Search results for: unified commensurate multiple
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5066

Search results for: unified commensurate multiple

4496 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC

Authors: Qiang Zhang, Chun Yuan

Abstract:

Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).

Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel

Procedia PDF Downloads 399
4495 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels

Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge

Abstract:

An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panels

Keywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling

Procedia PDF Downloads 315
4494 Statistical Variability of Soil Parameters within the Copper Belt Region of the Democratic Republic of the Congo

Authors: Stephan P. Barkhuizen, Deon Greyling, Ryan J. Miller

Abstract:

The accurate determination of the engineering parameters of soil is necessary for the design of geotechnical structures, such as Tailings Storage Facilities. The shear strength and saturated permeability of soil and tailings samples obtained from 14 sites located in the copper belt in the Democratic Republic of the Congo have been tested at six commercial soil laboratories in South Africa. This study compiles a database of the test results proved by the soil laboratories. The samples have been categorised into clay, silt, and sand, based on the Unified Soil Classification System, with tailings kept separate. The effective friction angle (Φ’) and cohesion (c’) were interpreted from the stress paths, in s’:t space, obtained from triaxial tests. The minimum, lower quartile, median, upper quartile, and maximum values for Φ’,c’, and saturated hydraulic conductivity (k) have been determined for the soil sample. The objective is to provide statistics of the measured values of the engineering properties for the TSF borrow material, foundation soils and tailings of this region.

Keywords: Democratic Republic of the Congo, laboratory test work, soil engineering parameter variation, tailings storage facilities

Procedia PDF Downloads 64
4493 Brevicoryne brassicae Compatibility with Maize in Multiple Cropping System

Authors: Zunnu Raen Akhtar

Abstract:

Brevicoryne brassicae, aphid feeds on cabbage and Brassica sp. as preferred host. Brassica plants usually ripen when maize starts growing in multiple cropping systems. Experiment was conducted to observe suitability of B. brassicae by rearing it on maize as host. In a tritrophic eco-system, predator coccinellids can be found in the fields of brassica and maize. This experiment emphasized on issue of aphids growing incidence in a cropping system. Brassica is sown and harvested earlier than maize and is attacked by aphids, while maize is also attacked by aphids. Five mortality tests were conducted of B. brassicae fed on maize. Out of five mortality tests, 3 tests were conducted using 1st instar, while in two mortality tests, 2nd instars of aphids were used. Mortality tests revealed that first instar mortality was quite high on the second day, while in second instar larvae mortality was delayed up to third to the fourth day. These experiments reveal that aphids can use maize as substitute host at later instars as compared to young ones. These experiments can be foundation for studying further crop-insect interaction and sampling techniques used for this purpose.

Keywords: host suitability, B. brassicae, maize, tritrophic interaction

Procedia PDF Downloads 194
4492 A Study of User Awareness and Attitudes Towards Civil-ID Authentication in Oman’s Electronic Services

Authors: Raya Al Khayari, Rasha Al Jassim, Muna Al Balushi, Fatma Al Moqbali, Said El Hajjar

Abstract:

This study utilizes linear regression analysis to investigate the correlation between user account passwords and the probability of civil ID exposure, offering statistical insights into civil ID security. The study employs multiple linear regression (MLR) analysis to further investigate the elements that influence consumers’ views of civil ID security. This aims to increase awareness and improve preventive measures. The results obtained from the MLR analysis provide a thorough comprehension and can guide specific educational and awareness campaigns aimed at promoting improved security procedures. In summary, the study’s results offer significant insights for improving existing security measures and developing more efficient tactics to reduce risks related to civil ID security in Oman. By identifying key factors that impact consumers’ perceptions, organizations can tailor their strategies to address vulnerabilities effectively. Additionally, the findings can inform policymakers on potential regulatory changes to enhance civil ID security in the country.

Keywords: civil-id disclosure, awareness, linear regression, multiple regression

Procedia PDF Downloads 57
4491 Expression of Ki-67 in Multiple Myeloma: A Clinicopathological Study

Authors: Kangana Sengar, Sanjay Deb, Ramesh Dawar

Abstract:

Introduction: Ki-67 can be a useful marker in determining proliferative activity in patients with multiple myeloma (MM). However, using Ki-67 alone results in the erroneous inclusion of non-myeloma cells leading to false high counts. We have used Dual IHC (immunohistochemistry) staining with Ki-67 and CD138 to enhance specificity in assessing proliferative activity of bone marrow plasma cells. Aims and objectives: To estimate the proportion of proliferating (Ki-67 expressing) plasma cells in patients with MM and correlation of Ki-67 with other known prognostic parameters. Materials and Methods: Fifty FFPE (formalin fixed paraffin embedded) blocks of trephine biopsies of cases diagnosed as MM from 2010 to 2015 are subjected to H & E staining and Dual IHC staining for CD 138 and Ki-67. H & E staining is done to evaluate various histological parameters like percentage of plasma cells, pattern of infiltration (nodular, interstitial, mixed and diffuse), routine parameters of marrow cellularity and hematopoiesis. Clinical data is collected from patient records from Medical Record Department. Each of CD138 expressing cells (cytoplasmic, red) are scored as proliferating plasma cells (containing a brown Ki¬67 nucleus) or non¬proliferating plasma cells (containing a blue, counter-stained, Ki-¬67 negative nucleus). Ki-67 is measured as percentage positivity with a maximum score of hundred percent and lowest of zero percent. The intensity of staining is not relevant. Results: Statistically significant correlation of Ki-67 in D-S Stage (Durie & Salmon Stage) I vs. III (p=0.026) and ISS (International Staging System) Stage I vs. III (p=0.019), β2m (p=0.029) and percentage of plasma cells (p < 0.001) is seen. No statistically significant correlation is seen between Ki-67 and hemoglobin, platelet count, total leukocyte count, total protein, albumin, S. calcium, S. creatinine, S. LDH, blood urea and pattern of infiltration. Conclusion: Ki-67 index correlated with other known prognostic parameters. However, it is not determined routinely in patients with MM due to little information available regarding its relevance and paucity of studies done to correlate with other known prognostic factors in MM patients. To the best of our knowledge, this is the first study in India using Dual IHC staining for Ki-67 and CD138 in MM patients. Routine determination of Ki-67 will help to identify patients who may benefit with more aggressive therapy. Recommendation: In this study follow up of patients is not included, and the sample size is small. Studying with larger sample size and long follow up is advocated to prognosticate Ki-67 as a marker of survival in patients with multiple myeloma.

Keywords: bone marrow, dual IHC, Ki-67, multiple myeloma

Procedia PDF Downloads 155
4490 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network

Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.

Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM

Procedia PDF Downloads 502
4489 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies

Keywords: rotor, crack, rubbing, axial force, non linear

Procedia PDF Downloads 401
4488 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges

Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau

Abstract:

Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.

Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment

Procedia PDF Downloads 376
4487 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 125
4486 Woman: Her Identity and Strive for Existence Reflected English Literature

Authors: Diksha Kadam

Abstract:

The study of images of women in literature and women writers has been a significant area of concern for the last four decades because it is as ‘the study of signification and meaning production’ play a vital role in shaping the perceptions and consciousness of various segment of society in relation to the lives, roles, problems and experiences of different categories of women as women and as autonomous citizen of society. In the history of worlds English literature the status of women and representation of her in the writings is an issue of discussion always. The essence of her existence in the literature is felt; the ecstasy of her feelings is always seen. The literature is full of facts and figures. She is one of them. Her contribution to the literature is undoubtedly a beginning of a new era. Multiple challenges and multiple identities as represented in majority of the literary texts and in real provide much hope and assurance to the new generation of mothers and daughters in the direction of transformation of the individual and collective consciousness of society paving way for the emergence of an actually empowered new woman. This paper will focus on some of the prominent Indian and American women writers in English literature and the various dimensions of her image through some of the prominent works. This attempt of mine will be merely a salute to those women who have struggled to prove their identity as one of the members of society.

Keywords: role of women’s writing, new era, contribution to the literature, consciousness, existence

Procedia PDF Downloads 403
4485 Influence of Compactive Efforts on the Hydraulic Conductivity of Bagasse Ash Treated Black Cotton Soil

Authors: T. S. Ijimdiya, K. J. Osinubi

Abstract:

This study examines the influence of compactive efforts on hydraulic conductivity behaviour of compacted black cotton soil treated with bagasse ash which is necessary in assessing the performance of the soil - bagasse ash mixture for use as a suitable barrier material in waste containment application. Black cotton soil treated with up to 12% bagasse ash (obtained from burning the fibrous residue from the extraction of sugar juice from sugarcane) by dry weight of soil for use in waste containment application. The natural soil classifies as A-7-6 or CH in accordance with the AASHTO and the Unified Soil Classification System, respectively. The treated soil samples were prepared at molding water contents of -2, 0, +2, and +4 % of optimum moisture contents and compacted using four compactive efforts of Reduced British Standard Light (RBSL), British Standard light (BSL), West African Standard (WAS) and British Standard Heavy (BSH). The results obtained show that hydraulic conductivity decreased with increase in bagasse ash content, moulding water content and compaction energy.

Keywords: bagasse ash treatment, black cotton soil, hydraulic conductivity, moulding water contents, compactive efforts

Procedia PDF Downloads 433
4484 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 358
4483 Monitoring of Endocrine Disruptors in Surface Waters and Sediment from the River Nile (Egypt) by Yeast Assays

Authors: Alaa G. M. Osman, Khaled Y. AbouelFadl, Angela Krüger, Werner Kloas

Abstract:

In Egypt, no previous records are available regarding possible multiple hormonal activities in the aquatic systems and especially the river Nile. In this paper, the in vitro yeast estrogen screen (YES) and yeast androgen screen (YAS) were used to assess the multiple hormonal activities in surface waters and sediment from the Egyptian river Nile for the first time. This study sought to determine if river Nile water caused changes in gonadal histology of Nile tilapia (Oreochromis niloticus niloticus). All water samples exhibited extremely low levels of estrogenicity. Estrogenicity was not detected nearly in any of the sediment samples. Unlike the estrogenicity, significant androgenic activities were recorded in the water and sediment samples along the Nile course. The present study reports for the first time quantified anti-estrogenic and anti-androgenic activities with high levels in both water and sediment of the river Nile. The greatest anti-estrogenic and anti-androgenic activities were observed in sample from downstream river Nile. These results indicated that the anti-estrogenic and anti-androgenic activities along the Nile course were great and the pollution of the sites at the downstream was more serious than the upstream sites due to industrial activities at theses sites. Good correlations were observed among some hormonal activities, suggesting coexistence of these contaminants in the environmental matrices. There were no signs of sexual disruption in any of the gonads analysed from either male or female Nile tilapia, demonstrating that any hormonal activity present along the Nile course was not sufficient to induce adverse effects on reproductive development. Further investiga¬tion is necessary to identify the chemicals responsible for the hormonal activities in the river Nile and to examine the effect of very low levels of hormonally active chemicals on gonadal histology, as well as in the development of more sensitive biomarkers.

Keywords: multiple hormonal activities, YES, YAS, river Nile, Nile tilapia, gonadal histology

Procedia PDF Downloads 483
4482 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 467
4481 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner

Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa

Abstract:

This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.

Keywords: artificial teacher, e-learning, self-study system, simple EEG

Procedia PDF Downloads 145
4480 Model Based Fault Diagnostic Approach for Limit Switches

Authors: Zafar Mahmood, Surayya Naz, Nazir Shah Khattak

Abstract:

The degree of freedom relates to our capability to observe or model the energy paths within the system. Higher the number of energy paths being modeled leaves to us a higher degree of freedom, but increasing the time and modeling complexity rendering it useless for today’s world’s need for minimum time to market. Since the number of residuals that can be uniquely isolated are dependent on the number of independent outputs of the system, increasing the number of sensors required. The examples of discrete position sensors that may be used to form an array include limit switches, Hall effect sensors, optical sensors, magnetic sensors, etc. Their mechanical design can usually be tailored to fit in the transitional path of an STME in a variety of mechanical configurations. The case studies into multi-sensor system were carried out and actual data from sensors is used to test this generic framework. It is being investigated, how the proper modeling of limit switches as timing sensors, could lead to unified and neutral residual space while keeping the implementation cost reasonably low.

Keywords: low-cost limit sensors, fault diagnostics, Single Throw Mechanical Equipment (STME), parameter estimation, parity-space

Procedia PDF Downloads 617
4479 Interference among Lambsquarters and Oil Rapeseed Cultivars

Authors: Reza Siyami, Bahram Mirshekari

Abstract:

Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.

Keywords: green cover percentage, independent variable, interference, regression

Procedia PDF Downloads 420
4478 Reinforcement Learning for Self Driving Racing Car Games

Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh

Abstract:

This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.

Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming

Procedia PDF Downloads 46
4477 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 560
4476 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs

Authors: Anika Chebrolu

Abstract:

Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.

Keywords: drug design, multitargeticity, de-novo, reinforcement learning

Procedia PDF Downloads 97
4475 Crack Width Analysis of Reinforced Concrete Members under Shrinkage Effect by Pseudo-Discrete Crack Model

Authors: F. J. Ma, A. K. H. Kwan

Abstract:

Crack caused by shrinkage movement of concrete is a serious problem especially when restraint is provided. It may cause severe serviceability and durability problems. The existing prediction methods for crack width of concrete due to shrinkage movement are mainly numerical methods under simplified circumstances, which do not agree with each other. To get a more unified prediction method applicable to more sophisticated circumstances, finite element crack width analysis for shrinkage effect should be developed. However, no existing finite element analysis can be carried out to predict the crack width of concrete due to shrinkage movement because of unsolved reasons of conventional finite element analysis. In this paper, crack width analysis implemented by finite element analysis is presented with pseudo-discrete crack model, which combines traditional smeared crack model and newly proposed crack queuing algorithm. The proposed pseudo-discrete crack model is capable of simulating separate and single crack without adopting discrete crack element. And the improved finite element analysis can successfully simulate the stress redistribution when concrete is cracked, which is crucial for predicting crack width, crack spacing and crack number.

Keywords: crack queuing algorithm, crack width analysis, finite element analysis, shrinkage effect

Procedia PDF Downloads 419
4474 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 131
4473 Using Power Flow Analysis for Understanding UPQC’s Behaviors

Authors: O. Abdelkhalek, A. Naimi, M. Rami, M. N. Tandjaoui, A. Kechich

Abstract:

This paper deals with the active and reactive power flow analysis inside the unified power quality conditioner (UPQC) during several cases. The UPQC is a combination of shunt and series active power filter (APF). It is one of the best solutions towards the mitigation of voltage sags and swells problems on distribution network. This analysis can provide the helpful information to well understanding the interaction between the series filter, the shunt filter, the DC bus link and electrical network. The mathematical analysis is based on active and reactive power flow through the shunt and series active power filter. Wherein series APF can absorb or deliver the active power to mitigate a swell or sage voltage where in the both cases it absorbs a small reactive power quantity whereas the shunt active power absorbs or releases the active power for stabilizing the storage capacitor’s voltage as well as the power factor correction. The voltage sag and voltage swell are usually interpreted through the DC bus voltage curves. These two phenomena are introduced in this paper with a new interpretation based on the active and reactive power flow analysis inside the UPQC. For simplifying this study, a linear load is supposed in this digital simulation. The simulation results are carried out to confirm the analysis done.

Keywords: UPQC, Power flow analysis, shunt filter, series filter.

Procedia PDF Downloads 572
4472 Paper-Like and Battery Free Sensor Patches for Wound Monitoring

Authors: Xiaodi Su, Xin Ting Zheng, Laura Sutarlie, Nur Asinah binte Mohamed Salleh, Yong Yu

Abstract:

Wound healing is a dynamic process with multiple phases. Rapid profiling and quantitative characterization of inflammation and infection remain challenging. We have developed paper-like battery-free multiplexed sensors for holistic wound assessment via quantitative detection of multiple inflammation and infection markers. In one of the designs, the sensor patch consists of a wax-printed paper panel with five colorimetric sensor channels arranged in a pattern resembling a five-petaled flower (denoted as a ‘Petal’ sensor). The five sensors are for temperature, pH, trimethylamine, uric acid, and moisture. The sensor patch is sandwiched between a top transparent silicone layer and a bottom adhesive wound contact layer. In the second design, a palm-like-shaped paper strip is fabricated by a paper-cutter printer (denoted as ‘Palm’ sensor). This sensor strip carries five sensor regions connected by a stem sampling entrance that enables rapid colorimetric detection of multiple bacteria metabolites (aldehyde, lactate, moisture, trimethylamine, tryptophan) from wound exudate. For both the “\’ Petal’ and ‘Palm’ sensors, color images can be captured by a mobile phone. According to the color changes, one can quantify the concentration of the biomarkers and then determine wound healing status and identify/quantify bacterial species in infected wounds. The ‘Petal’ and ‘Palm’ sensors are validated with in-situ animal and ex-situ skin wound models, respectively. These sensors have the potential for integration with wound dressing to allow early warning of adverse events without frequent removal of the plasters. Such in-situ and early detection of non-healing condition can trigger immediate clinical intervention to facilitate wound care management.

Keywords: wound infection, colorimetric sensor, paper fluidic sensor, wound care

Procedia PDF Downloads 81
4471 A Simulation Study on the Applicability of Overbooking Strategies in Inland Container Transport

Authors: S. Fazi, B. Behdani

Abstract:

The inland transportation of maritime containers entails the use of different modalities whose capacity is typically booked in advance. Containers may miss their scheduled departure time at a terminal for several reasons, such as delays, change of transport modes, multiple bookings pending. In those cases, it may be difficult for transport service providers to find last minute containers to fill the vacant capacity. Similarly to other industries, overbooking could potentially limit these drawbacks at the cost of a lower service level in case of actual excess of capacity in overbooked rides. However, the presence of multiple modalities may provide the required flexibility in rescheduling and limit the dissatisfaction of the shippers in case of containers in overbooking. This flexibility is known with the term 'synchromodality'. In this paper, we evaluate via discrete event simulation the application of overbooking. Results show that in certain conditions overbooking can significantly increase profit and utilization of high-capacity means of transport, such as barges and trains. On the other hand, in case of high penalty costs and limited no-show, overbooking may lead to an excessive use of expensive trucks.

Keywords: discrete event simulation, flexibility, inland shipping, multimodality, overbooking

Procedia PDF Downloads 134
4470 Explainable Graph Attention Networks

Authors: David Pham, Yongfeng Zhang

Abstract:

Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.

Keywords: explainable AI, graph attention network, graph neural network, node classification

Procedia PDF Downloads 199
4469 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 517
4468 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning

Authors: Abdullah Bal

Abstract:

This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.

Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification

Procedia PDF Downloads 21
4467 Introducing and Effectiveness Evaluation of Innovative Logistics System Simulation Teaching: Theoretical Integration and Verification

Authors: Tsai-Pei Liu, Zhi-Rou Zheng, Tzu-Tzu Wen

Abstract:

Innovative logistics system simulation teaching is to extract the characteristics of the system through simulation methodology. The system has randomness and interaction problems in the execution time. Therefore, the simulation model can usually deal with more complex logistics process problems, giving students different learning modes. Students have more autonomy in learning time and learning progress. System simulation has become a new educational tool, but it still needs to accept many tests to use it in the teaching field. Although many business management departments in Taiwan have started to promote, this kind of simulation system teaching is still not popular, and the prerequisite for popularization is to be supported by students. This research uses an extension of Integration Unified Theory of Acceptance and Use of Technology (UTAUT2) to explore the acceptance of students in universities of science and technology to use system simulation as a learning tool. At the same time, it is hoped that this innovation can explore the effectiveness of the logistics system simulation after the introduction of teaching. The results indicated the significant influence of performance expectancy, social influence and learning value on students’ intention towards confirmed the influence of facilitating conditions and behavioral intention. The extended UTAUT2 framework helps in understanding students’ perceived value in the innovative logistics system teaching context.

Keywords: UTAUT2, logistics system simulation, learning value, Taiwan

Procedia PDF Downloads 115