Search results for: hierarchical text classification models
4114 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study
Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang
Abstract:
Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.Keywords: brain, cortical folding, finite element, three hinge
Procedia PDF Downloads 2364113 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes
Authors: Frank Kuebler, Rolf Steinhilper
Abstract:
Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process
Procedia PDF Downloads 5244112 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species
Authors: Kamel Al-Khaled
Abstract:
Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species
Procedia PDF Downloads 3764111 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization
Procedia PDF Downloads 2134110 Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective
Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise
Abstract:
Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation
Procedia PDF Downloads 4194109 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1274108 Team Cognitive Heterogeneity and Strategic Decision-Making Flexibility: The Role of Transactive Memory System and Task Complexity
Authors: Rui Xing, Baolin Ye, Nan Zhou, Guohong Wang
Abstract:
Drawing upon a perspective of cognitive interaction, this study explores the relationship between team cognitive heterogeneity and team strategic decision-making flexibility, treating the transactive memory system as a mediator and task complexity as a moderator. The hypotheses were tested in linear regression models by using data gathered from 67 strategic decision-making teams in the new-energy vehicle industry. It is found that team cognitive heterogeneity has a positive impact on strategic decision-making flexibility through the mediation of specialization and coordination of the transactive memory system, which is positively moderated by task complexity.Keywords: strategic decision-making flexibility, team cognitive heterogeneity, transactive memory system, task complexity
Procedia PDF Downloads 794107 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market
Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani
Abstract:
In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial results.Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)
Procedia PDF Downloads 3594106 Effect of Process Parameters on Mechanical Properties of Friction Stir Welded Aluminium Alloy Joints Using Factorial Design
Authors: Gurjinder Singh, Ankur Gill, Amardeep Singh Kang
Abstract:
In the present work an effort has been made to study the influence of the welding parameters on tensile strength of friction stir welding of aluminum. Three process parameters tool rotation speed, welding speed, and shoulder diameter were selected for the study. Two level factorial design of eight runs was selected for conducting the experiments. The mathematical model was developed from the data obtained. The significance of coefficients and adequacy of developed models were tested by ‘t’ test and ‘F’ test respectively. The effects of process parameters on mechanical properties have been represented in the form of graphs for better understanding.Keywords: friction stir welding, aluminium alloy, mathematical model, welding speed
Procedia PDF Downloads 4404105 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 3754104 Mechanical Behaviour of High Strength Steel Thin-Walled Profiles for Automated Rack Supported Warehouses
Authors: Agnese Natali, Francesco Morelli, Walter Salvatore, José Humberto Matias de Paula Filho, Patrick Pol
Abstract:
In the framework of the evaluation of the applicability of high strength steel to produce thin-walled elements to be used in Automated Rack Supported Warehouses, an experimental campaign is carried outto evaluate the structural performance of typical profile shapes adopted for such purposes and made of high strength steel. Numerical models are developed to fit the observed failure modes, stresses, and deformation patterns, and proper directions are proposed to simplify the numerical simulations to be used in further applications and to evaluate the mechanical behavior and performance of profiles.Keywords: Steel racks, Automated Rack Supported Warehouse, thin walled cold-formed elements, high strength steel.
Procedia PDF Downloads 1794103 An Improvement Study for Mattress Manufacturing Line with a Simulation Model
Authors: Murat Sarı, Emin Gundogar, Mumtaz Ipek
Abstract:
Nowadays, in a furniture sector, competition of market share (portion) and production variety and changeability enforce the firm to reengineer operations on manufacturing line to increase the productivity. In this study, spring mattress manufacturing line of the furniture manufacturing firm is analyzed analytically. It’s intended to search and find the bottlenecks of production to balance the semi-finished material flow. There are four base points required to investigate in bottleneck elimination process. These are bottlenecks of Method, Material, Machine and Man (work force) resources, respectively. Mentioned bottlenecks are investigated and varied scenarios are created for recruitment of manufacturing system. Probable near optimal alternatives are determined by system models built in Arena simulation software.Keywords: bottleneck search, buffer stock, furniture sector, simulation
Procedia PDF Downloads 3594102 Range Suitability Model for Livestock Grazing in Taleghan Rangelands
Authors: Hossein Arzani, Masoud Jafari Shalamzari, Z. Arzani
Abstract:
This paper follows FAO model of suitability analysis. Influential factors affecting extensive grazing were determined and converted into a model. Taleghan rangelands were examined for common types of grazing animals as an example. Advantages and limitations were elicited. All range ecosystems’ components affect range suitability but due to the time and money restrictions, the most important and feasible elements were investigated. From which three sub-models including water accessibility, forage production and erosion sensitivity were considered. Suitable areas in four levels of suitability were calculated using GIS. This suitability modeling approach was adopted due to its simplicity and the minimal time that is required for transforming and analyzing the data sets. Managers could be benefited from the model to devise the measures more wisely to cope with the limitations and enhance the rangelands health and condition.Keywords: range suitability, land-use, extensive grazing, modeling, land evaluation
Procedia PDF Downloads 3414101 Clean Technology: Hype or Need to Have
Authors: Dirk V. H. K. Franco
Abstract:
For many of us a lot of phenomena are considered a risk. Examples are: climate change, decrease of biodiversity, amount of available, clean water and the decreasing variety of living organism in the oceans. On the other hand a lot of people perceive the following trends as catastrophic: the sea level, the melting of the pole ice, the numbers of tornado’s, floods and forest fires, the national security and the potential of 192 million climate migrants in 2060. The interest for climate, health and the possible solutions is large and common. The 5th IPCC states that the last decades especially human activities (and in second order natural emissions) have caused large, mainly negative impacts on our ecological environments. Chris Stringer stated that we represent, nowadays after evolution, the only one version of the possible humanity. At this very moment we are faced with an (over) crowded planet together with global climate changes and a strong demand for energy and material resources. Let us hope that we can counter these difficulties either with better application of existing technologies or by inventing new (applications of) clean technologies together with new business models.Keywords: clean technologies, catastrophic, climate, possible solutions
Procedia PDF Downloads 4994100 Hand Gestures Based Emotion Identification Using Flex Sensors
Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan
Abstract:
In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.Keywords: emotion identification, emotion models, gesture recognition, user perception
Procedia PDF Downloads 2854099 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.Keywords: power system, transient stability, critical trajectory method, energy function method
Procedia PDF Downloads 3864098 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5054097 Displaced People in International Marriage Law: Choice of Law and the 1951 Convention Relating to the Status of Refugees
Authors: Rorick Daniel Tovar Galvan
Abstract:
The 1951 Convention relating to the status of refugees contains a conflict of law rule for the determination of the applicable law to marriage. The wording of this provision leaves much to be desired as it uses the domicile and the residence of the spouses as single main and subsidiary connecting factors. In cases where couples live in different countries, the law applicable to the case is unclear. The same problem arises when refugees are married to individuals outside of the convention’s scope of application. Different interpretations of this legal provision have arisen to solve this problem. Courts in a number of European countries apply the so-called modification doctrine: states should apply their domestic private international rules in all cases involving refugees. Courts shall, however, replace the national connecting factor by the domicile or residence in situations where nationality is used to determine the applicable law. The internal conflict of law rule will then be slightly modified in order to be applied according to the convention. However, this approach excludes these people from using their national law if they so desire. As nationality is, in all cases, replaced by domicile or residence as connecting factor, refugees are automatically deprived of the possibility to choose this law in jurisdictions that include the party autonomy in international marriage law. This contribution aims to shed light on the international legal framework applicable to marriages celebrated by refugees and the unnecessary restrictions to the exercise of the party autonomy these individuals are subjected to. The interest is motivated by the increasing number of displaced people, the significant number of states party to the Refugee Convention – approximately 150 – and the fact that more and more countries allow choice of law agreements in marriage law. Based on a study of German, Spanish and Swiss case law, the current practices in Europe, as well as some incoherencies derived from the current interpretation of the convention, will be discussed. The main objective is showing that there is neither an economic nor a legal basis to deny refugees the right to choose the law of their country of origin in those jurisdictions providing for this possibility to other foreigners. Quite the contrary, after analyzing other provisions contained in the conventions, this restriction would mean a contravention of other obligations included in the text.Keywords: choice of law, conflict of laws, international marriage law, refugees
Procedia PDF Downloads 1454096 Evolution of Classroom Languaging over the Years: Prospects for Teaching Mathematics Differently
Authors: Jabulani Sibanda, Clemence Chikiwa
Abstract:
This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire
Procedia PDF Downloads 734095 Flood Hazards, Vulnerability and Adaptations in Upper Imo River Basin of South Eastern Nigera Introduction
Authors: Christian N. Chibo
Abstract:
Imo River Basin is located in South Eastern Nigeria comprising of 11 states of Imo, Abia, Anambra, Ebonyi, Enugu, Edo, Rivers, Cross river, AkwaIbom, Bayelsa, Delta, and Bayelsa states. The basin has a fluvial erosional system dominated by powerful rivers coming down from steep slopes in the area. This research investigated various hazards associated with flood, the vulnerable areas, elements at risk of flood and various adaptation strategies adopted by local inhabitants to cope with the hazards. The research aim is to identify, examine and assess flood hazards, vulnerability and adaptations in the Upper Imo River Basin. The study identified the role of elevation in cause of flood, elements at risk of flood as well as examine the effectiveness or otherwise of the adaptation strategies for coping with the hazards. Data for this research is grouped as primary and secondary. Their various methods of generation are field measurement, questionnaire, library websites etc. Other types of data were generated from topographical, geological, and Digital Elevation model (DEM) maps, while the hydro meteorological data was sourced from Nigeria Meteorological Agency (NIMET), Meteorological stations of Geography and Environmental Management Departments of Imo State University and Alvan Ikoku Federal College of Education. 800 copies of questionnaire were distributed using systematic sampling to 8 locations used for the pilot survey. About 96% of the questionnaire were retrieved and used for the study. 13 flood events were identified in the study area. Their causes, years and dates of events were documented in the text, and the damages they caused were evaluated. The study established that for each flood event, there is over 200mm of rain observed on the day of the flood and the day before the flood. The study also observed that the areas that situate at higher elevation (See DEM) are less prone to flood hazards while areas at low elevations are more prone to flood hazards. Elements identified to be at risk of flood are agricultural land, residential dwellings, retail trading and related services, public buildings and community services. The study thereby recommends non settlement at flood plains and flood prone areas and rearrangement of land use activities in the upper Imo River Basin among othersKeywords: flood hazard, flood plain, geomorphology, Imo River Basin
Procedia PDF Downloads 3054094 Visualization Tool for EEG Signal Segmentation
Authors: Sweeti, Anoop Kant Godiyal, Neha Singh, Sneh Anand, B. K. Panigrahi, Jayasree Santhosh
Abstract:
This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length.Keywords: de-noising, multi-channel data, PCA, power spectra, segmentation
Procedia PDF Downloads 3984093 White Wine Discrimination Based on Deconvoluted Surface Enhanced Raman Spectroscopy Signals
Authors: Dana Alina Magdas, Nicoleta Simona Vedeanu, Ioana Feher, Rares Stiufiuc
Abstract:
Food and beverages authentication using rapid and non-expensive analytical tools represents nowadays an important challenge. In this regard, the potential of vibrational techniques in food authentication has gained an increased attention during the last years. For wines discrimination, Raman spectroscopy appears more feasible to be used as compared with IR (infrared) spectroscopy, because of the relatively weak water bending mode in the vibrational spectroscopy fingerprint range. Despite this, the use of Raman technique in wine discrimination is in an early stage. Taking this into consideration, the wine discrimination potential of surface-enhanced Raman scattering (SERS) technique is reported in the present work. The novelty of this study, compared with the previously reported studies, concerning the application of vibrational techniques in wine discrimination consists in the fact that the present work presents the wines differentiation based on the individual signals obtained from deconvoluted spectra. In order to achieve wines classification with respect to variety, geographical origin and vintage, the peaks intensities obtained after spectra deconvolution were compared using supervised chemometric methods like Linear Discriminant Analysis (LDA). For this purpose, a set of 20 white Romanian wines from different viticultural Romanian regions four varieties, was considered. Chemometric methods applied directly to row SERS experimental spectra proved their efficiency, but discrimination markers identification found to be very difficult due to the overlapped signals as well as for the band shifts. By using this approach, a better general view related to the differences that appear among the wines in terms of compositional differentiation could be reached.Keywords: chemometry, SERS, variety, wines discrimination
Procedia PDF Downloads 1604092 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 1474091 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 1134090 Investigating the Capacity of Cracking Torsion of Rectangular and Cylindrical RC Beams with Spiral and Normal Stirrups
Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin, Mehdi Mohammad Rezaei, Saeed Eskanderzadeh
Abstract:
In this paper, the capacity of cracking torsion on rectangular and cylindrical beams with spiral and normal stirrups in similar properties are investigated. Also, in the beams with spiral stirrups, stirrups are not wrapping and spiral stirrups similar to normal stirrups in ACI code. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. In this research, the behavior of rectangular reinforced concrete beams is compared with the cylindrical reinforced concrete beams. The capacity of cracking torsion of rectangular and cylindrical RC beams with spiral and normal stirrups are same. In the other words, the behavior of rectangular RC beams is similar to cylindrical beams.Keywords: cracking torsion, RC beams, spiral stirrups, normal stirrups
Procedia PDF Downloads 2924089 Use of Thrombolytics for Acute Myocardial Infarctions in Resource-Limited Settings, Globally: A Systematic Literature Review
Authors: Sara Zelman, Courtney Meyer, Hiren Patel, Lisa Philpotts, Sue Lahey, Thomas Burke
Abstract:
Background: As the global burden of disease shifts from infectious diseases to noncommunicable diseases, there is growing urgency to provide treatment for time-sensitive illnesses, such as ST-Elevation Myocardial Infarctions (STEMIs). The standard of care for STEMIs in developed countries is Percutaneous Coronary Intervention (PCI). However, this is inaccessible in resource-limited settings. Before the discovery of PCI, Streptokinase (STK) and other thrombolytic drugs were first-line treatments for STEMIs. STK has been recognized as a cost-effective and safe treatment for STEMIs; however, in settings which lack access to PCI, it has not become the established second-line therapy. A systematic literature review was conducted to geographically map the use of STK for STEMIs in resource-limited settings. Methods: Our literature review group searched the databases Cinhal, Embase, Ovid, Pubmed, Web of Science, and WHO’s Index Medicus. The search terms included ‘thrombolytics’ AND ‘myocardial infarction’ AND ‘resource-limited’ and were restricted to human studies and papers written in English. A considerable number of studies came from Latin America; however, these studies were not written in English and were excluded. The initial search yielded 3,487 articles, which was reduced to 3,196 papers after titles were screened. Three medical professionals then screened abstracts, from which 291 articles were selected for full-text review and 94 papers were chosen for final inclusion. These articles were then analyzed and mapped geographically. Results: This systematic literature review revealed that STK has been used for the treatment of STEMIs in 33 resource-limited countries, with 18 of 94 studies taking place in India. Furthermore, 13 studies occurred in Pakistan, followed by Iran (6), Sri Lanka (5), Brazil (4), China (4), and South Africa (4). Conclusion: Our systematic review revealed that STK has been used for the treatment of STEMIs in 33 resource-limited countries, with the highest utilization occurring in India. This demonstrates that even though STK has high utility for STEMI treatment in resource-limited settings, it still has not become the standard of care. Future research should investigate the barriers preventing the establishment of STK use as second-line treatment after PCI.Keywords: cardiovascular disease, global health, resource-limited setting, ST-Elevation Myocardial Infarction, Streptokinase
Procedia PDF Downloads 1464088 Selecting the Best Software Product Using Analytic Hierarchy Process and Fuzzy-Analytic Hierarchy Process Modules
Authors: Anas Hourani, Batool Ahmad
Abstract:
Software applications play an important role inside any institute. They are employed to manage all processes and store entities-related data in the computer. Therefore, choosing the right software product that meets institute requirements is not an easy decision in view of considering multiple criteria, different points of views, and many standards. As a case study, Mutah University, located in Jordan, is in essential need of customized software, and several companies presented their software products which are very similar in quality. In this regard, an analytic hierarchy process (AHP) and a fuzzy analytic hierarchy process (Fuzzy-AHP) models are proposed in this research to identify the most suitable and best-fit software product that meets the institute requirements. The results indicate that both modules are able to help the decision-makers to make a decision, especially in complex decision problems.Keywords: analytic hierarchy process, decision modeling, fuzzy analytic hierarchy process, software product
Procedia PDF Downloads 3924087 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer
Authors: Shu-Ching Chen, Li-Yun Lee
Abstract:
The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome
Procedia PDF Downloads 2584086 Sustainable Strategies for Managing Rural Tourism in Abyaneh Village, Isfahan
Authors: Hoda Manafian, Stephen Holland
Abstract:
Problem statement: Rural areas in Iran are one of the most popular tourism destinations. Abyaneh Village is one of them with a long history behind it (more than 1500 years) which is a national heritage site and also is nominated as a world heritage site in UNESCO tentative list from 2007. There is a considerable foundation of religious-cultural heritage and also agricultural history and activities. However, this heritage site suffers from mass tourism which is beyond its social and physical carrying capacity, since the annual number of tourists exceed 500,000. While there are four adjacent villages around Abyaneh which can benefit from advantages of tourism. Local managers also can at the same time prorate the tourists’ flux of Abyaneh on those other villages especially in high-season. The other villages have some cultural and natural tourism attractions as well. Goal: The main goal of this study is to identify a feasible development strategy according to the current strengths, weaknesses, opportunities and threats of rural tourism in this area (Abyaneh Village and four adjacent villages). This development strategy can lead to sustainable management of these destinations. Method: To this end, we used SWOT analysis as a well-established tool for conducting a situational analysis to define a sustainable development strategy. The procedures included following steps: 1) Extracting variables of SWOT chart based on interviewing tourism experts (n=13), local elites (n=17) and personal observations of researcher. 2) Ranking the extracted variables from 1-5 by 13 tourism experts in Isfahan Cultural Heritage, Handcrafts and Tourism Organization (ICHTO). 3) Assigning weights to the ranked variables using Expert Choice Software and the method of Analytical Hierarchical Process (AHP). 4) Defining the Total Weighted Score (TWS) for each part of SWOT chart. 5) Identifying the strategic position according to the TWS 6) Selecting the best development strategy based on the defined position using the Strategic Position and Action Evaluation (SPACE) matrix. 7) Assessing the Probability of Strategic Success (PSS) for the preferred strategy using relevant formulas. 8) Defining two feasible alternatives for sustainable development. Results and recommendations: Cultural heritage attractions were first-ranked variable in strength chart and also lack of sufficient amenities for one-day tourists (catering, restrooms, parking, and accommodation) was firs-ranked weakness. The strategic position was in ST (Strength-Threat) quadrant which is a maxi-mini position. According this position we would suggest ‘Competitive Strategy’ as a development strategy which means relying on strengths in order to neutralization threats. The result of Probability of Strategic Success assessment which was 0.6 shows that this strategy could be successful. The preferred approach for competitive strategy could be rebranding the market of tourism in this area. Rebranding the market can be achieved by two main alternatives which are based on the current strengths and threats: 1) Defining a ‘Heritage Corridor’ from first adjacent village to Abyaneh as a final destination. 2) Focus on ‘educational tourism’ versus mass tourism and also green tourism by developing agritourism in that corridor.Keywords: Abyaneh village, rural tourism, SWOT analysis, sustainable strategies
Procedia PDF Downloads 3844085 eTransformation Framework for the Cognitive Systems
Authors: Ana Hol
Abstract:
Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.Keywords: system implementations, AI supported systems, cognitive systems, eTransformation
Procedia PDF Downloads 238