Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16200

Search results for: spatial information network

9990 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: decision making, human capital analytics, talent management, talent value chain

Procedia PDF Downloads 187
9989 Resilience Assessment of Mountain Cities from the Perspective of Disaster Prevention: Taking Chongqing as an Example

Authors: Yun Ma, Jiajun Lu

Abstract:

President Xi Jinping has clearly stated the need to more effectively advance the process of urbanization centered on people, striving to shape cities into spaces that are healthier, safer, and more livable. However, during the development and construction of mountainous cities, numerous uncertain disruptive factors have emerged, one after another, posing severe challenges to the city's overall development. Therefore, building resilient cities and creating high-quality urban ecosystems and safety systems have become the core and crux of achieving sustainable urban development. This paper takes the central urban area of Chongqing as the research object and establishes an urban resilience assessment indicator system from four dimensions: society, economy, ecology, and infrastructure. It employs the entropy weight method and TOPSIS model to assess the urban resilience level of the central urban area of Chongqing from 2019 to 2022. The results indicate that i. the resilience level of the central urban area of Chongqing is unevenly distributed, showing a spatial pattern of "high in the middle and low around"; it also demonstrates differentiation across different dimensions; ii. due to the impact of the COVID-19 pandemic, the overall resilience level of the central urban area of Chongqing has declined significantly, with low recovery capacity and slow improvement in urban resilience. Finally, based on the four selected dimensions, this paper proposes optimization strategies for urban resilience in mountainous cities, providing a basis for Chongqing to build a safe and livable new city.

Keywords: mountainous urban areas, central urban area of chongqing, entropy weight method, TOPSIS model, ArcGIS

Procedia PDF Downloads 7
9988 Hindi Speech Synthesis by Concatenation of Recognized Hand Written Devnagri Script Using Support Vector Machines Classifier

Authors: Saurabh Farkya, Govinda Surampudi

Abstract:

Optical Character Recognition is one of the current major research areas. This paper is focussed on recognition of Devanagari script and its sound generation. This Paper consists of two parts. First, Optical Character Recognition of Devnagari handwritten Script. Second, speech synthesis of the recognized text. This paper shows an implementation of support vector machines for the purpose of Devnagari Script recognition. The Support Vector Machines was trained with Multi Domain features; Transform Domain and Spatial Domain or Structural Domain feature. Transform Domain includes the wavelet feature of the character. Structural Domain consists of Distance Profile feature and Gradient feature. The Segmentation of the text document has been done in 3 levels-Line Segmentation, Word Segmentation, and Character Segmentation. The pre-processing of the characters has been done with the help of various Morphological operations-Otsu's Algorithm, Erosion, Dilation, Filtration and Thinning techniques. The Algorithm was tested on the self-prepared database, a collection of various handwriting. Further, Unicode was used to convert recognized Devnagari text into understandable computer document. The document so obtained is an array of codes which was used to generate digitized text and to synthesize Hindi speech. Phonemes from the self-prepared database were used to generate the speech of the scanned document using concatenation technique.

Keywords: Character Recognition (OCR), Text to Speech (TTS), Support Vector Machines (SVM), Library of Support Vector Machines (LIBSVM)

Procedia PDF Downloads 499
9987 Background Check System for Turkish IT Companies

Authors: Arzu Baloglu, Ugur Kaplancali

Abstract:

This paper focuses on Background Check Systems and Pre-Employment Screening. In our study, we attempted to make an online background checking site that will help employers when hiring employees. Our site has two types of users which are free and powered user. Free users are the employees and powered users are the employers which will hire employers. The database of the site will contain all the information about the employees and employers which are registered in the system so the employers can make a search based on their searching criteria to find the suitable employee for the job. The web site also has a comments and points system. The current employer can make comments to his/her employees and can also give them points. The comments will be shown on employee’s profile, so; when an employer searches for an employee he/she can check the points and comments of the employee to see whether he or she is capable of the job or not. The employers can also follow some employees if they desire. This paper has been designed and implemented with using ASP.NET, C# and JavaScript. The outputs have a user friendly interface. The interface also aimed to provide the useful information for Turkish Technology Companies.

Keywords: background, checking, verification, human resources, online

Procedia PDF Downloads 198
9986 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution

Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang

Abstract:

Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.

Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution

Procedia PDF Downloads 158
9985 Copper Complexe Derivative of Chalcone: Synthesis, Characterization, Electrochemical Properties and XRD/Hirschfeld Surface

Authors: Salima Tabti, Amel Djedouani., Djouhra Aggoun, Ismail Warad

Abstract:

The reaction of copper (II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) lead to a new complexe: Cu(L)₂(DMF)₂. The crystal structure of the Cu(L)₂(DMF)₂ complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexe was investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH₃CN solution, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couple. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces.

Keywords: chalcones, cyclic voltametry, X-ray, Hirschfeld surface

Procedia PDF Downloads 65
9984 The Impacts of Land Use Change and Extreme Precipitation Events on Ecosystem Services

Authors: Szu-Hua Wang

Abstract:

Urban areas contain abundant potential biochemical storages and renewable and non-renewable flows. Urban natural environments for breeding natural assets and urban economic development for maintaining urban functions can be analyzed form the concept of ecological economic system. Land use change and ecosystem services change are resulting from the interactions between human activities and environments factually. Land use change due to human activities is the major cause of climate change, leading to serious impacts on urban ecosystem services, including provisioning services, regulating services, cultural services and supporting services. However, it lacks discussion on the interactions among urban land use change, ecosystem services change, and extreme precipitation events. Energy synthesis can use the same measure standard unit, solar energy, for different energy resources (e.g. sunlight, water, fossil fuels, minerals, etc.) and analyze contributions of various natural environmental resources on human economic systems. Therefore, this research adopts the concept of ecological, economic systems and energy synthesis for analyzing dynamic spatial impacts of land use change on ecosystem services, using the Taipei area as a case study. The analysis results show that changes in land use in the Taipei area, especially the conversion of natural lands and agricultural lands to urban lands, affect the ecosystem services negatively. These negative effects become more significant during the extreme precipitation events.

Keywords: urban ecological economic system, extreme precipitation events, ecosystem services, energy

Procedia PDF Downloads 190
9983 Knowledge Management Strategies as a Tool to Change the Organizational Culture

Authors: Doaa Abbas Zaher

Abstract:

For the past two decades demand for knowledge has been increasing. Management of society’s knowledge has far reaching effects to economic growth through increased capacity to complete viable activities. Organizations use information technology to effect organizational change. This is a challenge for the less developed nations whose capacity to integrate knowledge in core functions is limited. This creates organizational problems as there is global competition amongst organizations. Cross-cultural perceptions influence difference knowledge Management. This study provides a cross-cultural analysis on the influence in knowledge culture in Japan and Saudi Arabia to effect change in organizations. Since different countries adopt different knowledge management strategies, this dictates the state of organizational development through enriched organizational culture. The research uses a mixed approach design to collect data from primary and secondary sources. Primary source will use the questionnaires while secondary sources uses case analysis from books, articles, reports, and journals. The study will take a period of three years to come up with a complete paper.

Keywords: knowledge management, organizational culture, information, society knowledge

Procedia PDF Downloads 358
9982 Rest API Based System-level Test Automation for Mobile Applications

Authors: Jisoo Song

Abstract:

Today’s mobile applications are communicating with servers more and more in order to access external services or information. Also, server-side code changes are more frequent than client-side code changes in a mobile application. The frequent changes lead to an increase in testing cost increase. To reduce costs, UI based test automation can be one of the solutions. It is a common automation technique in system-level testing. However, it can be unsuitable for mobile applications. When you automate tests based on UI elements for mobile applications, there are some limitations such as the overhead of script maintenance or the difficulty of finding invisible defects that UI elements cannot represent. To overcome these limitations, we present a new automation technique based on Rest API. You can automate system-level tests through test scripts that you write. These scripts call a series of Rest API in a user’s action sequence. This technique does not require testers to know the internal implementation details, only input and expected output of Rest API. You can easily modify test cases by modifying Rest API input values and also find problems that might not be evident from the UI level by validating output values. For example, when an application receives price information from a payment server and user cannot see it at UI level, Rest API based scripts can check whether price information is correct or not. More than 10 mobile applications at our company are being tested automatically based on Rest API scripts whenever application source code, mostly server source code, is built. We are finding defects right away by setting a script as a build job in CI server. The build job starts when application code builds are completed. This presentation will also include field cases from our company.

Keywords: case studies at SK Planet, introduction of rest API based test automation, limitations of UI based test automation

Procedia PDF Downloads 449
9981 Recreational Nitrous Oxide Use: Increasing Risks and Harms

Authors: Julaine Allan, Jacqui Cameron, Helen Simpson, Kenny Kor

Abstract:

The pleasurable and intoxicating effects of psychoactive substances result in widespread use. However, deaths and injuries from psychoactive substance use, particularly among young people, are a global public health problem. Understanding the benefits and problems associated with different drugs is an important part of creating contextually and physiologically relevant harm reduction strategies. Nitrous oxide use is increasing. A systematic review sought information for harm reduction strategies. The aim of this study was to systematically collate and synthesize the disparate body of research on recreational nitrous oxide use to inform harm reduction approaches tailored for young people. A mixed-methods systematic review combined quantitative data such as prevalence and incidence statistics as well as interpretive data on the experience of N₂O use. Thirty-four studies were included in the final analysis. There was minimal information available to inform policy, health care, or individuals using N₂O. The cultural, contextual, and personal reasons for N₂O use are largely unexplored.

Keywords: substance misuse, nitrous oxide, harms, harm reduction, systematic review

Procedia PDF Downloads 97
9980 A Study of Flooding Detention Space Efficiency in Different Lands Uses : The Case in Zhoushui River Downstream Catchment in Taiwan

Authors: Jie-Ying Wu, Kuo-Hao Weng, Jin-Cheng Fu

Abstract:

This study proposes changes to land use for the purposes of water retention and runoff reduction, with the aim of reducing the frequency of flooding. This study uses the Zhuoshui River in Taiwan as a case study, designing different land use planning strategies, and setting up various detention spaces. The HEC-HMS model developed by the Hydrology Research Center of the U.S. Army Corps of Engineers is used to calculate the decrease in runoff using various planning strategies, during five precipitation events of increasing return periods. This study finds that a maximum decrease in runoff of 14 million square meters can result by changing the form of land cover and storm detention in non-urban agricultural and river zones. This is due to the fact that non-urban land accounts for 96% of the area under study. Greatest efficacy was demonstrated in a two-year return period, with results ranging from 16% to 52%. The efficacy of a 100-year return period rated from 3% to 8%. Urban area detentions consist of agricultural paddy fields, storm water ponds and rainwater retention systems in building basements. Although urban areas can provide one million cubic meters of runoff storage, this result is insignificant due to the fact that urban area constitutes only 4% of the study area. By changing land cover, a 2-year return period has a 9% efficacy, and a 100-year return period has a 2% efficacy.

Keywords: flood detention space, land-use, spatial planning, Zhuoshuei River, Taiwan

Procedia PDF Downloads 379
9979 Urbanization on Green Cover and Groundwater Relationships in Delhi, India

Authors: Kiranmay Sarma

Abstract:

Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.

Keywords: groundwater, urbanization, GIS, green cover, Delhi

Procedia PDF Downloads 288
9978 Bioclimatic Devices in the Historical Rural Building: A Carried out Analysis on Some Rural Architectures in Puglia

Authors: Valentina Adduci

Abstract:

The developing research aims to define in general the criteria of environmental sustainability of rural buildings in Puglia and particularly in the manor farm. The main part of the study analyzes the relationship / dependence between the rural building and the landscape which, after many stratifications, results clearly identified and sometimes also characterized in a positive way. The location of the manor farm, in fact, is often conditioned by the infrastructural network and by the structure of the agricultural landscape. The manor farm, without the constraints due to the urban pattern’s density, was developed in accordance with a logical settlement that gives priority to the environmental aspects. These vernacular architectures are the most valuable example of how our ancestors have planned their dwellings according to nature. The 237 farms, analysis’ object, have been reported in cartography through the GIS system; a symbol has been assigned to each of them to identify the architectural typology and a different color for the historical period of construction. A datasheet template has been drawn up, and it has made possible a deeper understanding of each manor farm. This method provides a faster comparison of the most recurring characters in all the considered buildings, except for those farms which benefited from special geographical conditions, such as proximity to the road network or waterways. Below there are some of the most frequently constants derived from the statistical study of the examined buildings: southeast orientation of the main facade; placement of the sheep pen on the ground tilted and exposed to the south side; larger windowed surface on the south elevation; smaller windowed surface on the north elevation; presence of shielding vegetation near the more exposed elevations to the solar radiation; food storage’s rooms located on the ground floor or in the basement; animal shelter located in north side of the farm; presence of tanks and wells, sometimes combined with a very accurate channeling storm water system; thick layers of masonry walls, inside of which were often obtained hollow spaces to house stairwells or depots for the food storage; exclusive use of local building materials. The research aims to trace the ancient use of bioclimatic constructive techniques in the Apulian rural architecture and to define those that derive from an empirical knowledge and those that respond to an already encoded design. These constructive expedients are especially useful to obtain an effective passive cooling, to promote the natural ventilation and to built ingenious systems for the recovery and the preservation of rainwater and are still found in some of the manor farms analyzed, most of them are, today, in a serious state of neglect.

Keywords: bioclimatic devices, farmstead, rural landscape, sustainability

Procedia PDF Downloads 384
9977 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: digital divide, digital learning, digitization, Sri Lanka, teaching methodologies

Procedia PDF Downloads 355
9976 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling

Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé

Abstract:

Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.

Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation

Procedia PDF Downloads 80
9975 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem

Authors: Xu LiYun, Briand Florent, Fan GuoLiang

Abstract:

The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.

Keywords: crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization

Procedia PDF Downloads 279
9974 The Management Accountant’s Roles for Creation of Corporate Shared Value

Authors: Prateep Wajeetongratana

Abstract:

This study investigates the management accountant’s roles that link with the creation of corporate shared value to enable more effective decision-making and improve the information needs of stakeholders. Mixed method is employed to collect using triangulation for credibility. A quantitative approach is employed to conduct a survey of 200 Thai companies providing annual reports in the Stock Exchange of Thailand. The results of the study reveal that environmental and social data incorporated in a corporate social responsibility (CSR) disclosure are based on the indicators of the Global Reporting Initiatives (GRI) at a statistically significant level of 0.01. Environmental and social indicators in CSR are associated with environmental and social data disclosed in the annual report to support stakeholders’ and the public’s interests that are addressed and show that a significant relationship between environmental and social in CSR disclosures and the information in annual reports is statistically significant at the 0.01 level.

Keywords: corporate social responsibility, creating shared value, management accountant’s roles, stock exchange of Thailand

Procedia PDF Downloads 221
9973 Evaluating the Impact of Marine Protected Areas on Human-Shark Interactions at a Global Scale

Authors: Delphine Duval, Morgan Mangeas, Charlie Huveneers, Adam Barnett, Laurent Vigliola

Abstract:

The global number of shark bites has increased over the past four decades with, however, high regional variability both in space and time. A systematic review, aligned with the 2020 PRISMA guidelines, explored the peer-reviewed literature published between 1960 and 2023 to identify factors potentially explaining trends in human-shark interactions. Results revealed that variations in the frequency of human-shark interactions could be explained by a plethora of factors, including changes in prey availability, environmental conditions, human and shark population density and behavior, as well as habitat destruction. However, to our best knowledge, only five studies have conducted statistical assessments of the relative contribution of these factors. The increased number in human-shark interactions and the frequent clusters of shark bites within short timeframes offer opportunities to test the causative factors that may explain trends in unprovoked shark bites. it study aims to evaluate the impact of marine protected areas (MPAs) on the number of human-shark interactions, using data from the Global Shark Attack File and the World Database on Protected Areas. Results indicate contrasting effects of MPAs at different spatial scales. Enhancing our understanding of the factors contributing to shark bites is essential for improving risk reduction policies for humans and conservation plans for shark populations.

Keywords: unprovoked shark interactions, marine protected areas, attack risk, human-wildlife interaction

Procedia PDF Downloads 43
9972 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks

Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han

Abstract:

In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.

Keywords: underwater concrete, rebound hardness, Schmidt hammer, ultrasonic pulse velocity, ultrasonic sensor, artificial neural networks, ANN

Procedia PDF Downloads 532
9971 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 347
9970 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors

Authors: Ali H. Daraji, Ye Jianqiao

Abstract:

The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.

Keywords: energy harvesting, optimisation, sensor, wing

Procedia PDF Downloads 302
9969 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images

Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso

Abstract:

Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.

Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence

Procedia PDF Downloads 19
9968 Reducing Flood Risk through Value Capture and Risk Communication: A Case Study in Cocody-Abidjan

Authors: Dedjo Yao Simon, Takahiro Saito, Norikazu Inuzuka, Ikuo Sugiyama

Abstract:

Abidjan city (Republic of Ivory Coast) is an emerging megacity and an urban coastal area where the number of floods reported is on a rapid increase due to climate change and unplanned urbanization. However, comprehensive disaster mitigation plans, policies, and financial resources are still lacking as the population ignores the extent and location of the flood zones; making them unprepared to mitigate the damages. Considering the existing condition, this paper aims to discuss an approach for flood risk reduction in Cocody Commune through value capture strategy and flood risk communication. Using geospatial techniques and hydrological simulation, we start our study by delineating flood zones and depths under several return periods in the study area. Then, through a questionnaire a field survey is conducted in order to validate the flood maps, to estimate the flood risk and to collect some sample of the opinion of residents on how the flood risk information disclosure could affect the values of property located inside and outside the flood zones. The results indicate that the study area is highly vulnerable to 5-year floods and more, which can cause serious harm to human lives and to properties as demonstrated by the extent of the 5-year flood of 2014. Also, it is revealed there is a high probability that the values of property located within flood zones could decline, and the values of surrounding property in the safe area could increase when risk information disclosure commences. However in order to raise public awareness of flood disaster and to prevent future housing promotion in high-risk prospective areas, flood risk information should be disseminated through the establishment of an early warning system. In order to reduce the effect of risk information disclosure and to protect the values of property within the high-risk zone, we propose that property tax increments in flood free zones should be captured and be utilized for infrastructure development and to maintain the early warning system that will benefit people living in flood prone areas. Through this case study, it is shown that combination of value capture strategy and risk communication could be an effective tool to educate citizen and to invest in flood risk reduction in emerging countries.

Keywords: Cocody-Abidjan, flood, geospatial techniques, risk communication, value capture

Procedia PDF Downloads 276
9967 Climate Change: A Critical Analysis on the Relationship between Science and Policy

Authors: Paraskevi Liosatou

Abstract:

Climate change is considered to be of global concern being amplified by the fact that by its nature, cannot be spatially limited. This fact makes necessary the intergovernmental decision-making procedures. In the intergovernmental level, the institutions such as the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change develop efforts, methods, and practices in order to plan and suggest climate mitigation and adaptation measures. These measures are based on specific scientific findings and methods making clear the strong connection between science and policy. In particular, these scientific recommendations offer a series of practices, methods, and choices mitigating the problem by aiming at the indirect mitigation of the causes and the factors amplifying climate change. Moreover, modern production and economic context do not take into consideration the social, political, environmental and spatial dimensions of the problem. This work studies the decision-making process working in international and European level. In this context, this work considers the policy tools that have been implemented by various intergovernmental organizations. The methodology followed is based mainly on the critical study of standards and process concerning the connections and cooperation between science and policy as well as considering the skeptic debates developed. The finding of this work focuses on the links between science and policy developed by the institutional and scientific mechanisms concerning climate change mitigation. It also analyses the dimensions and the factors of the science-policy framework; in this way, it points out the causes that maintain skepticism in current scientific circles.

Keywords: climate change, climate change mitigation, climate change skepticism, IPCC, skepticism

Procedia PDF Downloads 136
9966 Information System Development for Online Journal System Using Online Journal System for Journal Management of Suan Sunandha Rajabhat University

Authors: Anuphan Suttimarn, Natcha Wattanaprapa, Suwaree Yordchim

Abstract:

The aim of this study is to develop the online journal system using a web application to manage the journal service of Suan Sunandha Rajabhat University in order to improve the journal management of the university. The main structures of the system process consist of 1. journal content management system 2. membership system of the journal and 3. online submission or review process. The investigators developed the system based on a web application using open source OJS software and phpMyAdmin to manage a research database. The system test showed that this online system 'Online Journal System (OJS)' could shorten the time in the period of submission article to journal and helped in managing a journal procedure efficiently and accurately. The quality evaluation of Suan Sunandha Rajabhat online journal system (SSRUOJS) undertaken by experts and researchers in 5 aspects; design, usability, security, reducing time, and accuracy showed the highest average value (X=4.30) on the aspect of reducing time. Meanwhile, the system efficiency evaluation was on an excellent level (X=4.13).

Keywords: online journal system, Journal management, Information system development, OJS

Procedia PDF Downloads 175
9965 Terrain Classification for Ground Robots Based on Acoustic Features

Authors: Bernd Kiefer, Abraham Gebru Tesfay, Dietrich Klakow

Abstract:

The motivation of our work is to detect different terrain types traversed by a robot based on acoustic data from the robot-terrain interaction. Different acoustic features and classifiers were investigated, such as Mel-frequency cepstral coefficient and Gamma-tone frequency cepstral coefficient for the feature extraction, and Gaussian mixture model and Feed forward neural network for the classification. We analyze the system’s performance by comparing our proposed techniques with some other features surveyed from distinct related works. We achieve precision and recall values between 87% and 100% per class, and an average accuracy at 95.2%. We also study the effect of varying audio chunk size in the application phase of the models and find only a mild impact on performance.

Keywords: acoustic features, autonomous robots, feature extraction, terrain classification

Procedia PDF Downloads 369
9964 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom

Abstract:

Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.

Keywords: Dijkstra algorithm, graph theory, public transport, Bangkok metropolitan area

Procedia PDF Downloads 247
9963 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 243
9962 Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm

Authors: Ramnath Narhete, Saket Pandey, Puran Gour

Abstract:

This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network.

Keywords: genetic algorithm, dual-band E, dual-band L, WLAN, compact radiator

Procedia PDF Downloads 579
9961 Data Mining Meets Educational Analysis: Opportunities and Challenges for Research

Authors: Carla Silva

Abstract:

Recent development of information and communication technology enables us to acquire, collect, analyse data in various fields of socioeconomic – technological systems. Along with the increase of economic globalization and the evolution of information technology, data mining has become an important approach for economic data analysis. As a result, there has been a critical need for automated approaches to effective and efficient usage of massive amount of educational data, in order to support institutions to a strategic planning and investment decision-making. In this article, we will address data from several different perspectives and define the applied data to sciences. Many believe that 'big data' will transform business, government, and other aspects of the economy. We discuss how new data may impact educational policy and educational research. Large scale administrative data sets and proprietary private sector data can greatly improve the way we measure, track, and describe educational activity and educational impact. We also consider whether the big data predictive modeling tools that have emerged in statistics and computer science may prove useful in educational and furthermore in economics. Finally, we highlight a number of challenges and opportunities for future research.

Keywords: data mining, research analysis, investment decision-making, educational research

Procedia PDF Downloads 358