, process shift, regression estimators, repetitive group sampling

Procedia PDF Downloads 555
22176 Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes

Authors: V. Makis, L. Jafari

Abstract:

In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart.

Keywords: Bayesian u-chart, economic design, optimal stopping, semi-Markov decision process, statistical process control

Procedia PDF Downloads 569
22175 A Survey to Determine the Incidence of Piglets' Mortality in Outdoor Farms in New Zealand

Authors: Patrick C. H. Morel, Ian W. Barugh, Kirsty L. Chidgey

Abstract:

The aim of this study was to quantify the level of piglet deaths in outdoor farrowing systems in New Zealand. A total of 14 farms were visited, the farmers interviewed, and data collected. A total of 10,154 sows were kept on those farms representing an estimated 33% of the NZ sow herd or 80% of the outdoor sow herd in 2016. Data from 25,911 litters was available for the different analyses. The characteristics and reproductive performance for the years 2015-2016 from the 14 farms surveyed in this study were analysed, and the following results were obtained. The average percentage of stillbirths was 7.1% ranging between 3.5 and 10.7%, and the average pre-weaning live-born mortality was 16.7% ranging between 3.7% and 23.6%. The majority of piglet deaths (89%) occurred during the first week after birth, with 81% of deaths occurring up to day three. The number of piglets born alive was 12.3 (8.0 to 14.0), and average number of piglets weaned per sow per year was 22.4, range 10.5-27.3. The average stocking rate per ha (number of sows and mated gilts) was 15.3 and ranged from 2.8 to 28.6. The sow to boar ratio average was 20.9:1 and the range was 7.1: 1 to 63:1. The sow replacement rate ranged between 37% and 78%. There was a large variation in the piglet live-born mortality both between months within a farm and between farms within a given month. The monthly recorded piglet mortality ranged between 7.7% and 31.5%, and there was no statistically significant difference between months on the number of piglets born, born alive, weaned or on pre-weaning piglet mortality. Twelve different types of hut/farrowing systems were used on the 14 farms. No difference in piglet mortality was observed between A-Frame, A-Frame Modified and for Box-shape huts. There was a positive relationship between the average number of piglets born per litter and the number of piglets born alive (r=0.975) or the number weaned per litter (r=0.845). Moreover, as the average number of piglets born-alive increases, both pre-weaning live-born mortality rate and the number of piglets weaned increased. An increase of 1 piglet in the number born alive corresponds to an increase of 2.9% in live-born mortality and an increase of 0.56 piglets weaned. Farmers reported that staff are the key to success with the key attributes being: good and reliable with attention to detail and skills with the stock.

Keywords: mortality, piglets, outdoor, pig farm

Procedia PDF Downloads 108
22174 Memory, Self, and Time: A Bachelardian Perspective

Authors: Michael Granado

Abstract:

The French philosopher Gaston Bachelard’s philosophy of time is articulated in his two works on the subject, the Intuition of the Instant (1932) and his The Dialectic of Duration (1936). Both works present a systematic methodology predicated upon the assumption that our understanding of time has radically changed as a result of Einstein and subsequently needs to be reimagined. Bachelard makes a major distinction in his discussion of time: 1. Time as it is (physical time), 2. Time as we experience it (phenomenological time). This paper will focus on the second distinction, phenomenological time, and explore the connections between Bachelard’s work and contemporary psychology. Several aspects of Bachelard’s philosophy of time nicely complement our current understanding of memory and self and clarify how the self relates to experienced time. Two points, in particular, stand out; the first is the relative nature of subjective time, and the second is the implications of subjective time in the formation of the narrative self. Bachelard introduces two philosophical concepts to explain these points: rhythmanalysis and reverie. By exploring these concepts, it will become apparent that there is an undeniable link between memory, self, and time. Through the use of narrative self, the individual connects and links memories and time together to form a sense of personal identity.

Keywords: Gaston Bachelard, memory, self, time

Procedia PDF Downloads 158
22173 The Construction of the Semigroup Which Is Chernoff Equivalent to Statistical Mixture of Quantizations for the Case of the Harmonic Oscillator

Authors: Leonid Borisov, Yuri Orlov

Abstract:

We obtain explicit formulas of finitely multiple approximations of the equilibrium density matrix for the case of the harmonic oscillator using Chernoff's theorem and the notion of semigroup which is Chernoff equivalent to average semigroup. Also we found explicit formulas for the corresponding approximate Wigner functions and average values of the observable. We consider a superposition of τ -quantizations representing a wide class of linear quantizations. We show that the convergence of the approximations of the average values of the observable is not uniform with respect to the Gibbs parameter. This does not allow to represent approximate expression as the sum of the exact limits and small deviations evenly throughout the temperature range with a given order of approximation.

Keywords: Chernoff theorem, Feynman formulas, finitely multiple approximation, harmonic oscillator, Wigner function

Procedia PDF Downloads 434
22172 Mechanochemical Synthesis of Al2O3/Mo Nanocomposite Powders from Molybdenum Oxide

Authors: Behrooz Ghasemi, Bahram Sharijian

Abstract:

Al2O3/Mo nanocomposite powders were successfully synthesized by mechanical milling through mechanochemical reaction between MoO3 and Al. The structural evolutions of powder particles during mechanical milling were studied by X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy(EDX) and scanning electron microscopy (SEM). Results show that Al2O3-Mo was completely obtained after 5 hr of milling. The crystallite sizes of Al2O3 and Mo after milling for 20 hr were about 45 nm and 23 nm, respectively. With longer milling time, the intensities of Al2O3 and Mo peaks decreased and became broad due to the decrease in crystallite size. Morphological features of powders were influenced by the milling time. The resulting Al2O3- Mo nanocomposite powder exhibited an average particle size of 200 nm after 20 hr of milling. Also nanocomposite powder after 10 hr milling had relatively equiaxed shape with uniformly distributed Mo phase in Al2O3 matrix.

Keywords: Al2O3/Mo, nanocomposites, mechanochemical, mechanical milling

Procedia PDF Downloads 360
22171 Peculiarities of the Clinical Course of the Osteoarthritis in Shift-Workers: Analysis of Clinical Data and Questionnaries

Authors: Oksana Mykytyuk

Abstract:

Chronic desynchronosis is an important factor of progression of osteoarthritis in shift workers. 80 patients with primary osteoarthritis (female:male ratio = 3:1, average age: 57.6 years, average disease duration: 6.4 years, radiological stage: II-III) were examined, 42% reported systematic night shift-work for more than two years. Full clinical examination was performed, all patients filled in SF-36, WOMAC questonnaries, marked visual analog scales for estimation of pain intensity and general well-being. Patients who had been exposed to night work had significantly worse clinical course of osteoarthritis marked by more (27.5%, p < 0.05) extensive pain syndrome, especially at night hours, (10.00 pm-2.00 am period) and estimated life quality as poorer comparing those working at day time. Osteoarthritis initiation occurred at earlier age in them comparing those who worked in non-shifted regimen. They showed a trend to generalized affliction of bigger quantity of joint groups, higher frequency of synovitis as well. Shift-workers administered higher doses of non-steroid anti-inflammatory drugs (NSAIDs) and estimated their effect as lower (39.6% average daily relief vs 62.5% in non-shift workers after 10 days of regular application of therapy). Frequency of chronic NSAID-induced gastropathy was 25% higher among night-workers. Shift-workers are predisposed to worse course of osteoarthritis with marked clinical symptoms, requiring higher doses on NSAIDs and with inclination towards bigger frequency of complication. That should be kept in mind while developing individual treatment and secondary prophylaxis strategy.

Keywords: desynchronosis, osteoarthritis, questionnaries, shift-work

Procedia PDF Downloads 124
22170 Optimization of Urea Water Solution Injector for NH3 Uniformity Improvement in Urea-SCR System

Authors: Kyoungwoo Park, Gil Dong Kim, Seong Joon Moon, Ho Kil Lee

Abstract:

The Urea-SCR is one of the most efficient technologies to reduce NOx emissions in diesel engines. In the present work, the computational prediction of internal flow and spray characteristics in the Urea-SCR system was carried out by using 3D-CFD simulation to evaluate NH3 uniformity index (NH3 UI) and its activation time according to the official New European Driving Cycle (NEDC). The number of nozzle and its diameter, two types of injection directions, and penetration length were chosen as the design variables. The optimal solutions were obtained by coupling the CFD analysis with Taguchi method. The L16 orthogonal array and small-the-better characteristics of the Taguchi method were used, and the optimal values were confirmed to be valid with 95% confidence and 5% significance level through analysis of variance (ANOVA). The results show that the optimal solutions for the NH3 UI and activation time (NH3 UI 0.22) are obtained by 0.41 and 0,125 second, respectively, and their values are improved by 85.0% and 10.7%, respectively, compared with those of the base model.

Keywords: computational fluid dynamics, NH3 uniformity index, optimization, Taguchi method, Urea-SCR system, UWS injector

Procedia PDF Downloads 261
22169 Operation Cycle Model of ASz62IR Radial Aircraft Engine

Authors: M. Duk, L. Grabowski, P. Magryta

Abstract:

Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under

Keywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine

Procedia PDF Downloads 285
22168 Ovarian Surface Epithelium Receptors during Pregnancy and Estrus Cycle of Rats with Emphasis on Steroids and Gonadotropins Fluctuation

Authors: Salina Yahya Saddik

Abstract:

The present study is designed to demonstrate the Ovarian Surface Epithelial cells (OSE) Estrogen Receptor α (ERα) and Progesterone Receptor (PR) during pregnancy and estrous cycle in rat. Moreover, determination of the levels of plasma progesterone, estradiol, FSH and LH were also made. The levels of plasma progesterone, estradiol, FSH and LH concentrations were determined on days 7 (n=5), 14 (n=5), and 21(n=5) of pregnancy in three groups of rats and during the estrous cycle (n=5) using ELISA kit. Immunohistochemical method for PR and ERα expression was also made on the ovary. During pregnancy, FSH and LH remained low except at term when LH levels began to increase from 16 ng/ml to 47 ng/ml. Progesterone levels significantly exceeded estradiol values in all pregnant rats with a peak value of 202 ng/ml on day 14. Elevated progesterone levels were associated negatively with LH and estradiol levels during pregnancy. The levels of estradiol surged significantly on day 21. Immunohistochemistry of the ovary showed low levels of OSE cells staining positive for ERα expression. ERα positive cells were absent on day 7 and 14 of pregnancy, only day 21 recorded a very low percentage of immunostaining (0.5%) within the nuclei of OSE cells. On the contrary, immunostaining of PR was not observed within the nuclei of OSE cells in all groups of study. In conclusions, these results may suggest that progesterone effect during pregnancy seems to be overriding the positive effect of estrogens on OSE cells. High progesterone levels may have a direct negative effect on gonadotropin production and thereby it might inhibit events leading to both follicular development and OSE proliferation. Understanding the factors affecting OSE proliferation may help elucidating the mechanism(s) of assisted diseases such as ovarian cancer.

Keywords: ovarian surface, pregnancy, gonadotropins, steroids

Procedia PDF Downloads 306
22167 Variability of the X-Ray Sun during Descending Period of Solar Cycle 23

Authors: Zavkiddin Mirtoshev, Mirabbos Mirkamalov

Abstract:

We have analyzed the time series of full disk integrated soft X-ray (SXR) and hard X-ray (HXR) emission from the solar corona during 2004 January 1 to 2009 December 31, covering the descending phase of solar cycle 23. We employed the daily X-ray index (DXI) derived from X-ray observations from the Solar X-ray Spectrometer (SOXS) mission in four different energy bands: 4-5.5; 5.5-7.5 keV (SXR) and 15-20; 20-25 keV (HXR). The application of Lomb-Scargle periodogram technique to the DXI time series observed by the Silicium detector in the energy bands reveals several short and intermediate periodicities of the X-ray corona. The DXI explicitly show the periods of 13.6 days, 26.7 days, 128.5 days, 151 days, 180 days, 220 days, 270 days, 1.24 year and 1.54 year periods in SXR as well as in HXR energy bands. Although all periods are above 70% confidence level in all energy bands, they show strong power in HXR emission in comparison to SXR emission. These periods are distinctly clear in three bands but somehow not unambiguously clear in 5.5-7.5 keV band. This might be due to the presence of Ferrum and Ferrum/Niccolum line features, which frequently vary with small scale flares like micro-flares. The regular 27-day rotation and 13.5 day period of sunspots from the invisible side of the Sun are found stronger in HXR band relative to SXR band. However, flare activity Rieger periods (150 and 180 days) and near Rieger period 220 days are very strong in HXR emission which is very much expected. On the other hand, our current study reveals strong 270 day periodicity in SXR emission which may be connected with tachocline, similar to a fundamental rotation period of the Sun. The 1.24 year and 1.54 year periodicities, represented from the present research work, are well observable in both SXR as well as in HXR channels. These long-term periodicities must also have connection with tachocline and should be regarded as a consequence of variation in rotational modulation over long time scales. The 1.24 year and 1.54 year periods are also found great importance and significance in the life formation and it evolution on the Earth, and therefore they also have great astro-biological importance. We gratefully acknowledge support by the Indian Centre for Space Science and Technology Education in Asia and the Pacific (CSSTEAP, the Centre is affiliated to the United Nations), Physical Research Laboratory (PRL) at Ahmedabad, India. This work has done under the supervision of Prof. Rajmal Jain and paper consist materials of pilot project and research part of the M. Tech program which was made during Space and Atmospheric Science Course.

Keywords: corona, flares, solar activity, X-ray emission

Procedia PDF Downloads 339
22166 Aspects on the Problems of Road Asset Management and Maintenance in Albania

Authors: Diana Bardhi

Abstract:

Road safety is an essential part of the economic and social development of any industrialized country. Decisions to maintain and improve the reliability, functionality of infrastructure structures can only be achieved through integrated road life cycle planning and management. There has always been a tendency to review road maintenance strategies, but there is still no serious and reliable administration due to not only insufficient funds but also problems in the proper reorganization of this system. The safety and performance of the road system depend on the ongoing activity of road maintenance management. For it to be effective, it is necessary to intervene before the degradation has caused irreparable damage or damage with a high economic cost of repairs. Investments in road infrastructure during 2006-2014 show that the life of these projects presents problems related to the maintenance and management of life cycle performance in a wide range of constituent elements. Maintenance planning includes various problems that depend on the degree of degradation of asphalt layers, the degree of damage to road structures (bridges, tunnels, culverts, and the economic planning of resources for their repair). The purpose of this study is first to provide a brief overview of the problems in the field of maintenance and life cycle management of road infrastructure investments, proposing ways to reorganize the sector of administration and maintenance of ongoing roads and secondly testing and evaluating the work and nature of standards of different types of road infrastructure projects, through a methodology consisting of a) development, b) data collection, and c) analysis.

Keywords: infrastructure, maintenance, depreciation, efficiency

Procedia PDF Downloads 149
22165 Designing an Operational Control System for the Continuous Cycle of Industrial Technological Processes Using Fuzzy Logic

Authors: Teimuraz Manjapharashvili, Ketevani Manjaparashvili

Abstract:

Fuzzy logic is a modeling method for complex or ill-defined systems and is a relatively new mathematical approach. Its basis is to consider overlapping cases of parameter values and define operations to manipulate these cases. Fuzzy logic can successfully create operative automatic management or appropriate advisory systems. Fuzzy logic techniques in various operational control technologies have grown rapidly in the last few years. Fuzzy logic is used in many areas of human technological activity. In recent years, fuzzy logic has proven its great potential, especially in the automation of industrial process control, where it allows to form of a control design based on the experience of experts and the results of experiments. The engineering of chemical technological processes uses fuzzy logic in optimal management, and it is also used in process control, including the operational control of continuous cycle chemical industrial, technological processes, where special features appear due to the continuous cycle and correct management acquires special importance. This paper discusses how intelligent systems can be developed, in particular, how fuzzy logic can be used to build knowledge-based expert systems in chemical process engineering. The implemented projects reveal that the use of fuzzy logic in technological process control has already given us better solutions than standard control techniques. Fuzzy logic makes it possible to develop an advisory system for decision-making based on the historical experience of the managing operator and experienced experts. The present paper deals with operational control and management systems of continuous cycle chemical technological processes, including advisory systems. Because of the continuous cycle, many features are introduced in them compared to the operational control of other chemical technological processes. Among them, there is a greater risk of transitioning to emergency mode; the return from emergency mode to normal mode must be done very quickly due to the impossibility of stopping the technological process due to the release of defective products during this period (i.e., receiving a loss), accordingly, due to the need for high qualification of the operator managing the process, etc. For these reasons, operational control systems of continuous cycle chemical technological processes have been specifically discussed, as they are different systems. Special features of such systems in control and management were brought out, which determine the characteristics of the construction of control and management systems. To verify the findings, the development of an advisory decision-making information system for operational control of a lime kiln using fuzzy logic, based on the creation of a relevant expert-targeted knowledge base, was discussed. The control system has been implemented in a real lime production plant with a lime burn kiln, which has shown that suitable and intelligent automation improves operational management, reduces the risks of releasing defective products, and, therefore, reduces costs. The special advisory system was successfully used in the said plant both for the improvement of operational management and, if necessary, for the training of new operators due to the lack of an appropriate training institution.

Keywords: chemical process control systems, continuous cycle industrial technological processes, fuzzy logic, lime kiln

Procedia PDF Downloads 12
22164 Audit on the Use of T-MACS Decision Aid for Patients Presenting to ED with Chest Pain

Authors: Saurav Dhawan, Sanchit Bansal

Abstract:

Background T-MACS is a computer-based decision aid that ‘rules in’ and ‘rules out’ ACS using a combination of the presence or absence of six clinical features with only one biomarker measured on arrival: hs-cTnT. T-MACS had 99.3% negative predictive value and 98.7% sensitivity for ACS, ‘ruling out’ ACS in 40% of patients while ‘ruling in’ 5% at the highest risk. We aim at benchmarking the use of T-MACS which could help to conserve healthcare resources, facilitate early discharges, and ensure safe practice. Methodology Randomized retrospective data collection (n=300) was done from ED electronic records across 3 hospital sites within MFT over a period of 2 months. Data was analysed and compared by percentage for the usage of T-MACS, number of admissions/discharges, and in days for length of stay in hospital. Results MRI A&E had the maximum compliance with the use of T-MACS in the trust at 66%, with minimum admissions (44%) and an average length of stay of 1.825 days. NMG A&E had an extremely low compliance rate (8 %), with 75% admission and 3.387 days as the average length of stay. WYT A&E had no TMACS recorded, with a maximum of 79% admissions and the longest average length of stay at 5.07 days. Conclusion All three hospital sites had a RAG rating of ‘RED’ as per the compliance levels. The assurance level was calculated as ‘Very Limited’ across all sites. There was a positive correlation observed between compliance with TMACS and direct discharges from ED, thereby reducing the average length of stay for patients in the hospital.

Keywords: ACS, discharges, ED, T-MACS

Procedia PDF Downloads 55
22163 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: A. K. Areamu, J. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: efficiency, energy, exergy, heating insolation

Procedia PDF Downloads 363
22162 Study of Sustainability Indicators in a Milk Production Process

Authors: E. Lacasa, J. L. Santolaya, I. Millán

Abstract:

The progress toward sustainability implies maintaining and preferably improving both, human and ecosystem well-being, according to a triple bottom line that includes the environmental, economic and social dimensions. The life cycle assessment (LCA) is a method applicable to all production sectors that aims to quantify the environmental pressures and the benefits related to goods and services, as well as the trade-offs and the scope for improving areas of the production process. While using LCA to measure the environmental dimension of sustainability is widespread, similar approaches for the economic and the social dimensions still have limited application worldwide and there is a need for consistent and robust methods and indicators. This paper focuses on the milk production process and presents the analysis of the flows exchanged by an industrial installation through accounting all the energy and material inputs and the associated emissions and waste outputs at this stage of its life cycle. The functional unit is one litre of milk produced. Different metrics and indicators are used to assess the three dimensions of sustainability. Metrics considered useful to assess the production activities are the total water and energy consumptions and the milk production volume of each cow. The global warming, the value added and the working hours are indicators used to measure each sustainability dimension. The study is performed with two types of feeding of the cows, which includes a change in percentages of components as well. Nutritional composition of the milk obtained is almost kept. It is observed that environmental and social improvements involve high economic costs.

Keywords: milk production, sustainability, indicators, life cycle assessment

Procedia PDF Downloads 431
22161 Time to Cure from Obstetric Fistula and Its Associated Factors among Women Admitted to Addis Ababa Hamlin Fistula Hospital, Addis Ababa Ethiopia: A Survival Analysis

Authors: Chernet Mulugeta, Girma Seyoum, Yeshineh Demrew, Kehabtimer Shiferaw

Abstract:

Background: Obstetric fistula (OF) is a serious medical condition that includes an abnormal opening between the vagina and bladder (vesico-vaginal fistula) or the vagina and rectum (recto-vaginal fistula). It is usually caused by prolonged obstructed labour. Despite its serious health and psychosocial consequences, there is a paucity of evidence regarding the time it takes to heal from OF. Objective: The aim of this study was to assess the time to cure from obstetric fistula and its predictors among women admitted to Addis Ababa Hamlin Fistula Hospital, Addis Ababa, Ethiopia. Methodology: An institution-based retrospective cohort study was conducted from January 2015 to December 2020 among a randomly selected 434 women with OF in Addis Ababa Hamlin Fistula Hospital. Data was collected using a structured checklist adapted from a similar study. The open data kit (ODK) collected data was exported and analyzed by using STATA (14.2). Kaplan Meir was used to compare the recovery time from OF. To identify the predictors of OF, a Cox regression model was fitted, and an adjusted hazard ratio with a 95% confidence interval was used to estimate the strength of the associations. Results: The average time to recover from obstetric fistula was 3.95 (95% CI: 3.0-4.6) weeks. About ¾ of the women [72.8% (95% CI - 0.65-1.2)] were physically cured of obstetric fistula. Having secondary education and above [AHR=3.52; 95% CI (1.98, 6.25)] compared to no formal education, having a live birth [AHR=1.64; 95% CI (1.22, 2.21)], having an intact bladder [AHR=2.47; 95% CI (1.1, 5.54)] compared to totally destructed, and having a grade 1 fistula [AHR=1.98; 95% CI (1.19, 3.31)] compared to grade 3 were the significant predictors of shorter time to cure from an obstetric fistula. Conclusion and recommendation: Overall, the proportion of women with OF who were not being cured was unacceptably high. The time it takes for them to recover from the fistula was also extended. It connotes us to work on the identified predictors to improve the time to recovery from OF.

Keywords: time to recovery, obstetric fistula, predictors, Ethiopia

Procedia PDF Downloads 81
22160 Importance of Hardware Systems and Circuits in Secure Software Development Life Cycle

Authors: Mir Shahriar Emami

Abstract:

Although it is fully impossible to ensure that a software system is quite secure, developing an acceptable secure software system in a convenient platform is not unreachable. In this paper, we attempt to analyze software development life cycle (SDLC) models from the hardware systems and circuits point of view. To date, the SDLC models pay merely attention to the software security from the software perspectives. In this paper, we present new features for SDLC stages to emphasize the role of systems and circuits in developing secure software system through the software development stages, the point that has not been considered previously in the SDLC models.

Keywords: SDLC, SSDLC, software security, software process engineering, hardware systems and circuits security

Procedia PDF Downloads 256
22159 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles

Authors: N. Soli, B. Chaouachi, M. Bourouis

Abstract:

We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.

Keywords: absorption, DAR cycle, diffusion, propyléne

Procedia PDF Downloads 270
22158 A Study of Carbon Emissions during Building Construction

Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli

Abstract:

In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.

Keywords: building construction phase, carbon emissions assessment, building life cycle

Procedia PDF Downloads 744
22157 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 168