Search results for: smart camera networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4549

Search results for: smart camera networks

3979 Pre-Shared Key Distribution Algorithms' Attacks for Body Area Networks: A Survey

Authors: Priti Kumari, Tricha Anjali

Abstract:

Body Area Networks (BANs) have emerged as the most promising technology for pervasive health care applications. Since they facilitate communication of very sensitive health data, information leakage in such networks can put human life at risk, and hence security inside BANs is a critical issue. Safe distribution and periodic refreshment of cryptographic keys are needed to ensure the highest level of security. In this paper, we focus on the key distribution techniques and how they are categorized for BAN. The state-of-art pre-shared key distribution algorithms are surveyed. Possible attacks on algorithms are demonstrated with examples.

Keywords: attacks, body area network, key distribution, key refreshment, pre-shared keys

Procedia PDF Downloads 364
3978 Social Media Marketing in Russia

Authors: J. A. Ageeva, Z. S. Zavyalova

Abstract:

The article considers social media as a tool for business promotion. We analyze and compare the SMM experience in the western countries and Russia. A short review of Russian social networks are given including their peculiar features, and the main problems and perspectives of Russian SMM are described.

Keywords: social media, social networks, marketing, SMM

Procedia PDF Downloads 556
3977 The Load Balancing Algorithm for the Star Interconnection Network

Authors: Ahmad M. Awwad, Jehad Al-Sadi

Abstract:

The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.

Keywords: load balancing, star network, interconnection networks, algorithm

Procedia PDF Downloads 319
3976 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering

Procedia PDF Downloads 354
3975 Re-Engineering Management Process in IRAN’s Smart Schools

Authors: M. R. Babaei, S. M. Hosseini, S. Rahmani, L. Moradi

Abstract:

Today, the quality of education and training systems and the effectiveness of the education systems of most concern to stakeholders and decision-makers of our country's development in each country. In Iran this is a double issue of concern to numerous reasons; So that governments, over the past decade have hardly even paid the running costs of education. ICT is claiming it has the power to change the structure of a program for training, reduce costs and increase quality, and do education systems and products consistent with the needs of the community and take steps to practice education. Own of the areas that the introduction of information technology has fundamentally changed is the field of education. The aim of this research is process reengineering management in schools simultaneously has been using field studies to collect data in the form of interviews and a questionnaire survey. The statistical community of this research has been the country of Iran and smart schools under the education. Sampling was targeted. The data collection tool was a questionnaire composed of two parts. The questionnaire consists of 36 questions that each question designates one of effective factors on the management of smart schools. Also each question consists of two parts. The first part designates the operating position in the management process, which represents the domain's belonging to the management agent (planning, organizing, leading, controlling). According to the classification of Dabryn and in second part the factors affect the process of managing the smart schools were examined, that Likert scale is used to classify. Questions the validity of the group of experts and prominent university professors in the fields of information technology, management and reengineering of approved and Cronbach's alpha reliability and also with the use of the formula is evaluated and approved. To analyse the data, descriptive and inferential statistics were used to analyse the factors contributing to the rating of (Linkert scale) descriptive statistics (frequency table data, mean, median, mode) was used. To analyse the data using analysis of variance and nonparametric tests and Friedman test, the assumption was evaluated. The research conclusions show that the factors influencing the management process re-engineering smart schools in school performance is affected.

Keywords: re-engineering, management process, smart school, Iran's school

Procedia PDF Downloads 244
3974 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.

Keywords: animals, tools, network, semantics, small-world, resilience to damage

Procedia PDF Downloads 547
3973 Smart Trash Can Interface between Origin and Destination Waste Management

Authors: Fatemeh Ghorbani

Abstract:

The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.

Keywords: connector, smart trash can, waste management

Procedia PDF Downloads 66
3972 Anti-Phase Synchronization of Complex Delayed Networks with Output Coupling via Pinning Control

Authors: Chanyuan Gu, Shouming Zhong

Abstract:

Synchronization is a fundamental phenomenon that enables coherent behavior in networks as a result of interactions. The purpose of this research had been to investigate the problem of anti-phase synchronization for complex delayed dynamical networks with output coupling. The coupling configuration is general, with the coupling matrix not assumed to be symmetric or irreducible. The amount of the coupling variables between two connected nodes is flexible, the nodes in the drive and response systems need not to be identical and there is not any extra constraint on the coupling matrix. Some pinning controllers are designed to make the drive-response system achieve the anti-phase synchronization. For the convenience of description, we applied the matrix Kronecker product. Some new criteria are proposed based on the Lyapunov stability theory, linear matrix inequalities (LMI) and Schur complement. Lastly, some simulation examples are provided to illustrate the effectiveness of our proposed conditions.

Keywords: anti-phase synchronization, complex networks, output coupling, pinning control

Procedia PDF Downloads 394
3971 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.

Abstract:

In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means

Procedia PDF Downloads 558
3970 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity

Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon

Abstract:

Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.

Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry

Procedia PDF Downloads 332
3969 Proposing Smart Clothing for Addressing Criminal Acts Against Women in South Africa

Authors: Anne Mastamet-Mason

Abstract:

Crimes against women is a global concern, and South Africa, in particular, is in a dilemma of dealing with constant criminal acts that face the country. Debates on violence against women in South Africa cannot be overemphasised any longer as crimes continue to rise year by year. The recent death of a university student at the University of Cape Town, as well as many other cases, continues to strengthen the need to find solutions from all the spheres of South African society. The advanced textiles market contains a high number and variety of technologies, many of which have protected status and constitute a relatively small portion of the textiles used for the consumer market. Examples of advanced textiles include nanomaterials, such as silver, titanium dioxide and zinc oxide, designed to create an anti-microbial and self-cleaning layer on top of the fibers, thereby reducing body smell and soiling. Smart textiles propose materials and fabrics versatile and adaptive to different situations and functions. Integrating textiles and computing technologies offer an opportunity to come up with differentiated characteristics and functionality. This paper presents a proposal to design a smart camisole/Yoga sports brazier and a smart Yoga sports pant garment to be worn by women while alone and while in purported danger zones. The smart garments are to be worn under normal clothing and cannot be detected or seen, or suspected by perpetrators. The garments are imbued with devices to sense any physical aggression and any abnormal or accelerated heartbeat that may be exhibited by the victim of violence. The signals created during the attack can be transmitted to the police and family members who own a mobile application system that accepts signals emitted. The signals direct the receiver to the exact location of the offence, and the victim can be rescued before major violations are committed. The design of the Yoga sports garments will be done by Professor Mason, who is a fashion designer by profession, while the mobile phone application system will be developed by Mr. Amos Yegon, who is an independent software developer.

Keywords: smart clothing, wearable technology, south africa, 4th industrial revolution

Procedia PDF Downloads 207
3968 Phone Number Spoofing Attack in VoLTE 4G

Authors: Joo-Hyung Oh

Abstract:

The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on all-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. And in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.

Keywords: LTE, 4G, VoLTE, phone number spoofing

Procedia PDF Downloads 432
3967 AgriInnoConnect Pro System Using Iot and Firebase Console

Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla

Abstract:

AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.

Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console

Procedia PDF Downloads 43
3966 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling

Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou

Abstract:

In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.

Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change

Procedia PDF Downloads 261
3965 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
3964 Traffic Congestions Modeling and Predictions by Social Networks

Authors: Bojan Najdenov, Danco Davcev

Abstract:

Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.

Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android

Procedia PDF Downloads 482
3963 Development of the Web-Based Multimedia N-Screen Service System for Cross Platform

Authors: S. Bae, J. Shin, S. Lee

Abstract:

As the development of smart devices such as Smart TV, Smartphone, Tablet PC, Laptop, the interest in N-Screen Services that can be cross-linked with heterogeneous devices is increasing. N-Screen means User-centric services that can share and constantly watch multimedia contents anytime and anywhere. However, the existing N-Screen system has the limitation that N-Screen system has to implement the application for each platform and device to provide multimedia service. To overcome this limitation, Multimedia N-Screen Service System is proposed through the web, and it is independent of different environments. The combination of Web and cloud computing technologies from this study results in increasing efficiency and reduction in costs.

Keywords: N-screen, web, cloud, multimedia

Procedia PDF Downloads 301
3962 Natural Emergence of a Core Structure in Networks via Clique Percolation

Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun

Abstract:

Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.

Keywords: cliques, core structure, percolation, phase transition

Procedia PDF Downloads 171
3961 Optimization of Smart Beta Allocation by Momentum Exposure

Authors: J. B. Frisch, D. Evandiloff, P. Martin, N. Ouizille, F. Pires

Abstract:

Smart Beta strategies intend to be an asset management revolution with reference to classical cap-weighted indices. Indeed, these strategies allow a better control on portfolios risk factors and an optimized asset allocation by taking into account specific risks or wishes to generate alpha by outperforming indices called 'Beta'. Among many strategies independently used, this paper focuses on four of them: Minimum Variance Portfolio, Equal Risk Contribution Portfolio, Maximum Diversification Portfolio, and Equal-Weighted Portfolio. Their efficiency has been proven under constraints like momentum or market phenomenon, suggesting a reconsideration of cap-weighting.
 To further increase strategy return efficiency, it is proposed here to compare their strengths and weaknesses inside time intervals corresponding to specific identifiable market phases, in order to define adapted strategies depending on pre-specified situations. 
Results are presented as performance curves from different combinations compared to a benchmark. If a combination outperforms the applicable benchmark in well-defined actual market conditions, it will be preferred. It is mainly shown that such investment 'rules', based on both historical data and evolution of Smart Beta strategies, and implemented according to available specific market data, are providing very interesting optimal results with higher return performance and lower risk.
 Such combinations have not been fully exploited yet and justify present approach aimed at identifying relevant elements characterizing them.

Keywords: smart beta, minimum variance portfolio, equal risk contribution portfolio, maximum diversification portfolio, equal weighted portfolio, combinations

Procedia PDF Downloads 340
3960 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior

Authors: Priyanka Gupta, Bipin Kumar

Abstract:

Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.

Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle

Procedia PDF Downloads 89
3959 Gender Effects in EEG-Based Functional Brain Networks

Authors: Mahdi Jalili

Abstract:

Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.

Keywords: EEG, brain, functional networks, network science, graph theory

Procedia PDF Downloads 443
3958 Smart Helmet for Two-Wheelers

Authors: Ravi Nandu, Kuldeep Singh

Abstract:

A helmet is a protective layer that is worn in order to prevent head injury. Helmet is the most important safety gear for two wheeler riders. However, due to carelessness of people, less importance toward safety, lot of causalities is every year. According to National Crime Records Bureau (NCRB) two wheelers claimed 92 lives every day out of which most were due to helmetless drive. The system design will be such that without wearing the helmet the rider cannot start two wheelers. The helmet will be connected to vehicle key ignition systems which will be electronically controlled. The smart helmet will be having proximity sensor fitted inside it, which will act as our switch for ignition and further with wireless connection the helmet sensor circuit will be connected to the vehicle ignition system.

Keywords: helmet, proximity sensor, microcontroller, head injury

Procedia PDF Downloads 312
3957 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation

Procedia PDF Downloads 413
3956 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 83
3955 Using Wearable Technology to Monitor Perinatal Health: Perspectives of Community Health Workers and Potential Use by Underserved Perinatal Women in California

Authors: Tamara Jimah, Priscilla Kehoe, Pamela Pimentel, Amir Rahmani, Nikil Dutt, Yuqing Guo

Abstract:

Ensuring equitable access to maternal health care is critical for public health. Particularly for underserved women, community health workers (CHWs) have been invaluable in providing support through health education and strategies for improved maternal self-care management. Our research aimed to assess the acceptance of technology by CHWs and perinatal women to promote healthy pregnancy and postpartum wellness. This pilot study was conducted at a local community organization in Orange County, California, where CHWs play an important role in supporting low-income women through home visitations. Questionnaires were administered to 14 CHWs and 114 pregnant and postpartum women, literate in English and/or Spanish. CHWs tested two wearable devices (Galaxy watch and Oura ring) and shared their user experience, including potential reception by the perinatal women they served. In addition, perinatal women provided information on access to a smart phone and the internet, as well as their interest in using wearable devices to self-monitor personal health with guidance from a CHW. Over 85% of CHWs agreed that it was useful to track pregnancy with the smart watch and ring. The majority of perinatal women owned a smartphone (97.4%), had access to the internet (80%) and unlimited data plans (78%), expressed interest in using the smart wearable devices to self-monitor health, and were open to receiving guidance from a CHW (87%). Community health workers and perinatal women embraced the use of wearable technology to monitor maternal health. These preliminary findings have formed the basis of an ongoing research study that integrates CHW guidance and technology (i.e., smart watch, smart ring, and a mobile phone app) to promote self-efficacy and self-management among underserved perinatal women.

Keywords: community health workers, health promotion and education, health equity, maternal and child health, technology

Procedia PDF Downloads 147
3954 The Role of Social Networking in Activating the Participation of Youth in the Community

Authors: Raya Hamed Hial Al Maamari

Abstract:

The gulf societies have been undergoing radical changes because of the technology transfer. It altered the humanities attitudes. Especially, youth habits so they become a fond of using social networking. This study aimed to find out the ratio of social networking in Directing youth to participate with government institutions in decision-making and improving their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young men from different gulf countries, using an electronic questionnaire, with some interviews with famous leaders of youth groups. Finally, the researchers suggested many effective views to activate youth efforts using social networks as an effective manner to plan for the development policy and Implemented accurately in the community. The findings illustrated that social networks play a vital role in encouraging youth to participate Enthusiastically in providing the service. As it notices these networks contain large numbers of youth. Therefore, the influences become widely and feasible. Moreover, the study indicated the fact that most of youth teamwork started in these social networks. Then, it has been growing to the real society.

Keywords: social work, volunteering, youth, community

Procedia PDF Downloads 347
3953 Dynamic Response of Doubly Curved Composite Shell with Embedded Shape Memory Alloys Wires

Authors: Amin Ardali, Mohammadreza Khalili, Mohammadreza Rezai

Abstract:

In this paper, dynamic response of thin smart composite panel subjected to low-velocity transverse impact is investigated. Shape memory wires are used to reinforced curved composite panel in a smart way. One-dimensional thermodynamic constitutive model by Liang and Rogers is used for estimating the structural recovery stress. The two degrees-of-freedom mass-spring model is used for evaluation of the contact force between the curved composite panel and the impactor. This work is benefited from the Hertzian linear contact model which is linearized for the impact analysis of curved composite panel. The governing equations of curved panel are provided by first-order shear theory and solved by Fourier series related to simply supported boundary condition. For this purpose, the equation of doubly curved panel motion included the uniform in-plane forces is obtained. By the present analysis, the curved panel behavior under low-velocity impact, and also the effect of the impact parameters, the shape memory wire and the curved panel dimensions are studied.

Keywords: doubly curved shell, SMA wire, impact response, smart material, shape memory alloy

Procedia PDF Downloads 405
3952 Efficient Broadcasting in Wireless Sensor Networks

Authors: Min Kyung An, Hyuk Cho

Abstract:

In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.

Keywords: broadcast, collision-free, directional antenna, approximation, wireless sensor networks

Procedia PDF Downloads 346
3951 Location Management in Wireless Sensor Networks with Mobility

Authors: Amrita Anil Agashe, Sumant Tapas, Ajay Verma Yogesh Sonavane, Sourabh Yeravar

Abstract:

Due to advancement in MEMS technology today wireless sensors network has gained a lot of importance. The wide range of its applications includes environmental and habitat monitoring, object localization, target tracking, security surveillance etc. Wireless sensor networks consist of tiny sensor devices called as motes. The constrained computation power, battery power, storage capacity and communication bandwidth of the tiny motes pose challenging problems in the design and deployment of such systems. In this paper, we propose a ubiquitous framework for Real-Time Tracking, Sensing and Management System using IITH motes. Also, we explain the algorithm that we have developed for location management in wireless sensor networks with the aspect of mobility. Our developed framework and algorithm can be used to detect emergency events and safety threats and provides warning signals to handle the emergency.

Keywords: mobility management, motes, multihop, wireless sensor networks

Procedia PDF Downloads 419
3950 Study on Planning of Smart GRID Using Landscape Ecology

Authors: Sunglim Lee, Susumu Fujii, Koji Okamura

Abstract:

Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.

Keywords: landscape ecology, IT, smart grid, aerial photograph, simulation

Procedia PDF Downloads 444