Search results for: Business Performance
9117 High Performance Computing Enhancement of Agent-Based Economic Models
Authors: Amit Gill, Lalith Wijerathne, Sebastian Poledna
Abstract:
This research presents the details of the implementation of high performance computing (HPC) extension of agent-based economic models (ABEMs) to simulate hundreds of millions of heterogeneous agents. ABEMs offer an alternative approach to study the economy as a dynamic system of interacting heterogeneous agents, and are gaining popularity as an alternative to standard economic models. Over the last decade, ABEMs have been increasingly applied to study various problems related to monetary policy, bank regulations, etc. When it comes to predicting the effects of local economic disruptions, like major disasters, changes in policies, exogenous shocks, etc., on the economy of the country or the region, it is pertinent to study how the disruptions cascade through every single economic entity affecting its decisions and interactions, and eventually affect the economic macro parameters. However, such simulations with hundreds of millions of agents are hindered by the lack of HPC enhanced ABEMs. In order to address this, a scalable Distributed Memory Parallel (DMP) implementation of ABEMs has been developed using message passing interface (MPI). A balanced distribution of computational load among MPI-processes (i.e. CPU cores) of computer clusters while taking all the interactions among agents into account is a major challenge for scalable DMP implementations. Economic agents interact on several random graphs, some of which are centralized (e.g. credit networks, etc.) whereas others are dense with random links (e.g. consumption markets, etc.). The agents are partitioned into mutually-exclusive subsets based on a representative employer-employee interaction graph, while the remaining graphs are made available at a minimum communication cost. To minimize the number of communications among MPI processes, real-life solutions like the introduction of recruitment agencies, sales outlets, local banks, and local branches of government in each MPI-process, are adopted. Efficient communication among MPI-processes is achieved by combining MPI derived data types with the new features of the latest MPI functions. Most of the communications are overlapped with computations, thereby significantly reducing the communication overhead. The current implementation is capable of simulating a small open economy. As an example, a single time step of a 1:1 scale model of Austria (i.e. about 9 million inhabitants and 600,000 businesses) can be simulated in 15 seconds. The implementation is further being enhanced to simulate 1:1 model of Euro-zone (i.e. 322 million agents).Keywords: agent-based economic model, high performance computing, MPI-communication, MPI-process
Procedia PDF Downloads 1279116 Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil
Authors: Ana Julia C. Kfouri
Abstract:
A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings.Keywords: computer simulation, educational buildings, EnergyPlus, humidity, temperature, thermal comfort
Procedia PDF Downloads 3869115 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 579114 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine
Procedia PDF Downloads 2049113 Customer Churn Analysis in Telecommunication Industry Using Data Mining Approach
Authors: Burcu Oralhan, Zeki Oralhan, Nilsun Sariyer, Kumru Uyar
Abstract:
Data mining has been becoming more and more important and a wide range of applications in recent years. Data mining is the process of find hidden and unknown patterns in big data. One of the applied fields of data mining is Customer Relationship Management. Understanding the relationships between products and customers is crucial for every business. Customer Relationship Management is an approach to focus on customer relationship development, retention and increase on customer satisfaction. In this study, we made an application of a data mining methods in telecommunication customer relationship management side. This study aims to determine the customers profile who likely to leave the system, develop marketing strategies, and customized campaigns for customers. Data are clustered by applying classification techniques for used to determine the churners. As a result of this study, we will obtain knowledge from international telecommunication industry. We will contribute to the understanding and development of this subject in Customer Relationship Management.Keywords: customer churn analysis, customer relationship management, data mining, telecommunication industry
Procedia PDF Downloads 3169112 Hermeneutical Attitudes to Islamic Art
Authors: Mohammad Hasan Kakizadeh
Abstract:
It is a matter of philosophical hermeneutics according to specifications, we can hand to his hermeneutic, hermeneutical approaches can be analyzed with Islamic art, Islamic art hermeneutical approaches can be of two types: one is to "Islamic Art" Art is considered the analogies and metaphors and mysteries using Nmvdgarha and tried to express spiritual or religious ideology that demonstrates the truth of Islam, and other efforts is that "art" is basically a way inconsistent with the interpretation that or "sharia," Islamic law, not be considered a way to recognize and praise God, his creation, and therefore, the "art" is a tool for reform or knowledge to Nfs.az these two efforts, the first modern effort to try and of course preceded by the second. However, the first attempt is sometimes forgotten that the early centuries AD, with respect to the nature of hermeneutic thinkers for the arts could not resist the assaults of "art" in general, or specifically some legitimacy to the "art" of business and Knnd.dyn art at the stage of its history, which distinguishes them from each other are united with each other so easily possible. However, with the rise of the monotheistic religions and leave the Pagan religions, religion, and art renewed bond becomes a difficult problem. Much of the efforts of Muslim scholars have focused on the legitimacy back to the art. These attempts without a hermeneutic approach to the "art" does not correlate with success. The findings and conclusion in this study is that the hermeneutic approach to Islamic art, whether or Mshrvsazanh Mnakavanh what Bazsazanh or deconstructive, can not ignore the fact that Islamic art has been shaped by Mabdaltbyhay.Keywords: art, Islamic art, hermeneutics, art, religion
Procedia PDF Downloads 3699111 Studying the Bond Strength of Geo-Polymer Concrete
Authors: Rama Seshu Doguparti
Abstract:
This paper presents the experimental investigation on the bond behavior of geo polymer concrete. The bond behavior of geo polymer concrete cubes of grade M35 reinforced with 16 mm TMT rod is analyzed. The results indicate that the bond performance of reinforced geo polymer concrete is good and thus proves its application for construction.Keywords: geo-polymer, concrete, bond strength, behaviour
Procedia PDF Downloads 5089110 Eight Weeks of Suspension Systems Training on Fat Mass, Jump and Physical Fitness Index in Female
Authors: Che Hsiu Chen, Su Yun Chen, Hon Wen Cheng
Abstract:
Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Core stability exercises on instability device (such as the TRX suspension systems) were found to be able to induce higher core muscle activity than performing on a stable surface. However, high intensity interval TRX suspension exercises training on sport performances remain unclear. The purpose of this study was to examine whether high intensity TRX suspension training could improve sport performance. Twenty-four healthy university female students (age 19.0 years, height 157.9 cm, body mass 51.3 kg, fat mass 25.2 %) were voluntarily participated in this study. After a familiarization session, each participant underwent five suspension exercises (e.g., hip abduction in plank alternative, hamstring curl, 45-degree row, lunge and oblique crunch). Each type of exercise was performed for 30 seconds, followed by 30 seconds break, two times per week for eight weeks while each exercise session was increased by 10 seconds every week. The results showed that the fat mass (about 12.92%) decreased significantly, sit and reach test (9%), 1 minute sit-up test (17.5%), standing broad jump (4.8%), physical fitness index (10.3%) increased significantly after 8-week high intensity TRX suspension training. Hence, eight weeks of high intensity interval TRX suspension exercises training can improve hamstring flexibility, trunk endurance, jump ability, aerobic fitness and fat mass percentage decreased substantially.Keywords: core endurance, jump, flexibility, cardiovascular fitness
Procedia PDF Downloads 4089109 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper
Authors: Ahmad Naqi
Abstract:
Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).Keywords: passive control system, oil damper, seismic assessment, lumped mass model
Procedia PDF Downloads 1149108 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS
Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba
Abstract:
One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.Keywords: basic science and technology, MOODLE LMS, performance, quality assurance
Procedia PDF Downloads 3039107 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles
Authors: S. Pirrello
Abstract:
Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.Keywords: contiguous flight auger (CFA) , DEFPIG, case pile wave analysis program (CAPWAP), drilled displacement piles (DD), pile dynamic testing (PDA), PIGLET, PLAXIS, repute, pile performance
Procedia PDF Downloads 2829106 Integrating Flipped Instruction to Enhance Second Language Acquisition
Authors: Borja Ruiz de Arbulo Alonso
Abstract:
This paper analyzes the impact of flipped instruction in adult learners of Spanish as a second language in a face-to-face course at Boston University. Given the limited amount of contact hours devoted to studying world languages in the American higher education system, implementing strategies to free up classroom time for communicative language practice is key to ensure student success in their learning process. In an effort to improve the way adult learners acquire a second language, this paper examines the role that regular pre-class and web-based exposure to Spanish grammar plays in student performance at the end of the academic term. It outlines different types of web-based pre-class activities and compares this approach to more traditional classroom practice. To do so, this study works for three months with two similar groups of adult learners in an intermediate-level Spanish class. Both groups use the same course program and have the same previous language experience, but one receives an additional set of instructor-made online materials containing a variety of grammar explanations and online activities that need to be reviewed before attending class. Since the online activities cover material and concepts that have not yet been studied in class, students' oral and written production in both groups is measured by means of a writing activity and an audio recording at the end of the three-month period. These assessments will ascertain the effects of exposing the control group to the grammar of the target language prior to each lecture throughout and demonstrate where flipped instruction helps adult learners of Spanish achieve higher performance, but also identify potential problems.Keywords: educational technology, flipped classroom, second language acquisition, student success
Procedia PDF Downloads 1259105 Personality Traits of Students Effecting Entrepreneurial Intention
Authors: Muhammad Ali, Aamir Sohail, Umair Malik
Abstract:
Research in entrepreneurship has gained much attention in current academic environment. Youngsters are taking interest to start their own business in spite of risk matter. The objective of the study is to explain how various personality traits (personal attitude, locus of control, instrumental readiness and perceived behavioral control) are affecting entrepreneurial intention of students. The theory of planned behavior supports out study which explains that personal attractiveness, social norms and feasibility are the main factors that affect intentions of an individual. The sample data of 120 is collected from graduating batch of three reputed universities of Islamabad through questionnaires. Our results support the hypothesis that personality traits positively influence the entrepreneurial intention. We conclude from the study that many graduating students are willing to start a new venture, but most of them are likely to do a job in their respective fields. Risk factor also exists in their minds because in our country most people are risk-averse and they do not want to lose their money in case of loss.Keywords: entrepreneurship, instrumental readiness, locus of control, personal attitude
Procedia PDF Downloads 2029104 Supply Chain Resilience Strategies and Their Impact on Supply Chain Sustainability of the Export-oriented Apparel Industry in Sri Lanka
Authors: Anuradha Ranawakage, Nimalashanithi Amarasekara
Abstract:
Supply chain resilience and sustainability have received great attention from both academia and business professionals since last few decades. However, the relationship between supply chain resilience and sustainability has not been empirically tested in the apparel industry, where both concepts play a crucial role. Thus, this study aims to investigate how supply chain resilience strategies (digital connectivity, inventory and reserve capacity, and collaboration) impact the supply chain sustainability of export-oriented apparel manufacturing companies in Sri Lanka. An online questionnaire was used to collect data on the impact of supply chain resilience strategies on the supply chain sustainability of 99 apparel companies operating in Sri Lanka. This research makes a significant contribution to the field of supply chain management by assessing the impact of supply chain resilience strategies on supply chain sustainability in the context of the developing country, Sri Lanka, where economic crises and the pandemic have had a profound impact on the apparel industry. The findings have important theoretical and managerial implications for maintaining congruence between supply chain resilience and supply chain sustainability in the long run.Keywords: supply chain resilience, supply chain sustainability, apparel, supply chain
Procedia PDF Downloads 259103 The Study on the Platform Strategy of Taipei City Urban Regeneration Station
Authors: Chao Jen-Chih, Kuo-Wei Hsu
Abstract:
Many venues and spaces in cities gradually become old and decayed as time goes by and develops. Urban regeneration is the critical strategy to promote local development, but the method of spatial reconstruction which is emphasized in the issue of urban regeneration is questioned for bringing cultural, social and economic impacts on old city areas. The idea of “Urban Regeneration Station (URS)” is proposed for Taipei City Government to introduce the entry and disturbance of communities and related groups with the concept of creative city. This study explored how an URS promotes local development again through the strength of communities and the energy of local residence community, and it established the Platform Strategy for URS. The research results are as follows: URS through the promotion of government agencies, experts, scholars and the third sector, to the selection of different types of units stationed in business, through exhibitions, seminars, and other activities to explore local development issues, vetting each stationed execution efficiency units, and different units stationed by URS establish URS overall network platform strategy.Keywords: urban regeneration, platform strategy, creative city, Taipei city
Procedia PDF Downloads 4569102 Petai Chips as an Antioxidant Chips from Indonesia
Authors: R. S. Fisca, Y. R. Elox, L. Umi, U. Z. Luttfia, Kun Harismah
Abstract:
Petai (Parkia speciosa) is a plant indigenous to Southeast Asia. It is consumed either raw or cooked. It has been used in folk medicine to treat diabetes, hypertension, and kidney problems. It contains minerals and vitamins. Petai contains a lot of chemical compounds that are beneficial for health, including antioxidants, Vitamin B6 0,9mg, energy 142 g. cal, 10.4 g protein. 2 g fat, 22 g carbohydrates, 95 mg calcium, phosphorus 115 mg, 1 mg iron, 200 IU of vitamin A, vitamin B1 0.17 mg, 36 mg of vitamin C that can resolve various health problems. These chips are the result of innovation from petai packaged in such a way becomes a tasty snack chips and can be enjoyed by many people to relax and also nutritious for health. In the manufacture of petai chips require several steps of them start by boiling, flating, drying and the last frying. In introducing the products widely we sell petai chips with several methods. Some of these methods include direct sales, delivery order, online/social media, and open some booth at a few places and the car free day in Solo every sunday. Opportunity in selling petai chips is very wide because there is no competitors with similar business. With the innovation of petai chips become healthy snacks can be introduced to the public and can even be exported out of the country as one of the extraordinary snacks from Indonesia.Keywords: antioxidants, chips, healty, petai
Procedia PDF Downloads 5649101 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware
Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.Keywords: digital forensic, detection, eradication, targeted attack, malware
Procedia PDF Downloads 2759100 Experiences of Trainee Teachers: A Survey on Expectations and Realities in Special Secondary Schools in Kenya
Authors: Mary Cheptanui Sambu
Abstract:
Teaching practice is an integral component of students who are training to be teachers, as it provides them with an opportunity to gain experience in an actual teaching and learning environment. This study explored the experiences of trainee teachers from a local university in Kenya, undergoing a three-month teaching practice in Special Secondary schools in the country. The main aim of the study was to understand the trainees’ experiences, their expectations, and the realities encountered during the teaching practice period. The study focused on special secondary schools for learners with hearing impairment. A descriptive survey design was employed and a sample size of forty-four respondents from special secondary schools for learners with hearing impairment was purposively selected. A questionnaire was administered to the respondents and the data obtained analysed using the Statistical Package for the Social Sciences (SPSS). Preliminary analysis shows that challenges facing special secondary schools include inadequate teaching and learning facilities and resources, low academic performance among learners with hearing impairment, an overloaded curriculum and inadequate number of teachers for the learners. The study findings suggest that the Kenyan government should invest more in the education of special needs children, particularly focusing on increasing the number of trained teachers. In addition, the education curriculum offered in special secondary schools should be tailored towards the needs and interest of learners. These research findings will be useful to policymakers and curriculum developers, and will provide information that can be used to enhance the education of learners with hearing impairment; this will lead to improved academic performance, consequently resulting in better transitions and the realization of Vision 2030.Keywords: hearing impairment, special secondary schools, trainee, teaching practice
Procedia PDF Downloads 1639099 Marketing Management and Cultural Learning Center: The Case Study of Arts and Cultural Office, Suansunandha Rajabhat University
Authors: Pirada Techaratpong
Abstract:
This qualitative research has 2 objectives: to study marketing management of the cultural learning center in Suansunandha Rajabhat University and to suggest guidelines to improve its marketing management. This research is based on a case study of the Arts and Culture Office in Suansunandha Rajabhat University, Bangkok. This research found the Art and Culture Office has no formal marketing management. However, the marketing management is partly covered in the overall business plan, strategic plan, and action plan. The process can be divided into 5 stages. The marketing concept has long been introduced to its policy but not apparently put into action due to inflexible system. Some gaps are found in the process. The research suggests the Art and Culture Office implement the concept of marketing orientation, meeting the needs and wants of its target customers and adapt to the changing situation. Minor guidelines for improvement are provided.Keywords: cultural learning center, marketing, management, museum
Procedia PDF Downloads 3869098 Genodata: The Human Genome Variation Using BigData
Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta
Abstract:
Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop
Procedia PDF Downloads 2599097 The Impact of the EU Competition Law on the Asian Systems
Authors: Maria Casoria
Abstract:
Throughout the last decade developing countries have been undergoing substantial reforms to promote the establishment of competition regimes, as consequence of the trade liberalization and the spread of a ‘competition awareness movement’ across the globe. The legislative trend affected the whole Asia. Notwithstanding the existence of extensive joint ventures, cartels and other collusive business relationships in this geographical area, almost all the countries have already passed or are committed to enforce specific laws in the field. The study dwells into legal solutions adopted in the five sub-regions in which the continent is commonly divided –i.e. Central, East, South, Southeast, and Western Asia- and, using a comparative methodology, shed lights on the main differences and similarities in place. The final outcome of the analysis is that, despite the undeniable divergences of approach, what links together the legislation in force in the region is the unveiled influence exercised by the European Union competition regulation. Consequently, in order to properly evaluate the deterrence of the rule of law in the sector concerned, it is fundamental to scrutinize the major role played by the EU and its policy for the evolution of pro-competitive practices in the continent.Keywords: Asia, competition law, differences and similarities, European union, influences
Procedia PDF Downloads 2749096 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper
Authors: Thidarat Imyen, Paisan Kongkachuichay
Abstract:
Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc
Procedia PDF Downloads 3029095 SAP: A Smart Amusement Park System for Tourist Services
Authors: Pei-Chun Lee, Sheng-Shih Wang, Pei-Hsuan Ku
Abstract:
Many existing amusement parks have been operated with assistance of a variety of information and communications technologies to design friendly and efficient service systems for tourists. However, these systems leave various levels of decisions to tourists to make by themselves. This incurs pressure on tourists and thereby bringing negative experience in their tour. This paper proposes a smart amusement park system to offer each tourist the GPS-based customized plan without tourists making decisions by themselves. The proposed system consists of the mobile app subsystem, the central subsystem, and the detecting/counting subsystem. The mobile app subsystem interacts with the central subsystem. The central subsystem performs the necessary computing and database management of the proposed system. The detecting/counting subsystem aims to detect and compute the number of visitors to an attraction. Experimental results show that the proposed system can not only work well, but also provide an innovative business operating model for owners of amusement parks.Keywords: amusement park, location-based service, LBS, mobile app, tourist service
Procedia PDF Downloads 5129094 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 689093 Accurate Energy Assessment Technique for Mine-Water District Heat Network
Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones
Abstract:
UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.Keywords: heat demand, heat pump, renewable energy, retrofit
Procedia PDF Downloads 929092 Overweight and Neurocognitive Functioning: Unraveling the Antagonistic Relationship in Adolescents
Authors: Swati Bajpai, S. P. K Jena
Abstract:
Background: There is dramatic increase in the prevalence and severity of overweight in adolescents, raising concerns about their psychosocial and cognitive consequences, thereby indicating the immediate need to understand the effects of increased weight on scholastic performance. Although the body of research is currently limited, available results have identified an inverse relationship between obesity and cognition in adolescents. Aim: to examine the association between increased Body Mass Index in adolescents and their neurocognitive functioning. Methods: A case –control study of 28 subjects in the age group of 11-17 years (14 Males and 14 females) was taken on the basis of main inclusion criteria (Body Mass Index). All of them were randomized to (experimental group: overweight) and (control group: normal weighted). A complete neurocognitive assessment was carried out using validated psychological scales namely, Color Progressive Matrices (to assess intelligence); Bender Visual Motor Gestalt Test (Perceptual motor functioning); PGI-Memory Scale for Children (memory functioning) and Malin’s Intelligence Scale Indian Children (verbal and performance ability). Results: statistical analysis of the results depicted that 57% of the experimental group lack in cognitive abilities, especially in general knowledge (99.1±12.0 vs. 102.8±6.7), working memory (91.5±8.4 vs. 93.1±8.7), concrete ability (82.3±11.5 vs. 92.6±1.7) and perceptual motor functioning (1.5±1.0 vs. 0.3±0.9) as compared to control group. Conclusion: Our investigations suggest that weight gain results, at least in part, from a neurological predisposition characterized by reduced executive function, and in turn obesity itself has a compounding negative impact on the brain. Though, larger sample is needed to make more affirmative claims.Keywords: adolescents, body mass index, neurocognition, obesity
Procedia PDF Downloads 4879091 Improving Patient-Care Services at an Oncology Center with a Flexible Adaptive Scheduling Procedure
Authors: P. Hooshangitabrizi, I. Contreras, N. Bhuiyan
Abstract:
This work presents an online scheduling problem which accommodates multiple requests of patients for chemotherapy treatments in a cancer center of a major metropolitan hospital in Canada. To solve the problem, an adaptive flexible approach is proposed which systematically combines two optimization models. The first model is intended to dynamically schedule arriving requests in the form of waiting lists whereas the second model is used to reschedule the already booked patients with the goal of finding better resource allocations when new information becomes available. Both models are created as mixed integer programming formulations. Various controllable and flexible parameters such as deviating the prescribed target dates by a pre-determined threshold, changing the start time of already booked appointments and the maximum number of appointments to move in the schedule are included in the proposed approach to have sufficient degrees of flexibility in handling arrival requests and unexpected changes. Several computational experiments are conducted to evaluate the performance of the proposed approach using historical data provided by the oncology clinic. Our approach achieves outstandingly better results as compared to those of the scheduling system being used in practice. Moreover, several analyses are conducted to evaluate the effect of considering different levels of flexibility on the obtained results and to assess the performance of the proposed approach in dealing with last-minute changes. We strongly believe that the proposed flexible adaptive approach is very well-suited for implementation at the clinic to provide better patient-care services and to utilize available resource more efficiently.Keywords: chemotherapy scheduling, multi-appointment modeling, optimization of resources, satisfaction of patients, mixed integer programming
Procedia PDF Downloads 1679090 Wideband Performance Analysis of C-FDTD Based Algorithms in the Discretization Impoverishment of a Curved Surface
Authors: Lucas L. L. Fortes, Sandro T. M. Gonçalves
Abstract:
In this work, it is analyzed the wideband performance with the mesh discretization impoverishment of the Conformal Finite Difference Time-Domain (C-FDTD) approaches developed by Raj Mittra, Supriyo Dey and Wenhua Yu for the Finite Difference Time-Domain (FDTD) method. These approaches are a simple and efficient way to optimize the scattering simulation of curved surfaces for Dielectric and Perfect Electric Conducting (PEC) structures in the FDTD method, since curved surfaces require dense meshes to reduce the error introduced due to the surface staircasing. Defined, on this work, as D-FDTD-Diel and D-FDTD-PEC, these approaches are well-known in the literature, but the improvement upon their application is not quantified broadly regarding wide frequency bands and poorly discretized meshes. Both approaches bring improvement of the accuracy of the simulation without requiring dense meshes, also making it possible to explore poorly discretized meshes which bring a reduction in simulation time and the computational expense while retaining a desired accuracy. However, their applications present limitations regarding the mesh impoverishment and the frequency range desired. Therefore, the goal of this work is to explore the approaches regarding both the wideband and mesh impoverishment performance to bring a wider insight over these aspects in FDTD applications. The D-FDTD-Diel approach consists in modifying the electric field update in the cells intersected by the dielectric surface, taking into account the amount of dielectric material within the mesh cells edges. By taking into account the intersections, the D-FDTD-Diel provides accuracy improvement at the cost of computational preprocessing, which is a fair trade-off, since the update modification is quite simple. Likewise, the D-FDTD-PEC approach consists in modifying the magnetic field update, taking into account the PEC curved surface intersections within the mesh cells and, considering a PEC structure in vacuum, the air portion that fills the intersected cells when updating the magnetic fields values. Also likewise to D-FDTD-Diel, the D-FDTD-PEC provides a better accuracy at the cost of computational preprocessing, although with a drawback of having to meet stability criterion requirements. The algorithms are formulated and applied to a PEC and a dielectric spherical scattering surface with meshes presenting different levels of discretization, with Polytetrafluoroethylene (PTFE) as the dielectric, being a very common material in coaxial cables and connectors for radiofrequency (RF) and wideband application. The accuracy of the algorithms is quantified, showing the approaches wideband performance drop along with the mesh impoverishment. The benefits in computational efficiency, simulation time and accuracy are also shown and discussed, according to the frequency range desired, showing that poorly discretized mesh FDTD simulations can be exploited more efficiently, retaining the desired accuracy. The results obtained provided a broader insight over the limitations in the application of the C-FDTD approaches in poorly discretized and wide frequency band simulations for Dielectric and PEC curved surfaces, which are not clearly defined or detailed in the literature and are, therefore, a novelty. These approaches are also expected to be applied in the modeling of curved RF components for wideband and high-speed communication devices in future works.Keywords: accuracy, computational efficiency, finite difference time-domain, mesh impoverishment
Procedia PDF Downloads 1349089 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework
Authors: Junyu Chen, Peng Xu
Abstract:
In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus
Procedia PDF Downloads 289088 Artificial Intelligence in Management Simulators
Authors: Nuno Biga
Abstract:
Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant
Procedia PDF Downloads 104