Search results for: resource use efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8818

Search results for: resource use efficiency

2638 A Review on New Additives in Deep Soil Mixing Method

Authors: Meysam Mousakhani, Reza Ziaie Moayed

Abstract:

Considering the population growth and the needs of society, the improvement of problematic soils and the study of the application of different improvement methods have been considered. One of these methods is deep soil mixing, which has been developed in the past decade, especially in soft soils due to economic efficiency, simple implementation, and other benefits. The use of cement is criticized for its cost and the damaging environmental effects, so these factors lead us to use other additives along with cement in the deep soil mixing. Additives that are used today include fly ash, blast-furnace slag, glass powder, and potassium hydroxide. The present study provides a literature review on the application of different additives in deep soil mixing so that the best additives can be introduced from strength, economic, environmental and other perspectives. The results show that by replacing fly ash and slag with about 40 to 50% of cement, not only economic and environmental benefits but also a long-term strength comparable to cement would be achieved. The use of glass powder, especially in 3% mixing, results in desirable strength. In addition to the other benefits of these additives, potassium hydroxide can also be transported over longer distances, leading to wider soil improvement. Finally, this paper suggests further studies in terms of using other additives such as nanomaterials and zeolite, with different ratios, in different conditions and soils (silty sand, clayey sand, carbonate sand, sandy clay and etc.) in the deep mixing method.

Keywords: deep soil mix, soil stabilization, fly ash, ground improvement

Procedia PDF Downloads 148
2637 Trastuzumab Decorated Bioadhesive Nanoparticles for Targeted Breast Cancer Therapy

Authors: Kasi Viswanadh Matte, Abhisheh Kumar Mehata, M.S. Muthu

Abstract:

Brest cancer, up-regulated with human epidermal growth factor receptor type-2 (HER-2) led to the concept of developing HER-2 targeted anticancer therapeutics. Docetaxel-loaded D-α-tocopherol polyethylene glycol succinate 1000 conjugated chitosan (TPGS-g-chitosan) nanoparticles were prepared with or without Trastuzumab decoration. The particle size and entrapment efficiency of conventional, non-targeted and targeted nanoparticles were found to be in the range of 126-186 nm and 74-78% respectively. In-vitro, MDA-MB-231 cells showed that docetaxel-loaded non-targeted and HER-2 receptor targeted TPGS-g-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity with a promising bioadhesion property, in comparison to conventional nanoparticles. The IC50 values of non-targeted and targeted nanoparticles from cytotoxic assay were found to be 43 and 223 folds higher than DocelTM. The in-vivo pharmacokinetic study showed 2.33, and 2.82-fold enhancement in relative bioavailability of docetaxel for non-targeted and HER-2 receptor targeted nanoparticles, respectively than DocelTM, and after i.v administration, non-targeted and targeted nanoparticle achieved 3.48 and 5.94 times prolonged half-life in comparison to DocelTM. The area under the curve (AUC), relative bioavailability (FR) and mean residence time (MRT) were found to be higher for non-targeted and targeted nanoparticles compared to DocelTM. Further, histopathology results of non-targeted and targeted nanoparticles showed less toxicity on vital organs such as lungs, liver, and kidney compared to DocelTM.

Keywords: breast cancer, HER-2 receptor, targeted nanomedicine, chitosan, TPGS

Procedia PDF Downloads 240
2636 Bio-Grouting Applications in Caprock Sealing for Geological CO2 Storage

Authors: Guijie Sang, Geo Davis, Momchil Terziev

Abstract:

Geological CO2 storage has been regarded as a promising strategy to mitigate the emission of greenhouse gas generated from traditional power stations and energy-intensive industry. Caprocks with very low permeability and ultra-fine pores create viscous and capillary barriers to guarantee CO2 sealing efficiency. However, caprock fractures, either naturally existing or artificially induced due to injection, could provide preferential paths for CO₂ escaping. Seeking an efficient technique to seal and strengthen caprock fractures is crucial. We apply microbial-induced-calcite-precipitation (MICP) technique for sealing and strengthening caprock fractures in the laboratory scale. The MICP bio-grouting technique has several advantages over conventional cement grouting methods, including its low viscosity, micron-size microbes (accessible to fine apertures), and low carbon footprint, among others. Different injection strategies are tested to achieve relatively homogenous calcite precipitation along the fractures, which is monitored dynamically based on laser ultrasonic technique. The MICP process in caprock fractures, which integrates the coupled flow and bio-chemical precipitation, is also modeled and validated through the experiment. The study could provide an effective bio-mediated grouting strategy for caprock sealing and thus ensuring a long-term safe geological CO2 storage.

Keywords: caprock sealing, geological CO2 storage, grouting strategy, microbial induced calcite precipitation

Procedia PDF Downloads 189
2635 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 156
2634 Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant

Authors: Mathias B. Michael, Esther T. Akinlabi, Tien-Chien Jen

Abstract:

Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance.

Keywords: palm biomass, steam supply, exergy and energy models, energy performance benchmark

Procedia PDF Downloads 350
2633 Demulsification of Oil from Produced water Using Fibrous Coalescer

Authors: Nutcha Thianbut

Abstract:

In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.

Keywords: produced water, fiber, surface modification, coalescer

Procedia PDF Downloads 166
2632 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children

Authors: Dijana Sulejmanović

Abstract:

Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.

Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification

Procedia PDF Downloads 326
2631 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: discrete event simulation, flexible manufacturing system, capacity performance, automotive

Procedia PDF Downloads 327
2630 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 57
2629 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 57
2628 A Review on Stormwater Harvesting and Reuse

Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir

Abstract:

Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.

Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database

Procedia PDF Downloads 372
2627 Water Quality Trading with Equitable Total Maximum Daily Loads

Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani, A. Feizi Ashtiani

Abstract:

Waste load allocation (WLA) strategies usually intend to find economical policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.

Keywords: waste load allocation (WLA), water quality trading (WQT), total maximum daily loads (TMDLs), Haraz River, multi objective particle swarm optimization (MOPSO), equity

Procedia PDF Downloads 394
2626 Comprehensive Geriatric Assessments: An Audit into Assessing and Improving Uptake on Geriatric Wards at King’s College Hospital, London

Authors: Michael Adebayo, Saheed Lawal

Abstract:

The Comprehensive Geriatric Assessment (CGA) is the multidimensional tool used to assess elderly, frail patients either on admission to hospital care or at a community level in primary care. It is a tool designed with the aim of using a holistic approach to managing patients. A Cochrane review of CGA use in 2011 found that the likelihood of being alive and living in their own home rises by 30% post-discharge. RCTs have also discovered 10–15% reductions in readmission rates and reductions in institutionalization, and resource use and costs. Past audit cycles at King’s College Hospital, Denmark Hill had shown inconsistent evidence of CGA completion inpatient discharge summaries (less than 50%). Junior Doctors in the Health and Ageing (HAU) wards have struggled to sustain the efforts of past audit cycles due to the quick turnover in staff (four-month placements for trainees). This 7th cycle created a multi-faceted approach to solving this problem amongst staff and creating lasting change. Methods: 1. We adopted multidisciplinary team involvement to support Doctors. MDT staff e.g. Nurses, Physiotherapists, Occupational Therapists and Dieticians, were actively encouraged to fill in the CGA document. 2. We added a CGA Document Pro-forma to “Sunrise EPR” (Trust computer system). These CGAs were to automatically be included the discharge summary. 3. Prior to assessing uptake, we used a spot audit questionnaire to assess staff awareness/knowledge of what a CGA was. 4. We designed and placed posters highlighting domains of CGA and MDT roles suited to each domain on geriatric “Health and Ageing Wards” (HAU) in the hospital. 5. We performed an audit of % discharge summaries which include CGA and MDT role input. 6. We nominated ward champions on each ward from each multidisciplinary specialty to monitor and encourage colleagues to actively complete CGAs. 7. We initiated further education of ward staff on CGA's importance by discussion at board rounds and weekly multidisciplinary meetings. Outcomes: 1. The majority of respondents to our spot audit were aware of what a CGA was, but fewer had used the EPR document to complete one. 2. We found that CGAs were not being commenced for nearly 50% of patients discharged on HAU wards and the Frailty Assessment Unit.

Keywords: comprehensive geriatric assessment, CGA, multidisciplinary team, quality of life, mortality

Procedia PDF Downloads 85
2625 US Foreign Aids and Its Institutional and Non-Institutional Impacts in the Middle East, Africa, Southeast Asia, and Latin America (2000 - 2020)

Authors: Mahdi Fakheri, Mohammad Mohsen Mahdizadeh Naeini

Abstract:

This paper addresses an understudied aspect of U.S. foreign aids between the years 2000 and 2020. Despite a growing body of literature on the impacts of U.S. aids, the question about how the United States uses its foreign aids to change developing countries has remained unanswered. As foreign aid is a tool of the United States' foreign policy, answering this very question can reveal the future that the U.S. prefers for developing countries and that secures its national interest. This paper will explore USAID's official dataset, which includes the data of foreign aids to the Middle East, Africa, Latin America, and Southeast Asia from 2000 to 2020. Through an empirical analysis, this paper argues that the focus of U.S. foreign aid is evenly divided between institutional and non-institutional (i.e., slight enhancement of status quo) changes. The former is induced by training and education, funding the initiatives and projects, making capacity and increasing the efficiency of human, operational, and management sectors, and enhancing the living condition of the people. Moreover, it will be demonstrated that the political, military, cultural, economic, and judicial are some of the institutions that the U.S. has planned to change in the aforementioned period and regions.

Keywords: USAID, foreign aid, development, developing countries, Middle East, Africa, Southeast Asia, Latin America

Procedia PDF Downloads 190
2624 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection

Procedia PDF Downloads 64
2623 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
2622 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation

Authors: Rashmi Malik, Videep Mishra

Abstract:

The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.

Keywords: iterative game design, generative design, gaming asset automation, generative game design

Procedia PDF Downloads 70
2621 Impact of Compost Application with Different Rates of Chemical Fertilizers on Corn Growth and Production

Authors: Reda Abdel-Aziz

Abstract:

Agricultural activities in Egypt generate annually around 35 million tons of waste. Composting is one of the most promising technologies to turnover waste in a more economical way, for many centuries. Composting has been used as a mean of recycling organic matter back into the soil to improve soil structure and fertility. Field experiments were conducted in two governorates, Giza and Al-Monofia, to find out the effect of compost with different rates of chemical fertilizers on growth and yield of corn (Zea mays L.) during two constitutive seasons of 2012 and 2013. The experiment, laid out in a randomized complete block design (RCBD), was carried out on five farmers’ fields in each governorate. The treatments were: unfertilized control, full dose of NPK (120, 30, and 50 kg/acre, respectively), compost at rate of 20 ton/acre, compost at rate of 10 ton/acre + 25% of chemical fertilizer, compost at rate of 10 ton/acre + 50% of chemical fertilizer and compost at rate of 10 ton/acre + 75% of chemical fertilizer. Results revealed a superiority of the treatment of compost at rate of 10 ton/acre + 50% of NPK that caused significant improvement in growth, yield and nutrient uptakes of corn in the two governorates during the two constitutive seasons. Results showed that agricultural waste could be composted into value added soil amendment to enhance efficiency of chemical fertilizer. Composting of agricultural waste could also reduce the chemical fertilizers potential hazard to the environment.

Keywords: agricultural waste, compost, chemical fertilizers, corn production, environment

Procedia PDF Downloads 318
2620 Experimental Study to Determine the Effect of Wire Mesh Pore Size on Natural Draft Chimney Performance

Authors: Md. Mizanur Rahman, Chu Chi Ming, Mohd Suffian Bin Misaran

Abstract:

Chimney is an important part of the industries to remove waste heat from the processes side to the atmosphere. The increased demand of energy helps to restart to think about the efficiency of chimney as well as to find out a valid option to replace forced draft chimney system from industries. In this study natural draft chimney model is air flow rate; exit air temperature and pressure losses are studied through modification with wire mesh screen and compare the results with without wire mesh screen chimney model. The heat load is varies from 0.1 kW to 1kW and three different wire mesh screens that have pore size 0.15 mm2, 0.40 mm2 and 4.0 mm2 respectively are used. The experimental results show that natural draft chimney model with wire mesh screens significantly restored the flow losses compared to the system without wire mesh screen. The natural draft chimney model with 0.40 mm2 pore size wire mesh screen can minimize the draft losses better than others and able to enhance velocity about 54 % exit air temperature about 41% and pressure loss decreased by about 20%. Therefore, it can be decided that the wire mesh screens significantly minimize the draft losses in the natural draft chimney and 0.40 mm2 pore size screen will be a suitable option.

Keywords: natural draft dhimney, wire mesh screen, natural draft flow, mechanical engineering

Procedia PDF Downloads 319
2619 Challenges of School Leadership

Authors: Stefan Ninković

Abstract:

The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.

Keywords: educational changes, leaders, leadership, school

Procedia PDF Downloads 336
2618 A Kinetic Study on Recovery of High-Purity Rutile TiO₂ Nanoparticles from Titanium Slag Using Sulfuric Acid under Sonochemical Procedure

Authors: Alireza Bahramian

Abstract:

High-purity TiO₂ nanoparticles (NPs) with size ranging between 50 nm and 100 nm are synthesized from titanium slag through sulphate route under sonochemical procedure. The effect of dissolution parameters such as the sulfuric acid/slag weight ratio, caustic soda concentration, digestion temperature and time, and initial particle size of the dried slag on the extraction efficiency of TiO₂ and removal of iron are examined. By optimizing the digestion conditions, a rutile TiO₂ powder with surface area of 42 m²/g and mean pore diameter of 22.4 nm were prepared. A thermo-kinetic analysis showed that the digestion temperature has an important effect, while the acid/slag weight ratio and initial size of the slag has a moderate effect on the dissolution rate. The shrinking-core model including both chemical surface reaction and surface diffusion is used to describe the leaching process. A low value of activation energy, 38.12 kJ/mol, indicates the surface chemical reaction model is a rate-controlling step. The kinetic analysis suggested a first order reaction mechanism with respect to the acid concentrations.

Keywords: TiO₂ nanoparticles, titanium slag, dissolution rate, sonochemical method, thermo-kinetic study

Procedia PDF Downloads 256
2617 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach

Authors: Alvaro Figueira, Bruno Cabral

Abstract:

Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.

Keywords: data mining, e-learning, grade prediction, machine learning, student learning path

Procedia PDF Downloads 122
2616 Shifting Paradigms of Culture: Rise of Secular Sensibility in Indian Literature

Authors: Nidhi Chouhan

Abstract:

Burgeoning demand of ‘Secularism’ has shaken the pillars of cultural studies in the contemporary literature. The perplexity of the culturally estranged term ‘secular’ gives rise to temporal ideologies across the world. Hence, it is high time to scan this concept in the context of Indian lifestyle which is a blend of assimilated cultures woven in multiple religious fabrics. The infliction of such secular taste is depicted in literary productions like ‘Satanic Verses’ and ‘An Area of Darkness’. The paper conceptually makes a cross-cultural analysis of anti-religious Indian literary texts, assessing its revitalization in current times. Further, this paper studies the increasing popularity of secular sensibility in the contemporary times. The mushrooming elements of secularism such as abstraction, spirituality, liberation, individualism give rise to a seemingly newer idea i.e. ‘Plurality’ making the literature highly hybrid. This approach has been used to study Indian modernity reflected in its literature. Seminal works of stalwarts are used to understand the consequence of this cultural synthesis. Conclusively, this theoretical research inspects the efficiency of secular culture, intertwined with internal coherence and throws light on the plurality of texts in Indian literature.

Keywords: culture, indian, literature, plurality, secular, secularism

Procedia PDF Downloads 103
2615 Competitiveness of a Share Autonomous Electrical Vehicle Fleet Compared to Traditional Means of Transport: A Case Study for Transportation Network Companies

Authors: Maximilian Richter

Abstract:

Implementing shared autonomous electric vehicles (SAEVs) has many advantages. The main advantages are achieved when SAEVs are offered as on-demand services by a fleet operator. However, autonomous mobility on demand (AMoD) will be distributed nationwide only if a fleet operation is economically profitable for the operator. This paper proposes a microscopic approach to modeling two implementation scenarios of an AMoD fleet. The city of Zurich is used as a case study, with the results and findings being generalizable to other similar European and North American cities. The data are based on the traffic model of the canton of Zurich (Gesamtverkehrsmodell des Kantons Zürich (GVM-ZH)). To determine financial profitability, demand is based on the simulation results and combined with analyzing the costs of a SAEV per kilometer. The results demonstrate that depending on the scenario; journeys can be offered profitably to customers for CHF 0.3 up to CHF 0.4 per kilometer. While larger fleets allowed for lower price levels and increased profits in the long term, smaller fleets exhibit elevated efficiency levels and profit opportunities per day. The paper concludes with recommendations for how fleet operators can prepare themselves to maximize profit in the autonomous future.

Keywords: autonomous vehicle, mobility on demand, traffic simulation, fleet provider

Procedia PDF Downloads 124
2614 An Insight Into the Effective Distribution of Lineaments Over Sheared Terrains to Hydraulically Characterize the Shear Zones in Hard Rock Aquifer System

Authors: Tamal Sur, Tapas Acharya

Abstract:

Identifying the water resource in hard crystalline rock terrain has been a huge challenge over the decades as it is considered a poor groundwater province area. Over the years, usage of satellite imagery for the delineation of groundwater potential zone in sheared hard rock terrain has been occasionally successful. In numerous circumstances, it has been observed that groundwater potential zone delineated by satellite imagery study has failed to yield satisfactory result on its own. The present study discusses the fact that zones having a high concentration of lineaments oblique to the general trend of shear fabric could be good groundwater potential zones within a shear zone in crystalline fractured rock aquifer system. Due to this fact, the density of lineaments and the number of intersecting lineaments increases over that particular region, making it a suitable locale for good groundwater recharge, which is mostly composed of Precambrian metamorphic rocks i.e., quartzite, granite gneisses, porphyroclastic granite-gneiss, quartzo-feldspathic-granite-gneiss, mylonitic granites, quartz-biotite-granite gneiss and some phyllites of Purulia district of West Bengal, NE India. This study aims to construct an attempt to demonstrate the relationship of the high amount of lineament accumulation and their intersection with high groundwater fluctuation zones, i.e., good groundwater potential zones. On the basis of that, an effort has been made to characterize the shear zones with respect to their groundwater potentiality. Satellite imagery data (IRS-P6 LISS IV standard FCC image) analysis reveals the bifurcating nature of North Purulia shear zone (NPSZ) and South Purulia shear zone (SPSZ) over the study area. Careful analysis of lineament rose diagrams, lineament density map, lineament intersection density map, and frequency diagrams for water table depths with an emphasis on high water table fluctuations exhibit the fact that different structural features existing over North and South Purulia shear zones can affect the nature of hydraulic potential of that region.

Keywords: crystalline hard rock terrain, groundwater recharge, hydrogeology, lineaments, shear zone, water table fluctuation

Procedia PDF Downloads 87
2613 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation

Authors: Ke He, Wumaier Parezhati, Haruka Yamashita

Abstract:

Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.

Keywords: Doc2Vec, online marketplace, marketing, recommendation systems

Procedia PDF Downloads 112
2612 Hydrothermal Energy Application Technology Using Dam Deep Water

Authors: Yooseo Pang, Jongwoong Choi, Yong Cho, Yongchae Jeong

Abstract:

Climate crisis, such as environmental problems related to energy supply, is getting emerged issues, so the use of renewable energy is essentially required to solve these problems, which are mainly managed by the Paris Agreement, the international treaty on climate change. The government of the Republic of Korea announced that the key long-term goal for a low-carbon strategy is “Carbon neutrality by 2050”. It is focused on the role of the internet data centers (IDC) in which large amounts of data, such as artificial intelligence (AI) and big data as an impact of the 4th industrial revolution, are managed. The demand for the cooling system market for IDC was about 9 billion US dollars in 2020, and 15.6% growth a year is expected in Korea. It is important to control the temperature in IDC with an efficient air conditioning system, so hydrothermal energy is one of the best options for saving energy in the cooling system. In order to save energy and optimize the operating conditions, it has been considered to apply ‘the dam deep water air conditioning system. Deep water at a specific level from the dam can supply constant water temperature year-round. It will be tested & analyzed the amount of energy saving with a pilot plant that has 100RT cooling capacity. Also, a target of this project is 1.2 PUE (Power Usage Effectiveness) which is the key parameter to check the efficiency of the cooling system.

Keywords: hydrothermal energy, HVAC, internet data center, free-cooling

Procedia PDF Downloads 81
2611 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters

Procedia PDF Downloads 311
2610 Exploring the Challenges and Opportunities in Clinical Waste Management: The Case of Private Clinics, Selangor, Malaysia

Authors: Golyasamin Khanehzaei, Mohd. Bakri Ishak, Ahmad Makmom Hj Abdullah, Latifah Abd Manaf

Abstract:

Abstract—Management of clinical waste is a critical problem worldwide. Immediate attention is required to manage the clinical waste in an appropriate way in newly developing economy country such as Malaysia. The increasing amount of clinical waste generated is resulted from rapid urbanization and growing number of private health care facilities in developing countries such as Malaysia. In order to develop a sensible clinical waste management system and improvement of the management, information on factors affecting clinical waste generation has the crucial role. This paper is the study of management characteristics of clinical waste and the level of efficiency of clinical waste management systems operating in private clinics located in Selangor, Malaysia. Are they following the proper international standards? By taking all of this in consideration the aim of this paper is to identify and discuss the current trend, current challenges and also the present opportunities among the challenges of clinical waste management in private clinics of Selangor, Malaysia. The SWOT analysis was characterized for the evaluation of strengths, weaknesses, opportunities and threats. The methodology for this study was constituted of direct observation, Informal interviews, Conducting SWOT analysis, conduction of one sustainability dimensions analysis and application. The results show that clinical waste management in private clinics is far from an ideal model.

Keywords: clinical waste, SWOT analysis, Selangor, Malaysia

Procedia PDF Downloads 348
2609 Design and Modelling of Ge/GaAs Hetero-structure Bipolar Transistor

Authors: Samson Mil'shtein, Dhawal N. Asthana

Abstract:

The presented heterostructure n-p-n bipolar transistor is comprised of Ge/GaAs heterojunctions consisting of 0.15µm thick emitter and 0.65µm collector junctions. High diffusivity of carriers in GaAs base was major motivation of current design. We avoided grading of the base which is common in heterojunction bipolar transistors, in order to keep the electron diffusivity as high as possible. The electrons injected into the 0.25µm thick p-type GaAs base with not very high doping (1017cm-3). The designed HBT enables cut off frequency on the order of 150GHz. The Ge/GaAs heterojunctions presented in our paper have proved to work better than comparable HBTs having GaAs bases and emitter/collector junctions made, for example, of AlGaAs/GaAs or other III-V compound semiconductors. The difference in lattice constants between Ge and GaAs is less than 2%. Therefore, there is no need of transition layers between Ge emitter and GaAs base. Significant difference in energy gap of these two materials presents new scope for improving performance of the emitter. With the complete structure being modelled and simulated using TCAD SILVACO, the collector/ emitter offset voltage of the device has been limited to a reasonable value of 63 millivolts by the dint of low energy band gap value associated with Ge emitter. The efficiency of the emitter in our HBT is 86%. Use of Germanium in the emitter and collector regions presents new opportunities for integration of this vertical device structure into silicon substrate.

Keywords: Germanium, Gallium Arsenide, heterojunction bipolar transistor, high cut-off frequency

Procedia PDF Downloads 420