Search results for: virtual Machine
3399 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure
Abstract:
With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure
Procedia PDF Downloads 2073398 Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications
Authors: Hatim Laalej, Jon Stammers
Abstract:
In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time.Keywords: machining, manufacturing, tool wear, signal processing
Procedia PDF Downloads 2453397 Alternative Approach to the Machine Vision System Operating for Solving Industrial Control Issue
Authors: M. S. Nikitenko, S. A. Kizilov, D. Y. Khudonogov
Abstract:
The paper considers an approach to a machine vision operating system combined with using a grid of light markers. This approach is used to solve several scientific and technical problems, such as measuring the capability of an apron feeder delivering coal from a lining return port to a conveyor in the technology of mining high coal releasing to a conveyor and prototyping an autonomous vehicle obstacle detection system. Primary verification of a method of calculating bulk material volume using three-dimensional modeling and validation in laboratory conditions with relative errors calculation were carried out. A method of calculating the capability of an apron feeder based on a machine vision system and a simplifying technology of a three-dimensional modelled examined measuring area with machine vision was offered. The proposed method allows measuring the volume of rock mass moved by an apron feeder using machine vision. This approach solves the volume control issue of coal produced by a feeder while working off high coal by lava complexes with release to a conveyor with accuracy applied for practical application. The developed mathematical apparatus for measuring feeder productivity in kg/s uses only basic mathematical functions such as addition, subtraction, multiplication, and division. Thus, this fact simplifies software development, and this fact expands the variety of microcontrollers and microcomputers suitable for performing tasks of calculating feeder capability. A feature of an obstacle detection issue is to correct distortions of the laser grid, which simplifies their detection. The paper presents algorithms for video camera image processing and autonomous vehicle model control based on obstacle detection machine vision systems. A sample fragment of obstacle detection at the moment of distortion with the laser grid is demonstrated.Keywords: machine vision, machine vision operating system, light markers, measuring capability, obstacle detection system, autonomous transport
Procedia PDF Downloads 1143396 Virtualization of Production Using Digital Twin Technology
Authors: Bohuslava Juhasova, Igor Halenar, Martin Juhas
Abstract:
The contribution deals with the current situation in modern manufacturing enterprises, which is affected by digital virtualization of different parts of the production process. The overview part of this article points to the fact, that wide informatization of all areas causes substitution of real elements and relationships between them with their digital, often virtual images, in real practice. Key characteristics of the systems implemented using digital twin technology along with essential conditions for intelligent products deployment were identified across many published studies. The goal was to propose a template for the production system realization using digital twin technology as a supplement to standardized concepts for Industry 4.0. The main resulting idea leads to the statement that the current trend of implementation of the new technologies and ways of communication between industrial facilities erases the boundaries between the real environment and the virtual world.Keywords: communication, digital twin, Industry 4.0, simulation, virtualization
Procedia PDF Downloads 2483395 Pre-Service EFL Teachers' Perceptions of Written Corrective Feedback in a Wiki-Based Environment
Authors: Mabel Ortiz, Claudio Díaz
Abstract:
This paper explores Chilean pre-service teachers' perceptions about the provision of corrective feedback in a wiki environment during the collaborative writing of an argumentative essay. After conducting a semi-structured interview on 22 participants, the data were processed through the content analysis technique. The results show that students have positive perceptions about corrective feedback, provided through a wiki virtual environment, which in turn facilitates feedback provision and impacts language learning effectively. Some of the positive perceptions about virtual feedback refer to permanent access, efficiency, simultaneous revision and immediacy. It would then be advisable to integrate wiki-based feedback as a methodology for the language classroom and collaborative writing tasks.Keywords: argumentative essay, focused corrective feedback, perception, wiki environment
Procedia PDF Downloads 2923394 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2033393 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 823392 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 1003391 Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis
Authors: Deng Zengming, Wang Mingjiang
Abstract:
As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of –the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05.Keywords: fusion method, Gaussian mixture model, hybrid framework, view synthesis
Procedia PDF Downloads 2503390 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 533389 Machine Learning Approach to Project Control Threshold Reliability Evaluation
Authors: Y. Kim, H. Lee, M. Park, B. Lee
Abstract:
Planning is understood as the determination of what has to be performed, how, in which sequence, when, what resources are needed, and their cost within the organization before execution. In most construction project, it is evident that the inherent nature of planning is dynamic, and initial planning is subject to be changed due to various uncertain conditions of construction project. Planners take a continuous revision process during the course of a project and until the very end of project. However, current practice lacks reliable, systematic tool for setting variance thresholds to determine when and what corrective actions to be taken. Rather it is heavily dependent on the level of experience and knowledge of the planner. Thus, this paper introduces a machine learning approach to evaluate project control threshold reliability incorporating project-specific data and presents a method to automate the process. The results have shown that the model improves the efficiency and accuracy of the monitoring process as an early warning.Keywords: machine learning, project control, project progress monitoring, schedule
Procedia PDF Downloads 2443388 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals
Authors: Nelomi Anandagoda, Leanne J. Eveson
Abstract:
During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching
Procedia PDF Downloads 1703387 A Study on the Optimum Shoulder Width in the Tunnel Considering Driving Safety
Authors: Somyoung Shin, Donghun Jeong, Yeoil Yun
Abstract:
South Korea continuously installed tunnels in consideration of the safety and operation efficiency, and the number of installed tunnels has doubled over the past ten years. The tunnel section is designed based on the guidelines, but the tunnel entrance becomes narrow due to dark adaptation and pressure. In fact, around 13% of traffic in expressways of Japan happens at the entrance, leading to congestion and rear-ends collision accidents. Therefore, this study aims to analyze the stability from the expansion of the shoulder width in the tunnel entrance by applying a virtual reality driving simulator in order to reduce the accidents that happen in the tunnel entrance. To compare the driving stability based on the changes in the width of the right shoulder under the same condition, a virtual reality driving simulator is used to conduct an experiment on 30 subjects in their 20s to 60s and to provide a more practical virtual reality driving environment, and an experiment map is designed based on actual roads as the background to conduct the experiment. The right shoulder is classified into 2.5m and 3.0m based on the design guidelines of the expressways and the road structure installation regulations. The experimenters' experiment order is decided randomly. As a result of analyzing the average speed, it was displayed as 100.73km/h when the shoulder width was 2.5m and 101.69km/h when the shoulder width was 3.0m and as a result of conducting t-test analysis, the p-value appeared as more than 0.05 in the significance level of 95%, so it was statistically insignificant. Also, as a result of analyzing the speed deviation between the average driving speed of the analyzed interval and the average driving speed upon entering the tunnel, it was displayed as 3.06km/h when the shoulder width was 2.5m and 1.87km/h when the shoulder width was 3.0m and as a result of conducting t-test analysis, the p-value appeared as less than 0.05 in the significance level of 95%, so it was statistically significant. This means that when the shoulder width is 3.0m, there is stability in terms of the driving stability compared to when it is 2.5m. Therefore, it is considered that when new roads are constructed in Korea, the right shoulder width should be installed as 3.0m to enhance the driving stability.Keywords: driving stability, shoulder width, tunnel, virtual reality driving simulator
Procedia PDF Downloads 1973386 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 863385 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 863384 Augmented Tourism: Definitions and Design Principles
Authors: Eric Hawkinson
Abstract:
After designing and implementing several iterations of implementations of augmented reality (AR) in tourism, this paper takes a deep look into design principles and implementation strategies of using AR at destination tourism settings. The study looks to define augmented tourism from past implementations as well as several cases, uses designed and implemented for tourism. The discussion leads to formation of frameworks and best practices for AR as well as virtual reality( VR) to be used in tourism settings. Some main affordances include guest autonomy, customized experiences, visitor data collection and increased electronic word-of-mouth generation for promotion purposes. Some challenges found include the need for high levels of technology infrastructure, low adoption rates or ‘buy-in’ rates, high levels of calibration and customization, and the need for maintenance and support services. Some suggestions are given as to how to leverage the affordances and meet the challenges of implementing AR for tourism.Keywords: augmented tourism, augmented reality, eTourism, virtual tourism, tourism design
Procedia PDF Downloads 3703383 Robustness of the Fuzzy Adaptive Speed Control of a Multi-Phase Asynchronous Machine
Authors: Bessaad Taieb, Benbouali Abderrahmen
Abstract:
Fuzzy controllers are a powerful tool for controlling complex processes. However, its robustness capacity remains moderately limited because it loses its property for large ranges of parametric variations. In this paper, the proposed control method is designed, based on a fuzzy adaptive controller used as a remedy for this problem. For increase the robustness of the vector control and to maintain the performance of the five-phase asynchronous machine despite the presence of disturbances (variation of rotor resistance, rotor inertia variations, sudden variations in the load etc.), by applying the method of behaviour model control (BMC). The results of simulation show that the fuzzy adaptive control provides best performance and has a more robustness as the fuzzy (FLC) and as a conventional (PI) controller.Keywords: fuzzy adaptive control, behaviour model control, vector control, five-phase asynchronous machine
Procedia PDF Downloads 953382 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1143381 Arboretum: Community Mixed Reality Nature Environment
Authors: Radek Richtr, Petr Paus
Abstract:
The connection to the primal environment, living and growing nature is disappearing for most of the residents in urban core areas nowadays. Most of the residents perceive scattered green mass like more technical objects than sentient living organisms. The Arboretum is a type of application from the 'serious games' genre -it is a research experiment masked as a gaming environment. In used virtual and augmented reality environments, every city district is represented by central objects; Pillars created as a result of resident’s consensus. Every player can furthermore plant and grow virtual organic seeds everywhere he wants. Seeds sprout, and their form is determined by both players’ choice and nearest pillar. Every house, private rooms, and even workspace get their new living virtual avatar-connected 'residents' growing from player-planted seeds. Every room or workspace is transformed into (calming) nature scene, reflecting in some way both players and community spirit and together create a vicinity environment. The conceptual design phase of the project is crucial and allows for the identification of the fundamental problems through abstraction. The project that centers on wide community usage needs a clear and accessible interface. Simultaneously the conceptual design allows early sharing of project ideas and creating public concern. The paper discusses the current conceptual model of an Arboretum project (which is part of a whole widespread project) and its validation.Keywords: augmented reality, conceptual design, mixed reality, social engineering
Procedia PDF Downloads 2303380 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.Keywords: parking system, optimal location, response time, S/R machine
Procedia PDF Downloads 4093379 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 973378 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine
Procedia PDF Downloads 1083377 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.Keywords: automatic equalization, genre classification, music segment detection, spatial audio processing
Procedia PDF Downloads 4293376 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 313375 The Influence of Different Flux Patterns on Magnetic Losses in Electric Machine Cores
Authors: Natheer Alatawneh
Abstract:
The finite element analysis of magnetic fields in electromagnetic devices shows that the machine cores experience different flux patterns including alternating and rotating fields. The rotating fields are generated in different configurations range between circular and elliptical with different ratios between the major and minor axis of the flux locus. Experimental measurements on electrical steel exposed to different flux patterns disclose different magnetic losses in the samples under test. Consequently, electric machines require special attention during the cores loss calculation process to consider the flux patterns. In this study, a circular rotational single sheet tester is employed to measure the core losses in electric steel sample of M36G29. The sample was exposed to alternating field, circular field, and elliptical fields with axis ratios of 0.2, 0.4, 0.6 and 0.8. The measured data was implemented on 6-4 switched reluctance motor at three different frequencies of interest to the industry as 60 Hz, 400 Hz, and 1 kHz. The results disclose a high margin of error that may occur during the loss calculations if the flux patterns issue is neglected. The error in different parts of the machine associated with considering the flux patterns can be around 50%, 10%, and 2% at 60Hz, 400Hz, and 1 kHz, respectively. The future work will focus on the optimization of machine geometrical shape which has a primary effect on the flux pattern in order to minimize the magnetic losses in machine cores.Keywords: alternating core losses, electric machines, finite element analysis, rotational core losses
Procedia PDF Downloads 2523374 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1323373 Direct Translation vs. Pivot Language Translation for Persian-Spanish Low-Resourced Statistical Machine Translation System
Authors: Benyamin Ahmadnia, Javier Serrano
Abstract:
In this paper we compare two different approaches for translating from Persian to Spanish, as a language pair with scarce parallel corpus. The first approach involves direct transfer using an statistical machine translation system, which is available for this language pair. The second approach involves translation through English, as a pivot language, which has more translation resources and more advanced translation systems available. The results show that, it is possible to achieve better translation quality using English as a pivot language in either approach outperforms direct translation from Persian to Spanish. Our best result is the pivot system which scores higher than direct translation by (1.12) BLEU points.Keywords: statistical machine translation, direct translation approach, pivot language translation approach, parallel corpus
Procedia PDF Downloads 4873372 Autoignition Delay Characterstic of Hydrocarbon (n-Pentane) from Lean to Rich Mixtures
Authors: Sunil Verma
Abstract:
This report is concerned with study of autoignition delay characterstics of n-pentane. Experiments are done for different equivalents ratio on Rapid compression machine. Dependence of autoignition delay period is clearly explained from lean to rich mixtures. Equivalence ratio is varied from 0.33 to 0.6.Keywords: combustion, autoignition, ignition delay, rapid compression machine
Procedia PDF Downloads 3513371 Performances Analysis and Optimization of an Adsorption Solar Cooling System
Authors: Nadia Allouache
Abstract:
The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling
Procedia PDF Downloads 4393370 Integrating Virtual Reality and Building Information Model-Based Quantity Takeoffs for Supporting Construction Management
Authors: Chin-Yu Lin, Kun-Chi Wang, Shih-Hsu Wang, Wei-Chih Wang
Abstract:
A construction superintendent needs to know not only the amount of quantities of cost items or materials completed to develop a daily report or calculate the daily progress (earned value) in each day, but also the amount of quantities of materials (e.g., reinforced steel and concrete) to be ordered (or moved into the jobsite) for performing the in-progress or ready-to-start construction activities (e.g., erection of reinforced steel and concrete pouring). These daily construction management tasks require great effort in extracting accurate quantities in a short time (usually must be completed right before getting off work every day). As a result, most superintendents can only provide these quantity data based on either what they see on the site (high inaccuracy) or the extraction of quantities from two-dimension (2D) construction drawings (high time consumption). Hence, the current practice of providing the amount of quantity data completed in each day needs improvement in terms of more accuracy and efficiency. Recently, a three-dimension (3D)-based building information model (BIM) technique has been widely applied to support construction quantity takeoffs (QTO) process. The capability of virtual reality (VR) allows to view a building from the first person's viewpoint. Thus, this study proposes an innovative system by integrating VR (using 'Unity') and BIM (using 'Revit') to extract quantities to support the above daily construction management tasks. The use of VR allows a system user to be present in a virtual building to more objectively assess the construction progress in the office. This VR- and BIM-based system is also facilitated by an integrated database (consisting of the information and data associated with the BIM model, QTO, and costs). In each day, a superintendent can work through a BIM-based virtual building to quickly identify (via a developed VR shooting function) the building components (or objects) that are in-progress or finished in the jobsite. And he then specifies a percentage (e.g., 20%, 50% or 100%) of completion of each identified building object based on his observation on the jobsite. Next, the system will generate the completed quantities that day by multiplying the specified percentage by the full quantities of the cost items (or materials) associated with the identified object. A building construction project located in northern Taiwan is used as a case study to test the benefits (i.e., accuracy and efficiency) of the proposed system in quantity extraction for supporting the development of daily reports and the orders of construction materials.Keywords: building information model, construction management, quantity takeoffs, virtual reality
Procedia PDF Downloads 132