Search results for: multi-linear regression analysis
28568 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process
Authors: Shan-Hong Ying, Ying-Fang Wang
Abstract:
A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC
Procedia PDF Downloads 15028567 A Hybrid-Evolutionary Optimizer for Modeling the Process of Obtaining Bricks
Authors: Marius Gavrilescu, Sabina-Adriana Floria, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Natural sciences provide a wide range of experimental data whose related problems require study and modeling beyond the capabilities of conventional methodologies. Such problems have solution spaces whose complexity and high dimensionality require correspondingly complex regression methods for proper characterization. In this context, we propose an optimization method which consists in a hybrid dual optimizer setup: a global optimizer based on a modified variant of the popular Imperialist Competitive Algorithm (ICA), and a local optimizer based on a gradient descent approach. The ICA is modified such that intermediate solution populations are more quickly and efficiently pruned of low-fitness individuals by appropriately altering the assimilation, revolution and competition phases, which, combined with an initialization strategy based on low-discrepancy sampling, allows for a more effective exploration of the corresponding solution space. Subsequently, gradient-based optimization is used locally to seek the optimal solution in the neighborhoods of the solutions found through the modified ICA. We use this combined approach to find the optimal configuration and weights of a fully-connected neural network, resulting in regression models used to characterize the process of obtained bricks using silicon-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. Thus, the purpose of our approach is to determine by simulation the working conditions, including the manufacturing mix recipe with the addition of different materials, to minimize the emissions represented by CO and CH4. Our approach determines regression models which perform significantly better than those found using the traditional ICA for the aforementioned problem, resulting in better convergence and a substantially lower error.Keywords: optimization, biologically inspired algorithm, regression models, bricks, emissions
Procedia PDF Downloads 8228566 Bridging Livelihood and Conservation: The Role of Ecotourism in the Campo Ma’an National Park, Cameroon
Authors: Gadinga Walter Forje, Martin Ngankam Tchamba, Nyong Princely Awazi, Barnabas Neba Nfornka
Abstract:
Ecotourism is viewed as a double edge sword for the enhancement of conservation and local livelihood within a protected landscape. The Campo Ma’an National Park (CMNP) adopted ecotourism in its management plan as a strategic axis for better management of the park. The growing importance of ecotourism as a strategy for the sustainable management of CMNP and its environs requires adequate information to bolster the sector. This study was carried out between November 2018 and September 2021, with the main objective to contribute to the sustainable management of the CMNP through suggestions for enhancing the capacity of ecotourism in and around the park. More specifically, the study aimed at; 1) Analyse the governance of ecotourism in the CMNP and its surrounding; 2) Assessing the impact of ecotourism on local livelihood around the CMNP; 3) Evaluating the contribution of ecotourism to biodiversity conservation in and around the CMNP; 4) Evaluate the determinants of ecotourism possibilities in achieving sustainable livelihood and biodiversity conservation in and around the CMNP. Data were collected from both primary and secondary sources. Primary data were obtained from household surveys (N=124), focus group discussions (N=8), and key informant interviews (N=16). Data collected were coded and imputed into SPSS (version 19.0) software and Microsoft Excel spreadsheet for both quantitative and qualitative analysis. Findings from the Chi-square test revealed overall poor ecotourism governance in and around the CMNP, with benefit sharing (X2 = 122.774, p <0.01) and conflict management (X2 = 90.839, p<0.01) viewed to be very poor. For the majority of the local population sampled, 65% think ecotourism does not contribute to local livelihood around CMNP. The main factors influencing the impact of ecotourism around the CMNP on the local population’s livelihood were gender (logistic regression (β) = 1.218; p = 0.000); and level of education (logistic regression (β) = 0.442; p = 0.000). Furthermore, 55.6% of the local population investigated believed ecotourism activities do not contribute to the biodiversity conservation of CMNP. Spearman correlation between socio-economic variables and ecotourism impact on biodiversity conservation indicated relationships with gender (r = 0.200, p = 0.032), main occupation (r = 0.300 p = 0.012), time spent in the community (r = 0.287 p = 0.017), and number of children (r =-0.286 p = 0.018). Variables affecting ecotourism impact on biodiversity conservation were age (logistic regression (β) = -0.683; p = 0.037) and gender (logistic regression (β) = 0.917; p = 0.045). This study recommends the development of ecotourism-friendly policies that can accelerate Public Private Partnership for the sustainable management of the CMNP as a commitment toward good governance. It also recommends the development of gender-sensitive ecotourism packages, with fair opportunities for rural women and more parity in benefit sharing to improve livelihood and contribute more to biodiversity conservation in and around the Park.Keywords: biodiversity conservation, Campo Ma’an national park, ecotourism, ecotourism governance, rural livelihoods, protected area management
Procedia PDF Downloads 12028565 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 11428564 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
Authors: Naushad Mamode Khan
Abstract:
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL
Procedia PDF Downloads 35428563 The Association of Empirical Dietary Inflammatory Index with Musculoskeletal Pains in Elderlies
Authors: Mahshid Rezaei, Zahra Tajari, Zahra Esmaeily, Atefeh Eyvazkhani, Shahrzad Daei, Marjan Mansouri Dara, Mohaddesh Rezaei, Abolghassem Djazayeri, Ahmadreza Dorosti Motlagh
Abstract:
Background: Musculoskeletal pain is one of the most prevalent symptoms in elderly age. Nutrition and diet are considered important underlying factors that could affect chronic musculoskeletal pain. The purpose of this study was to identify the relationship between empirical dietary inflammatory patterns (EDII) and musculoskeletal pain. Method: In this cross-sectional study, 213 elderly individuals were selected from several health centers. The usual dietary intake was evaluated by a valid and reliable 147-items food frequency questionnaire (FFQ). To measure the intensity of pain, Visual Analogue Scale (VAS) was used. Multiple Linear Regression was applied to assess the association between EDII and musculoskeletal pain. Results: The results of multiple linear regression analysis indicate that a higher EDII score was associated with higher musculoskeletal pain (β= 0.21: 95% CI: 0.24-1.87: P= 0.003). These results stayed significant even after adjusting for covariates such as sex, marital status, height, family number, sleep, BMI, physical activity duration, waist circumference, protector, and medication use (β= 0.16: 95% CI: 0.11-1.04: P= 0.02). Conclusion: Study findings indicated that higher inflammation of diet might have a direct association with musculoskeletal pains in elderlies. However, further investigations are required to confirm these findings.Keywords: musculoskeletal pain, empirical dietary inflammatory pattern, elderlies, dietary pattern
Procedia PDF Downloads 21028562 Impact of Strategic Leadership on Corporate Performance
Authors: Adesina Nathaniel Olanrewaju
Abstract:
The motivation behind this study is the need to see strategic leadership as one of the key driving forces for improving corporate performance. Strategic leadership is seen as a potent source of management development and sustained competitive advantage for both employee and organizational performance. There is currently a charge on leaders as a major cause of organizational failure. Stakeholders give what they can afford, not necessarily what the organization needs and impose operational and financial decisions on the leaders, 200 respondents were fit for the analysis from the six geo-political regions in Nigeria. The selection was done equally among various parastatals through random sampling technique from the south-south, south-east, south-west, north-east, north-west and north-central. A descriptive research of the survey was employed. The data were subjected to t-test analysis and correlation and regression were used for the analysis. The findings revealed that there is a strong relationship and impact between a strategic leader and corporate performance. Recommendations were made based on the findings that strategic leaders should be given the blueprint, company’s policy and the stakeholders’ expectation within a time frame the work is to be carried out.Keywords: time, strategic, organization, stakeholder, leader, performance
Procedia PDF Downloads 30528561 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 52028560 The Relationship between Employee Commitment, Job Satisfaction and External Market Orientation in Vietnamese Joint-Stock Commercial Banks
Authors: Nguyen Ngoc Que Tran
Abstract:
Purpose: The purpose of this paper is to investigate the relationship between internal market orientation, external market orientation, employee commitment and job satisfaction. Design/methodology/approach: This study collected data through a survey and utilized simple linear regression and multiple regression analysis to determine if there was any support for the research hypotheses as presented in the previous chapter. Findings: Using data from 256 employees of four leading joint stock banks in Vietnam, the empirical results indicates that employee commitment is positively related with external market orientation, job satisfaction is positively related to employee commitment, and employee commitment and job satisfaction are positively related to external market orientation. However, job satisfaction has no significant positive effect on external market orientation. Theoretical contribution: The primary contribution to marketing theory arising from this study is the integration of job satisfaction, employee commitment, and external market orientation in a single research model. Practical implications: The major contribution to practice is an external market oriented bank has to respond rapidly to the future needs and preferences of its customers. This could result in high levels of commitment to the service process and in doing so provide Vietnamese joint-stock commercial banks with a competitive advantage. The finding is important for the banking service sector in general and the Vietnamese banking industry in particular.Keywords: employee commitment, job satisfaction and external market orientation, vietnam, bank
Procedia PDF Downloads 41428559 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the credit-scoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.Keywords: credit-scoring models, multidimensional subordinated Lévy model, probability of default
Procedia PDF Downloads 45628558 The Study of Elementary School Teacher’s Behavior of Using E-books by UTAUT Model
Authors: Tzong-Shing Cheng, Chen Pei Chen, Shu-Wei Chen
Abstract:
The purpose of this research is to apply Unified Theory of Acceptance and Use of Technology (UTAUT) model to investigate the factors that influence elementary school teacher’s behavior of using e-books. Based on the literature review, a questionnaire was modified and used to test the elementary school teachers in Changhua. A total of 420 questionnaires were administered and 364 of them were returned, including 328 valid and 36 invalid questionnaires. The effective response rate is 78%. The methods of data analysis include descriptive statistics, factor analysis, Pearson’s correlation coefficient, one way analysis of variance (ANOVA) and simple regression analysis. The results show that: 1. There were significant difference in the Elementary school teachers’ “Performance Expectancy”, “Effort Expectancy”, “Social Influence”, and “Facilitating Conditions” depending on their different “Demographic Variables”. 2. “Performance Expectancy” and “Behavioral Intention to Use” are positively correlated. 3. “Effort Expectancy” and “Behavioral Intention to Use” are positively correlated. 4. There was no significant relationship between “Social Influence” and “Behavioral Intention to Use”. 5. There was significant relationship between “Facilitating Conditions” and “Use Behavior”.Keywords: e-books, UTAUT, elementary school teacher, behavioral intention to use
Procedia PDF Downloads 61328557 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression
Procedia PDF Downloads 28428556 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 6628555 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital
Authors: Li-Ching Lin, Yu-Tzu Dai
Abstract:
Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice
Procedia PDF Downloads 19628554 Patterns of Private Transfers in the Philippines: An Analysis of Who Gives and Receives More
Authors: Rutcher M. Lacaza, Stephen Jun V. Villejo
Abstract:
This paper investigated the patterns of private transfers in the Philippines using the Family Income Expenditure Survey (FIES) 2009, conducted by the Philippine government’s National Statistics Office (NSO) every three years. The paper performed bivariate analysis on net transfers, using the identified determinants for a household to be either a net receiver or a net giver. The household characteristics considered are the following: age, sex, marital status, employment status and educational attainment of the household head, and also size, location, pre-transfer income and the number of employed members of the household. The variables net receiver and net giver are determined by computing the net transfer, subtracting total gifts from total receipts. The receipts are defined as the sum of cash received from abroad, cash received from domestic sources, total gifts received and inheritance. While gifts are defined as the sum of contributions and donations to church and other religious institutions, contributions and donations to other institutions, gifts and contributions to others, and gifts and assistance to private individuals outside the family. Both in kind and in cash transfers are considered in the analysis. It also performed a multiple regression analysis on transfers received and income including other household characteristics to examine the motives for giving transfers – whether altruism or exchanged. It also used the binary logistic regression to estimate the probability of being a net receiver or net giver given the household characteristics. The study revealed that receiving tends to be universal – both the non-poor and the poor benefit although the poor receive substantially less than the non-poor. Regardless of whether households are net receivers or net givers, households in the upper deciles generally give and receive more than those in the lower deciles. It also appears that private transfers may just flow within economic groups. Big amounts of transfers are, therefore, directed to the non-poor and the small amounts go to the poor. This was also supported by the increasing function of gross transfers received and the income of households – the poor receiving less and the non-poor receiving more. This is contrary to the theory that private transfers can help equalize the distribution of income. This suggested that private transfers in the Philippines are not altruistically motivated but exchanged. However, bilateral data on transfers received or given is needed to test this theory directly. The results showed that transfers are much needed by the poor and it is important to understand the nature of private transfers, to ensure that government transfer programs are properly designed and targeted so as to prevent the duplication of private safety nets already present among the non-poor.Keywords: private transfers, net receiver, net giver, altruism, exchanged.
Procedia PDF Downloads 21528553 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 39728552 Evidence Based Approach on Beliefs and Perceptions on Mental Health Disorder and Substance Abuse: The Role of a Social Worker
Authors: Helena Baffoe
Abstract:
The US has developed numerous programs over the past 50 years to enhance the lives of those who suffer from mental health illnesses and substance abuse, as well as the effectiveness of their treatments. Despite these advances over the past 50 years, there hasn't been a corresponding improvement in American public attitudes and beliefs about mental health disorders and substance abuse. Highly publicized acts of violence frequently elicit comments that blame the perpetrator's perceived mental health disorder since such people are thought to be substance abusers. Despite these strong public beliefs and perception about mental disorder and substance abuse, concreate empirical evidence that entail this perception is lacking, and evidence of their effectiveness has not been integrated. A rich data was collected from Substance Abuse and Mental Health Services Administration (SAMHSA) with a hypothesis that people who are diagnosed with a mental health disorder are likely to be diagnosed with substance abuse using logit regression analysis and Instrumental Variable. It was found that depressive, anxiety, and trauma/stressor mental disorders constitute the most common mental disorder in the United States, and the study could not find statistically significant evidence that being diagnosed with these leading mental health disorders in the United States does necessarily imply that such a patient is diagnosed with substances abuse. Thus, the public has a misconception of mental health and substance abuse issues, and social workers' responsibilities are outlined in order to assist ameliorate this attitude and perception.Keywords: mental health disorder, substance use, empirical evidence, logistic regression
Procedia PDF Downloads 7828551 Comparing Performance Indicators among Mechanistic, Organic, and Bureaucratic Organizations
Authors: Benchamat Laksaniyanon, Padcharee Phasuk, Rungtawan Boonphanakan
Abstract:
With globalization, organizations had to adjust to an unstable environment in order to survive in a competitive arena. Typically within the field of management, different types of organizations include mechanistic, bureaucratic and organic ones. In fact, bureaucratic and mechanistic organizations have some characteristics in common. Bureaucracy is one type of Thailand organization which adapted from mechanistic concept to develop an organization that is suitable for the characteristic and culture of Thailand. The objective of this study is to compare the adjustment strategies of both organizations in order to find key performance indicators (KPI) suitable for improving organization in Thailand. The methodology employed is binary logistic regression. The results of this study will be valuable for developing future management strategies for both bureaucratic and mechanistic organizations.Keywords: mechanistic, bureaucratic and organic organization, binary logistic regression, key performance indicators (KPI)
Procedia PDF Downloads 35928550 Tracking the Effect of Ibutilide on Amplitude and Frequency of Fibrillatory Intracardiac Electrograms Using the Regression Analysis
Authors: H. Hajimolahoseini, J. Hashemi, D. Redfearn
Abstract:
Background: Catheter ablation is an effective therapy for symptomatic atrial fibrillation (AF). The intracardiac electrocardiogram (IEGM) collected during this procedure contains precious information that has not been explored to its full capacity. Novel processing techniques allow looking at these recordings from different perspectives which can lead to improved therapeutic approaches. In our previous study, we showed that variation in amplitude measured through Shannon Entropy could be used as an AF recurrence risk stratification factor in patients who received Ibutilide before the electrograms were recorded. The aim of this study is to further investigate the effect of Ibutilide on characteristics of the recorded signals from the left atrium (LA) of a patient with persistent AF before and after administration of the drug. Methods: The IEGMs collected from different intra-atrial sites of 12 patients were studied and compared before and after Ibutilide administration. First, the before and after Ibutilide IEGMs that were recorded within a Euclidian distance of 3 mm in LA were selected as pairs for comparison. For every selected pair of IEGMs, the Probability Distribution Function (PDF) of the amplitude in time domain and magnitude in frequency domain was estimated using the regression analysis. The PDF represents the relative likelihood of a variable falling within a specific range of values. Results: Our observations showed that in time domain, the PDF of amplitudes was fitted to a Gaussian distribution while in frequency domain, it was fitted to a Rayleigh distribution. Our observations also revealed that after Ibutilide administration, the IEGMs would have significantly narrower short-tailed PDFs both in time and frequency domains. Conclusion: This study shows that the PDFs of the IEGMs before and after administration of Ibutilide represents significantly different properties, both in time and frequency domains. Hence, by fitting the PDF of IEGMs in time domain to a Gaussian distribution or in frequency domain to a Rayleigh distribution, the effect of Ibutilide can easily be tracked using the statistics of their PDF (e.g., standard deviation) while this is difficult through the waveform of IEGMs itself.Keywords: atrial fibrillation, catheter ablation, probability distribution function, time-frequency characteristics
Procedia PDF Downloads 15928549 Internal Mercury Exposure Levels Correlated to DNA Methylation of Imprinting Gene H19 in Human Sperm of Reproductive-Aged Man
Authors: Zhaoxu Lu, Yufeng Ma, Linying Gao, Li Wang, Mei Qiang
Abstract:
Mercury (Hg) is a well-recognized environmental pollutant known by its toxicity of development and neurotoxicity, which may result in adverse health outcomes. However, the mechanisms underlying the teratogenic effects of Hg are not well understood. Imprinting genes are emerging regulators for fetal development subject to environmental pollutants impacts. In this study, we examined the association between paternal preconception Hg exposures and the alteration of DNA methylation of imprinting genes in human sperm DNA. A total of 618 men aged from 22 to 59 was recruited from the Reproductive Medicine Clinic of Maternal and Child Care Service Center and the Urologic Surgery Clinic of Shanxi Academy of Medical Sciences during April 2015 and March 2016. Demographic information was collected using questionnaires. Urinary Hg concentrations were measured using a fully-automatic double-channel hydride generation atomic fluorescence spectrometer. And methylation status in the DMRs of imprinting genes H19, Meg3 and Peg3 of sperm DNA were examined by bisulfite pyrosequencing in 243 participants. Spearman’s rank and multivariate regression analysis were used for correlation analysis between sperm DNA methylation status of imprinting genes and urinary Hg levels. The median concentration of Hg for participants overall was 9.09μg/l (IQR: 5.54 - 12.52μg/l; range = 0 - 71.35μg/l); no significant difference was found in median concentrations of Hg among various demographic groups (p > 0.05). The proportion of samples that a beyond intoxication criterion (10μg/l) for urinary Hg was 42.6%. Spearman’s rank correlation analysis indicates a negative correlation between urinary Hg concentrations and average DNA methylation levels in the DMRs of imprinted genes H19 (rs=﹣0.330, p = 0.000). However, there was no such a correlation found in genes of Peg3 and Meg3. Further, we analyzed of correlation between methylation level at each CpG site of H19 and Hg level, the results showed that three out of 7 CpG sites on H19 DMR, namely CpG2 (rs =﹣0.138, p = 0.031), CpG4 (rs =﹣0.369, p = 0.000) and CpG6 (rs=﹣0.228, p = 0.000), demonstrated a significant negative correlation between methylation levels and the levels of urinary Hg. After adjusting age, smoking, drinking, intake of aquatic products and education by multivariate regression analysis, the results have shown a similar correlation. In summary, mercury nonoccupational environmental exposure in reproductive-aged men associated with altered DNA methylation outcomes at DMR of imprinting gene H19 in sperm, implicating the susceptibility of the developing sperm for environmental insults.Keywords: epigenetics, genomic imprinting gene, DNA methylation, mercury, transgenerational effects, sperm
Procedia PDF Downloads 26128548 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data
Procedia PDF Downloads 35028547 Exploring Factors Affecting Electricity Production in Malaysia
Authors: Endang Jati Mat Sahid, Hussain Ali Bekhet
Abstract:
Ability to supply reliable and secure electricity has been one of the crucial components of economic development for any country. Forecasting of electricity production is therefore very important for accurate investment planning of generation power plants. In this study, we aim to examine and analyze the factors that affect electricity generation. Multiple regression models were used to find the relationship between various variables and electricity production. The models will simultaneously determine the effects of the variables on electricity generation. Many variables influencing electricity generation, i.e. natural gas (NG), coal (CO), fuel oil (FO), renewable energy (RE), gross domestic product (GDP) and fuel prices (FP), were examined for Malaysia. The results demonstrate that NG, CO, and FO were the main factors influencing electricity generation growth. This study then identified a number of policy implications resulting from the empirical results.Keywords: energy policy, energy security, electricity production, Malaysia, the regression model
Procedia PDF Downloads 16328546 Comparative Study between Herzberg’s and Maslow’s Theories in Maritime Transport Education
Authors: Nermin Mahmoud Gohar, Aisha Tarek Noour
Abstract:
Learner satisfaction has been a vital field of interest in the literature. Accordingly, the paper will explore the reasons behind individual differences in motivation and satisfaction. This study examines the effect of both; Herzberg’s and Maslow’s theories on learners satisfaction. A self-administered questionnaire was used to collect data from learners who were geographically widely spread around the College of Maritime Transport and Technology (CMTT) at the Arab Academy for Science, Technology and Maritime Transport (AAST&MT) in Egypt. One hundred and fifty undergraduates responded to a questionnaire survey. Respondents were drawn from two branches in Alexandria and Port Said. The data analysis used was SPSS 22 and AMOS 18. Factor analysis technique was used to find out the dimensions under study verified by Herzberg’s and Maslow’s theories. In addition, regression analysis and structural equation modeling were applied to find the effect of the above-mentioned theories on maritime transport learners’ satisfaction. Concerning the limitation of this study, it used the available number of learners in the CMTT due to the relatively low population in this field.Keywords: motivation, satisfaction, needs, education, Herzberg’s and Maslow’s theories
Procedia PDF Downloads 43528545 Assessment of Forest Resource Exploitation in the Rural Communities of District Jhelum
Authors: Rubab Zafar Kahlon, Ibtisam Butt
Abstract:
Forest resources are deteriorating and experiencing decline around the globe due to unsustainable use and over exploitation. The present study was an attempt to determine the relationship between human activities, forest resource utilization, extraction methods and practices of forest resource exploitation in the district Jhelum of Pakistan. For this purpose, primary sources of data were used which were collected from 8 villages through structured questionnaire and tabulated in Microsoft Excel 365 and SPSS 22 was used for multiple linear regression analysis. The results revealed that farming, wood cutting, animal husbandry and agro-forestry were the major occupations in the study area. Most commonly used resources included timber 26%, fuelwood 25% and fodder 19%. Methods used for resource extraction included gathering 49%, plucking 34% trapping 11% and cutting 6%. Population growth, increased demand of fuelwood and land conversion were the main reasons behind forest degradation. Results for multiple linear regression revealed that Forest based activities, sources of energy production, methods used for wood harvesting and resource extraction and use of fuelwood for energy production contributed significantly towards extensive forest resource exploitation with p value <0.5 within the study area. The study suggests that effective measures should be taken by forest department to control the unsustainable use of forest resources by stringent management interventions and awareness campaigns in Jhelum district.Keywords: forest resource, biodiversity, expliotation, human activities
Procedia PDF Downloads 9228544 The Importance of Self-Efficacy and Collective Competence Beliefs in Managerial Competence of Sports Managers'
Authors: Şenol Yanar, Sinan Çeli̇kbi̇lek, Mehmet Bayansalduz, Yusuf Can
Abstract:
Managerial competence defines as the skills that managers in managerial positions have in relation to managerial responsibilities and managerial duties. Today's organizations, which are in a competitive environment, have the desire to work with effective managers in order to be more advantageous position than the other organizations they are competing with. In today's organizations, self-efficacy and collective competence belief that determine managerial competencies of managers to assume managerial responsibility are of special importance. In this framework, the aim of this study is to examine the effects of sports managers' perceptions of self-efficacy and collective competence in managerial competence perceptions. In the study, it has also been analyzed if there is a significant difference between self-efficacy, collective competence and managerial competence levels of sports managers in terms of their gender, age, duty status, year of service and level of education. 248 sports managers, who work at the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the self-efficacy scale which was developed by Schwarzer, R. & Jerusalem, M. (1995), collective competence scale developed by Goddard, Hoy and Woolfolk-Hoy (2000) and managerial competence scale developed by Cetinkaya (2009) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among self-efficacy, collective competence belief, and managerial competence levels in sports managers and regression analysis have been used to define the affect of self-efficacy and collective competence belief on the perception of managerial competence. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers' self-efficacy, collective competence beliefs, and managerial competence levels. According to the results of the regression analysis, it is understood that the managers’ perception of self-efficacy and collective competence belief significantly defines the perception of managerial competence. Also, the results show that there is no significant difference in self-efficacy, collective competence, and level of managerial competence of sports managers in terms of duty status, year of service and level of education.Keywords: sports manager, self-efficacy, collective competence, managerial competence
Procedia PDF Downloads 23428543 The Intention to Use E-Money Transaction: The Moderating Effect of Security in Conceptual Frammework
Authors: Husnil Khatimah, Fairol Halim
Abstract:
This research examines the moderating impact of security on intention to use e-money that adapted from some variables of the TAM (Technology Acceptance Model) and TPB (Theory of Planned Behavior). This study will use security as moderating variable and finds these relationship depends on customer intention to use e-money as payment tools. The conceptual framework of e-money transactions was reviewed to understand behavioral intention of consumers from perceived usefulness, perceived ease of use, perceived behavioral control and security. Quantitative method will be utilized as sources of data collection. A total of one thousand respondents will be selected using quota sampling method in Medan, Indonesia. Descriptive analysis and Multiple Regression analysis will be conducted to analyze the data. The article ended with suggestion for future studies.Keywords: e-money transaction, TAM & TPB, moderating variable, behavioral intention, conceptual paper
Procedia PDF Downloads 45428542 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 52928541 Understanding the Linkages of Human Development and Fertility Change in Districts of Uttar Pradesh
Authors: Mamta Rajbhar, Sanjay K. Mohanty
Abstract:
India's progress in achieving replacement level of fertility is largely contingent on fertility reduction in the state of Uttar Pradesh as it accounts 17% of India's population with a low level of development. Though the TFR in the state has declined from 5.1 in 1991 to 3.4 by 2011, it conceals large differences in fertility level across districts. Using data from multiple sources this paper tests the hypothesis that the improvement in human development significantly reduces the fertility levels in districts of Uttar Pradesh. The unit of analyses is district, and fertility estimates are derived using the reverse survival method(RSM) while human development indices(HDI) are are estimated using uniform methodology adopted by UNDP for three period. The correlation and linear regression models are used to examine the relationship of fertility change and human development indices across districts. Result show the large variation and significant change in fertility level among the districts of Uttar Pradesh. During 1991-2011, eight districts had experienced a decline of TFR by 10-20%, 30 districts by 20-30% and 32 districts had experienced decline of more than 30%. On human development aspect, 17 districts recorded increase of more than 0.170 in HDI, 18 districts in the range of 0.150-0.170, 29 districts between 0.125-0.150 and six districts in the range of 0.1-0.125 during 1991-2011. Study shows significant negative relationship between HDI and TFR. HDI alone explains 70% variation in TFR. Also, the regression coefficient of TFR and HDI has become stronger over time; from -0.524 in 1991, -0.7477 by 2001 and -0.7181 by 2010. The regression analyses indicate that 0.1 point increase in HDI value will lead to 0.78 point decline in TFR. The HDI alone explains 70% variation in TFR. Improving the HDI will certainly reduce the fertility level in the districts.Keywords: Fertility, HDI, Uttar Pradesh
Procedia PDF Downloads 25028540 Unravelling the Impact of Job Resources: Alleviating Job-Related Anxiety to Forster Employee Creativity Within the Oil and Gas Industry
Authors: Nana Kojo Ayimadu Baafi, Kwesi Amponsah-Tawiah
Abstract:
The study investigated the relationship between job-related anxiety and employee creativity. The study further explored the role of job resources in moderating the relationship between job-related anxiety and employee creativity within the oil and gas industries. The study utilized a cross-sectional survey design. A non-probability sampling technique, specifically convenience sampling, was used to sample 1200 participants from multiple companies within the oil and gas industries. The collected data were analyzed using Regression analysis and PROCESS macro for the moderation analysis. The study empirically demonstrated a negative significant relationship between job-related anxiety and employee creativity. It also exhibited that job resources moderated the relationship between job-related anxiety and creativity. This study addresses gaps in previous studies by highlighting the significance of job resources in how job-related anxiety affects employee creativity.Keywords: employee creativity, job-related anxiety, job resource, human resources
Procedia PDF Downloads 4528539 Women and Food Security: Evidence from Bangladesh Demographic Health Survey 2011
Authors: Abdullah Al. Morshed, Mohammad Nahid Mia
Abstract:
Introduction: Food security refers to the availability of food and a person’s access to it. It is a complex sustainable development issue, which is closely related to under-nutrition. Food security, in turn, can widely affect the living standard, and is rooted in poverty and leads to poor health, low productivity, low income, food shortage, and hunger. The study's aim was to identify the most vulnerable women who are in insecure positions. Method: 17,842 married women were selected for analysis from the Bangladesh Demographic and Health Survey 2011. Food security defined as dichotomous variables of skipped meals and eaten less food at least once in the last year. The outcome variables were cross-tabulated with women's socio-demographic characteristics and chi2 test was applied to see the significance. Logistic regression models were applied to identify the most vulnerable groups in terms of food security. Result: Only 18.5% of women said that they ever had to skip meals in the last year. 45.7% women from low socioeconomic status had skip meal for at least once whereas only 3.6% were from women with highest socioeconomic status. Women meal skipping was ranged from 1.4% to 34.2% by their educational status. 22% of women were eaten less food during the last year. The rate was higher among the poorest (51.6%), illiterate (39.9%) and household have no electricity connection (38.1) in compared with richest (4.4%), higher educated (2.0%), and household has electricity connection (14.0%). The logistic regression analysis indicated that household socioeconomic status, and women education show strong gradients to skip meals. Poorest have had higher odds (20.9) than richest and illiterate women had 7.7 higher odds than higher educated. In terms of religion, Christianity was 2.3 times more likely to skip their meals than Islam. On the other hand, a similar trend was observed in our other outcome variable eat less food. Conclusion: In this study we able to identify women with lower economics status and women with no education were mostly suffered group from starvation.Keywords: food security, hunger, under-nutrition, women
Procedia PDF Downloads 373