Search results for: AIAD model
10574 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010
Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve
Abstract:
Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration(CSCD) during 1944-2010 over Pelso, central Finland. MannKendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.Keywords: variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns
Procedia PDF Downloads 22310573 In Silico Screening, Identification and Validation of Cryptosporidium hominis Hypothetical Protein and Virtual Screening of Inhibitors as Therapeutics
Authors: Arpit Kumar Shrivastava, Subrat Kumar, Rajani Kanta Mohapatra, Priyadarshi Soumyaranjan Sahu
Abstract:
Computational approaches to predict structure, function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are not effective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical epitopic protein in C. hominis genome through BLASTP analysis. A 3D model of the hypothetical protein was generated using I-Tasser server through threading methodology. The quality of the model was validated through Ramachandran plot by PROCHECK server. The functional annotation of the hypothetical protein through DALI server revealed structural similarity with human Transportin 3. Phylogenetic analysis for this hypothetical protein also showed C. hominis hypothetical protein (CUV04613) was the closely related to human transportin 3 protein. The 3D protein model is further subjected to virtual screening study with inhibitors from the Zinc Database by using Dock Blaster software. Docking study reported N-(3-chlorobenzyl) ethane-1,2-diamine as the best inhibitor in terms of docking score. Docking analysis elucidated that Leu 525, Ile 526, Glu 528, Glu 529 are critical residues for ligand–receptor interactions. The molecular dynamic simulation was done to access the reliability of the binding pose of inhibitor and protein complex using GROMACS software at 10ns time point. Trajectories were analyzed at each 2.5 ns time interval, among which, H-bond with LEU-525 and GLY- 530 are significantly present in MD trajectories. Furthermore, antigenic determinants of the protein were determined with the help of DNA Star software. Our study findings showed a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for control as well as prevention of cryptosporidiosis among humans and animals.Keywords: cryptosporidium hominis, hypothetical protein, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 36510572 Automatic Content Curation of Visual Heritage
Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz
Abstract:
Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research
Procedia PDF Downloads 18410571 An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye
Authors: Ceren Sevimli, Sedat İnan
Abstract:
The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area.Keywords: dadaş formation, diyarbakır basin, silurian hot shale, unconventional hydrocarbon
Procedia PDF Downloads 3410570 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate
Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas
Abstract:
Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks
Procedia PDF Downloads 10610569 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant
Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen
Abstract:
Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark
Procedia PDF Downloads 35010568 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 10210567 DNA Nano Wires: A Charge Transfer Approach
Authors: S. Behnia, S. Fathizadeh, A. Akhshani
Abstract:
In the recent decades, DNA has increasingly interested in the potential technological applications that not directly related to the coding for functional proteins that is the expressed in form of genetic information. One of the most interesting applications of DNA is related to the construction of nanostructures of high complexity, design of functional nanostructures in nanoelectronical devices, nanosensors and nanocercuits. In this field, DNA is of fundamental interest to the development of DNA-based molecular technologies, as it possesses ideal structural and molecular recognition properties for use in self-assembling nanodevices with a definite molecular architecture. Also, the robust, one-dimensional flexible structure of DNA can be used to design electronic devices, serving as a wire, transistor switch, or rectifier depending on its electronic properties. In order to understand the mechanism of the charge transport along DNA sequences, numerous studies have been carried out. In this regard, conductivity properties of DNA molecule could be investigated in a simple, but chemically specific approach that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In SSH model, the non-diagonal matrix element dependence on intersite displacements is considered. In this approach, the coupling between the charge and lattice deformation is along the helix. This model is a tight-binding linear nanoscale chain established to describe conductivity phenomena in doped polyethylene. It is based on the assumption of a classical harmonic interaction between sites, which is linearly coupled to a tight-binding Hamiltonian. In this work, the Hamiltonian and corresponding motion equations are nonlinear and have high sensitivity to initial conditions. Then, we have tried to move toward the nonlinear dynamics and phase space analysis. Nonlinear dynamics and chaos theory, regardless of any approximation, could open new horizons to understand the conductivity mechanism in DNA. For a detailed study, we have tried to study the current flowing in DNA and investigated the characteristic I-V diagram. As a result, It is shown that there are the (quasi-) ohmic areas in I-V diagram. On the other hand, the regions with a negative differential resistance (NDR) are detectable in diagram.Keywords: DNA conductivity, Landauer resistance, negative dierential resistance, Chaos theory, mean Lyapunov exponent
Procedia PDF Downloads 42510566 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 6910565 Evaluation of Water Management Options to Improve the Crop Yield and Water Productivity for Semi-Arid Watershed in Southern India Using AquaCrop Model
Authors: V. S. Manivasagam, R. Nagarajan
Abstract:
Modeling the soil, water and crop growth interactions are attaining major importance, considering the future climate change and water availability for agriculture to meet the growing food demand. Progress in understanding the crop growth response during water stress period through crop modeling approach provides an opportunity for improving and sustaining the future agriculture water use efficiency. An attempt has been made to evaluate the potential use of crop modeling approach for assessing the minimal supplementary irrigation requirement for crop growth during water limited condition and its practical significance in sustainable improvement of crop yield and water productivity. Among the numerous crop models, water driven-AquaCrop model has been chosen for the present study considering the modeling approach and water stress impact on yield simulation. The study has been evaluated in rainfed maize grown area of semi-arid Shanmuganadi watershed (a tributary of the Cauvery river system) located in southern India during the rabi cropping season (October-February). In addition to actual rainfed maize growth simulation, irrigated maize scenarios were simulated for assessing the supplementary irrigation requirement during water shortage condition for the period 2012-2015. The simulation results for rainfed maize have shown that the average maize yield of 0.5-2 t ha-1 was observed during deficit monsoon season (<350 mm) whereas 5.3 t ha-1 was noticed during sufficient monsoonal period (>350 mm). Scenario results for irrigated maize simulation during deficit monsoonal period has revealed that 150-200 mm of supplementary irrigation has ensured the 5.8 t ha-1 of irrigated maize yield. Thus, study results clearly portrayed that minimal application of supplementary irrigation during the critical growth period along with the deficit rainfall has increased the crop water productivity from 1.07 to 2.59 kg m-3 for major soil types. Overall, AquaCrop is found to be very effective for the sustainable irrigation assessment considering the model simplicity and minimal inputs requirement.Keywords: AquaCrop, crop modeling, rainfed maize, water stress
Procedia PDF Downloads 26910564 Societal Resilience Assessment in the Context of Critical Infrastructure Protection
Authors: Hannah Rosenqvist, Fanny Guay
Abstract:
Critical infrastructure protection has been an important topic for several years. Programmes such as the European Programme for Critical Infrastructure Protection (EPCIP), Critical Infrastructure Warning Information Network (CIWIN) and the European Reference Network for Critical Infrastructure Protection (ENR-CIP) have been the pillars to the work done since 2006. However, measuring critical infrastructure resilience has not been an easy task. This has to do with the fact that the concept of resilience has several definitions and is applied in different domains such as engineering and social sciences. Since June 2015, the EU project IMPROVER has been focusing on developing a methodology for implementing a combination of societal, organizational and technological resilience concepts, in the hope to increase critical infrastructure resilience. For this paper, we performed research on how to include societal resilience as a form of measurement of the context of critical infrastructure resilience. Because one of the main purposes of critical infrastructure (CI) is to deliver services to the society, we believe that societal resilience is an important factor that should be considered when assessing the overall CI resilience. We found that existing methods for CI resilience assessment focus mainly on technical aspects and therefore that is was necessary to develop a resilience model that take social factors into account. The model developed within the project IMPROVER aims to include the community’s expectations of infrastructure operators as well as information sharing with the public and planning processes. By considering such aspects, the IMPROVER framework not only helps operators to increase the resilience of their infrastructures on the technical or organizational side, but aims to strengthen community resilience as a whole. This will further be achieved by taking interdependencies between critical infrastructures into consideration. The knowledge gained during this project will enrich current European policies and practices for improved disaster risk management. The framework for societal resilience analysis is based on three dimensions for societal resilience; coping capacity, adaptive capacity and transformative capacity which are capacities that have been recognized throughout a widespread literature review in the field. A set of indicators have been defined that describe a community’s maturity within these resilience dimensions. Further, the indicators are categorized into six community assets that need to be accessible and utilized in such a way that they allow responding to changes and unforeseen circumstances. We conclude that the societal resilience model developed within the project IMPROVER can give a good indication of the level of societal resilience to critical infrastructure operators.Keywords: community resilience, critical infrastructure protection, critical infrastructure resilience, societal resilience
Procedia PDF Downloads 23010563 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 17610562 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling
Authors: Ghita Benayad
Abstract:
Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market
Procedia PDF Downloads 4710561 The Comparison of Joint Simulation and Estimation Methods for the Geometallurgical Modeling
Authors: Farzaneh Khorram
Abstract:
This paper endeavors to construct a block model to assess grinding energy consumption (CCE) and pinpoint blocks with the highest potential for energy usage during the grinding process within a specified region. Leveraging geostatistical techniques, particularly joint estimation, or simulation, based on geometallurgical data from various mineral processing stages, our objective is to forecast CCE across the study area. The dataset encompasses variables obtained from 2754 drill samples and a block model comprising 4680 blocks. The initial analysis encompassed exploratory data examination, variography, multivariate analysis, and the delineation of geological and structural units. Subsequent analysis involved the assessment of contacts between these units and the estimation of CCE via cokriging, considering its correlation with SPI. The selection of blocks exhibiting maximum CCE holds paramount importance for cost estimation, production planning, and risk mitigation. The study conducted exploratory data analysis on lithology, rock type, and failure variables, revealing seamless boundaries between geometallurgical units. Simulation methods, such as Plurigaussian and Turning band, demonstrated more realistic outcomes compared to cokriging, owing to the inherent characteristics of geometallurgical data and the limitations of kriging methods.Keywords: geometallurgy, multivariate analysis, plurigaussian, turning band method, cokriging
Procedia PDF Downloads 7010560 The Design and Implementation of a Calorimeter for Evaluation of the Thermal Performance of Materials: The Case of Phase Change Materials
Authors: Ebrahim Solgi, Zahra Hamedani, Behrouz Mohammad Kari, Ruwan Fernando, Henry Skates
Abstract:
The use of thermal energy storage (TES) as part of a passive design strategy can reduce a building’s energy demand. TES materials do this by increasing the lag between energy consumption and energy supply by absorbing, storing and releasing energy in a controlled manner. The increase of lightweight construction in the building industry has made it harder to utilize thermal mass. Consequently, Phase Change Materials (PCMs) are a promising alternative as they can be manufactured in thin layers and used with lightweight construction to store latent heat. This research investigates utilizing PCMs, with the first step being measuring their performance under experimental conditions. To do this requires three components. The first is a calorimeter for measuring indoor thermal conditions, the second is a pyranometer for recording the solar conditions: global, diffuse and direct radiation and the third is a data-logger for recording temperature and humidity for the studied period. This paper reports on the design and implementation of an experimental setup used to measure the thermal characteristics of PCMs as part of a wall construction. The experimental model has been simulated with the software EnergyPlus to create a reliable simulation model that warrants further investigation.Keywords: phase change materials, EnergyPlus, experimental evaluation, night ventilation
Procedia PDF Downloads 25610559 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl
Abstract:
Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.Keywords: dynamic behavior, lightweight, machine tool, pose-dependency
Procedia PDF Downloads 45910558 Discourses in Mother Tongue-Based Classes: The Case of Hiligaynon Language
Authors: Kayla Marie Sarte
Abstract:
This study sought to describe mother tongue-based classes in the light of classroom interactional discourse using the Sinclair and Coulthard model. It specifically identified the exchanges, grouped into Teaching and Boundary types; moves, coded as Opening, Answering and Feedback; and the occurrence of the 13 acts (Bid, Cue, Nominate, Reply, React, Acknowledge, Clue, Accept, Evaluate, Loop, Comment, Starter, Conclusion, Aside and Silent Stress) in the classroom, and determined what these reveal about the teaching and learning processes in the MTB classroom. Being a qualitative study, using the Single Collective Case Within-Site (embedded) design, varied data collection procedures such as non-participant observations, audio-recordings and transcription of MTB classes, and semi-structured interviews were utilized. The results revealed the presence of all the codes in the model (except for the silent stress) which also implied that the Hiligaynon mother tongue-based class was eclectic, cultural and communicative, and had a healthy, analytical and focused environment which aligned with the aims of MTB-MLE, and affirmed the purported benefits of mother tongue teaching. Through the study, gaps in the mother tongue teaching and learning were also identified which involved the difficulty of children in memorizing Hiligaynon terms expressed in English in their homes and in the communities.Keywords: discourse analysis, language teaching and learning, mother tongue-based education, multilingualism
Procedia PDF Downloads 26010557 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure
Authors: Alireza Bahramian
Abstract:
High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study
Procedia PDF Downloads 25610556 Financial Modeling for Net Present Benefit Analysis of Electric Bus and Diesel Bus and Applications to NYC, LA, and Chicago
Authors: Jollen Dai, Truman You, Xinyun Du, Katrina Liu
Abstract:
Transportation is one of the leading sources of greenhouse gas emissions (GHG). Thus, to meet the Paris Agreement 2015, all countries must adopt a different and more sustainable transportation system. From bikes to Maglev, the world is slowly shifting to sustainable transportation. To develop a utility public transit system, a sustainable web of buses must be implemented. As of now, only a handful of cities have adopted a detailed plan to implement a full fleet of e-buses by the 2030s, with Shenzhen in the lead. Every change requires a detailed plan and a focused analysis of the impacts of the change. In this report, the economic implications and financial implications have been taken into consideration to develop a well-rounded 10-year plan for New York City. We also apply the same financial model to the other cities, LA and Chicago. We picked NYC, Chicago, and LA to conduct the comparative NPB analysis since they are all big metropolitan cities and have complex transportation systems. All three cities have started an action plan to achieve a full fleet of e-bus in the decades. Plus, their energy carbon footprint and their energy price are very different, which are the key factors to the benefits of electric buses. Using TCO (Total Cost Ownership) financial analysis, we developed a model to calculate NPB (Net Present Benefit) /and compare EBS (electric buses) to DBS (diesel buses). We have considered all essential aspects in our model: initial investment, including the cost of a bus, charger, and installation, government fund (federal, state, local), labor cost, energy (electricity or diesel) cost, maintenance cost, insurance cost, health and environment benefit, and V2G (vehicle to grid) benefit. We see about $1,400,000 in benefits for a 12-year lifetime of an EBS compared to DBS provided the government fund to offset 50% of EBS purchase cost. With the government subsidy, an EBS starts to make positive cash flow in 5th year and can pay back its investment in 5 years. Please remember that in our model, we consider environmental and health benefits, and every year, $50,000 is counted as health benefits per bus. Besides health benefits, the significant benefits come from the energy cost savings and maintenance savings, which are about $600,000 and $200,000 in 12-year life cycle. Using linear regression, given certain budget limitations, we then designed an optimal three-phase process to replace all NYC electric buses in 10 years, i.e., by 2033. The linear regression process is to minimize the total cost over the years and have the lowest environmental cost. The overall benefits to replace all DBS with EBS for NYC is over $2.1 billion by the year of 2033. For LA, and Chicago, the benefits for electrification of the current bus fleet are $1.04 billion and $634 million by 2033. All NPB analyses and the algorithm to optimize the electrification phase process are implemented in Python code and can be shared.Keywords: financial modeling, total cost ownership, net present benefits, electric bus, diesel bus, NYC, LA, Chicago
Procedia PDF Downloads 5010555 Temporal Profile of T2 MRI and 1H-MRS in the MDX Mouse Model of Duchenne Muscular Dystrophy
Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K.Lehtimäki, A. Nurmi, D. Wells
Abstract:
Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscle wasting disease for which there are currently no treatment that effectively prevents the muscle necrosis and progressive muscle loss. DMD is among the most common of inherited diseases affecting around 1/3500 live male births. MDX (X-linked muscular dystrophy) mice only partially encapsulate the disease in humans and display weakness in muscles, muscle damage and edema during a period deemed the “critical period” when these mice go through cycles of muscular degeneration and regeneration. Although the MDX mutant mouse model has been extensively studied as a model for DMD, to-date an extensive temporal, non-invasive imaging profile that utilizes magnetic resonance imaging (MRI) and 1H-magnetic resonance spectroscopy (1H-MRS) has not been performed.. In addition, longitudinal imaging characterization has not coincided with attempts to exacerbate the progressive muscle damage by exercise. In this study we employed an 11.7 T small animal MRI in order to characterize the MRI and MRS profile of MDX mice longitudinally during a 12 month period during which MDX mice were subjected to exercise. Male mutant MDX mice (n=15) and male wild-type mice (n=15) were subjected to a chronic exercise regime of treadmill walking (30 min/ session) bi-weekly over the whole 12 month follow-up period. Mouse gastrocnemius and tibialis anterior muscles were profiled with baseline T2-MRI and 1H-MRS at 6 weeks of age. Imaging and spectroscopy was repeated again at 3 months, 6 months, 9 months and 12 months of age. Plasma creatine kinase (CK) level measurements were coincided with time-points for T2-MRI and 1H-MRS, but also after the “critical period” at 10 weeks of age. The results obtained from this study indicate that chronic exercise extends dystrophic phenotype of MDX mice as evidenced by T2-MRI and1H-MRS. T2-MRI revealed extent and location of the muscle damage in gastrocnemius and tibialis anterior muscles as hyperintensities (lesions and edema) in exercised MDX mice over follow-up period.. The magnitude of the muscle damage remained stable over time in exercised mice. No evident fat infiltration or cumulation to the muscle tissues was seen at any time-point in exercised MDX mice. Creatine, choline and taurine levels evaluated by 1H-MRS from the same muscles were found significantly decreased in each time-point, Extramyocellular (EMCL) and intramyocellular lipids (IMCL) did not change in exercised mice supporting the findings from anatomical T2-MRI scans for fat content. Creatine kinase levels were found to be significantly higher in exercised MDX mice during the follow-up period and importantly CK levels remained stable over the whole follow-up period. Taken together, we have described here longitudinal prophile for muscle damage and muscle metabolic changes in MDX mice subjected to chronic exercised. The extent of the muscle damage by T2-MRI was found to be stable through the follow-up period in muscles examined. In addition, metabolic profile, especially creatine, choline and taurine levels in muscles, was found to be sustained between time-points. The anatomical muscle damage evaluated by T2-MRI was supported by plasma CK levels which remained stable over the follow-up period. These findings show that non-invasive imaging and spectroscopy can be used effectively to evaluate chronic muscle pathology. These techniques can be also used to evaluate the effect of various manipulations, like here exercise, on the phenotype of the mice. Many of the findings we present here are translatable to clinical disease, such as decreased creatine, choline and taurine levels in muscles. Imaging by T2-MRI and 1H-MRS also revealed that fat content or extramyocellar and intramyocellular lipids, respectively, are not changed in MDX mice, which is in contrast to clinical manifestation of the Duchenne’s muscle dystrophy. Findings show that non-invasive imaging can be used to characterize the phenotype of a MDX model and its translatability to clinical disease, and to study events that have traditionally been not examined, like here rigorous exercise related sustained muscle damage after the “critical period”. The ability for this model to display sustained damage beyond the spontaneous “critical period“ and in turn to study drug effects on this extended phenotype will increase the value of the MDX mouse model as a tool to study therapies and treatments aimed at DMD and associated diseases.Keywords: 1H-MRS, MRI, muscular dystrophy, mouse model
Procedia PDF Downloads 35710554 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation
Authors: Ke He, Wumaier Parezhati, Haruka Yamashita
Abstract:
Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.Keywords: Doc2Vec, online marketplace, marketing, recommendation systems
Procedia PDF Downloads 11210553 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks
Authors: Mehrdad Shafiei Dizaji, Hoda Azari
Abstract:
The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven
Procedia PDF Downloads 4110552 'How to Change Things When Change is Hard' Motivating Libyan College Students to Play an Active Role in Their Learning Process
Authors: Hameda Suwaed
Abstract:
Group work, time management and accepting others' opinions are practices rooted in the socio-political culture of democratic nations. In Libya, a country transitioning towards democracy, what is the impact of encouraging college students to use such practices in the English language classroom? How to encourage teachers to use such practices in educational system characterized by using traditional methods of teaching? Using action research and classroom research gathered data; this study investigates how teachers can use education to change their students' understanding of their roles in their society by enhancing their belonging to it. This study adjusts a model of change that includes giving students clear directions, sufficient motivation and supportive environment. These steps were applied by encouraging students to participate actively in the classroom by using group work and variety of activities. The findings of the study showed that following the suggested model can broaden students' perception of their belonging to their environment starting with their classroom and ending with their country. In conclusion, although this was a small scale study, the students' participation in the classroom shows that they gained self confidence in using practices such as group work, how to present their ideas and accepting different opinions. What was remarkable is that most students were aware that is what we need in Libya nowadays.Keywords: educational change, students' motivation, group work, foreign language teaching
Procedia PDF Downloads 42210551 Hedonic Pricing Model of Parboiled Rice
Authors: Roengchai Tansuchat, Wassanai Wattanutchariya, Aree Wiboonpongse
Abstract:
Parboiled rice is one of the most important food grains and classified in cereal and cereal product. In 2015, parboiled rice was traded more than 14.34 % of total rice trade. The major parboiled rice export countries are Thailand and India, while many countries in Africa and the Middle East such as Nigeria, South Africa, United Arab Emirates, and Saudi Arabia, are parboiled rice import countries. In the global rice market, parboiled rice pricing differs from white rice pricing because parboiled rice is semi-processing product, (soaking, steaming and drying) which affects to their color and texture. Therefore, parboiled rice export pricing does not depend only on the trade volume, length of grain, and percentage of broken rice or purity but also depend on their rice seed attributes such as color, whiteness, consistency of color and whiteness, and their texture. In addition, the parboiled rice price may depend on the country of origin, and other attributes, such as certification mark, label, packaging, and sales locations. The objectives of this paper are to study the attributes of parboiled rice sold in different countries and to evaluate the relationship between parboiled rice price in different countries and their attributes by using hedonic pricing model. These results are useful for product development, and marketing strategies development. The 141 samples of parboiled rice were collected from 5 major parboiled rice consumption countries, namely Nigeria, South Africa, Saudi Arabia, United Arab Emirates and Spain. The physicochemical properties and optical properties, namely size and shape of seed, colour (L*, a*, and b*), parboiled rice texture (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness), nutrition (moisture, protein, carbohydrate, fat, and ash), amylose, package, country of origin, label are considered as explanatory variables. The results from parboiled rice analysis revealed that most of samples are classified as long grain and slender. The highest average whiteness value is the parboiled rice sold in South Africa. The amylose value analysis shows that most of parboiled rice is non-glutinous rice, classified in intermediate amylose content range, and the maximum value was found in United Arab Emirates. The hedonic pricing model showed that size and shape are the key factors to determine parboiled rice price statistically significant. In parts of colour, brightness value (L*) and red-green value (a*) are statistically significant, but the yellow-blue value (b*) is insignificant. In addition, the texture attributes that significantly affect to the parboiled rice price are hardness, adhesiveness, cohesiveness, and gumminess. The findings could help both parboiled rice miller, exporter and retailers formulate better production and marketing strategies by focusing on these attributes.Keywords: hedonic pricing model, optical properties, parboiled rice, physicochemical properties
Procedia PDF Downloads 33210550 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 1110549 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm
Authors: Vahid Bayrami Rad
Abstract:
In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability
Procedia PDF Downloads 6610548 Longitudinal Vibration of a Micro-Beam in a Micro-Scale Fluid Media
Authors: M. Ghanbari, S. Hossainpour, G. Rezazadeh
Abstract:
In this paper, longitudinal vibration of a micro-beam in micro-scale fluid media has been investigated. The proposed mathematical model for this study is made up of a micro-beam and a micro-plate at its free end. An AC voltage is applied to the pair of piezoelectric layers on the upper and lower surfaces of the micro-beam in order to actuate it longitudinally. The whole structure is bounded between two fixed plates on its upper and lower surfaces. The micro-gap between the structure and the fixed plates is filled with fluid. Fluids behave differently in micro-scale than macro, so the fluid field in the gap has been modeled based on micro-polar theory. The coupled governing equations of motion of the micro-beam and the micro-scale fluid field have been derived. Due to having non-homogenous boundary conditions, derived equations have been transformed to an enhanced form with homogenous boundary conditions. Using Galerkin-based reduced order model, the enhanced equations have been discretized over the beam and fluid domains and solve simultaneously in order to obtain force response of the micro-beam. Effects of micro-polar parameters of the fluid as characteristic length scale, coupling parameter and surface parameter on the response of the micro-beam have been studied.Keywords: micro-polar theory, Galerkin method, MEMS, micro-fluid
Procedia PDF Downloads 18510547 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases
Authors: Uzma Saqib, Mirza S. Baig
Abstract:
Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.Keywords: drug design, Nur77, MYD88, inflammation
Procedia PDF Downloads 30510546 Does Citizens’ Involvement Always Improve Outcomes: Procedures, Incentives and Comparative Advantages of Public and Private Law Enforcement
Authors: Avdasheva Svetlanaa, Kryuchkova Polinab
Abstract:
Comparative social efficiency of private and public enforcement of law is debated. This question is not of academic interest only, it is also important for the development of the legal system and regulations. Generally, involvement of ‘common citizens’ in public law enforcement is considered to be beneficial, while involvement of interest groups representatives is not. Institutional economics as well as law and economics consider the difference between public and private enforcement to be rather mechanical. Actions of bureaucrats in government agencies are assumed to be driven by the incentives linked to social welfare (or other indicator of public interest) and their own benefits. In contrast, actions of participants in private enforcement are driven by their private benefits. However administrative law enforcement may be designed in such a way that it would become driven mainly by individual incentives of alleged victims. We refer to this system as reactive public enforcement. Citizens may prefer using reactive public enforcement even if private enforcement is available. However replacement of public enforcement by reactive version of public enforcement negatively affects deterrence and reduces social welfare. We illustrate the problem of private vs pure public and private vs reactive public enforcement models with the examples of three legislation subsystems in Russia – labor law, consumer protection law and competition law. While development of private enforcement instead of public (especially in reactive public model) is desirable, replacement of both public and private enforcement by reactive model is definitely not.Keywords: public enforcement, private complaints, legal errors, competition protection, labor law, competition law, russia
Procedia PDF Downloads 49410545 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional
Procedia PDF Downloads 229